Some remarks on a fixed point theorem of T. Kubiak

By S. SESSA (Napoli) and B. FISHER (Leicester)

Recently KuBiAk [2], extending fixed point theorems of KHAN and FisHER [1],
RuoADES [3] and SINGH, Tiwarr and GupTA [7], gave a necessary and sufficient con-
dition for the existence of a common fixed point of a pair of continuous mappings
in 2-metric spaces. Our aim is to improve the result of Kusiak [2] under more general
conditions by using the concept of weak commutativity due to SEsSA [5] in the context
of metric spaces and a contractive condition due to SASTRY and NAIDU [4].

We first of all recall some well known definitions. Let X be a nonempty set and
let d: XX XX X~-[0, + =) ne a function such that

(i) d(x, y, z)=0 if either x=y or x=z or y=z,
(ii) for each pair of distinct points x, y€ X, there exists a point z€.X such that
d(x, y, z)#0,

(iii) d(x, y, 2)=d(x, z, y)=d(y, z, x),

(iv) d(x,y,z)=d(x,y, w)+d(x, w, 2)+d(w, y, z), for all x, y, z, we X.

The function d is called a 2-metric on X and (X, d) is called a 2-metric space.
A sequence {x,}in X is said to be convergent to a point x in X if lim d(x,, x, a)=0

B oo

for all ac X. A sequence {x,}in X is said to bea Cauchy sequenceif lim d(x,x,,a)=

m,n—-oo
=0 for all acX. A 2-metric space (X, d) is said to be complete if every Cauchy
sequence in X is convergent.

A 2-metric d on X is said to be continuous on X if it is sequentially continuous
in two (and hence in each) of its three arguments. A mapping S of X into itself is said
to be continuous at a point x€X if whenever a sequence {x,} converges to x€JX,
then the sequence {Sx,} converges to Sx.

SEssA [5] introduced the concept of weak commutativity of a pair of mappings
of an ordinary metric space into itself. We now extend this concept in a 2-metric
space. Indeed, let S and A be two mappings of a 2-metric space (X, d) into itself. We
say that § weakly commutes with 4 on X if

d(SAx, ASx. a) = d(Ax, Sx. a)

for all x, acX. Itis evident that two commuting mappings are also weakly commut-
ing, but in general, two weakly commuting mappings do not commute as is shown in
the following example.
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Example 1. Let {(x;, x,): x,, x,=0} and let d be the 2-metric which expresses
d(x, y, a) as the area of the Euclidean triangle with vertices x=(x;, Xo), ¥y=(Vy, V2)
and a=(a,, a,). Let A and S be two mappings of X into itself defined by

A (xl ’ x2) = (xl/(xl +4b)s 0), S(xl'! xﬂ) = (xl/bs 0)

for all (x;, x,)€X, where b=1 is a constant. We have

(b=1)xi i xi+3bx,
(%, + 4b%) (bx, + 4b%) ** = T, +4b?

d(SAx, ASx, a) = -a® = d(Ax, Sx, a)

for all x,acX. Thus S and A weakly commute on X but § and 4 do not commute if
b=>1.

Drawing inspiration from a contractive condition of SASTRY and NAIbu [4],
we now prove the following result.

Theorem 1. Let (X, d) be a complete 2-metric space with d continuous on X and
let S and T be two mappings of X into itself. If either S or T is continuous, then they
have a common fixed point z in X if and only if there exists a mapping A of X into T(X)
and a mapping B of X into S(X) such that A and B weakly commute with S and T res-
pectively and satisfy the inequality

(1) d(Ax, By, a) =
= max {cd(Sx, Ty, a), cd(Sx, Ax, a), cd(Ty, By, a), hd(Sx, Ty, a)+
+kd(Ty, Ax, a)}
for all x,y, ac X, where 0=c<1, h, k=0,

h k }
2) h+k<1 and c-max{m,m -« 1.

Further, z is the unique common fixed point of A, B, S and T.

Proor. This is similar to the first part of the proof of Theorem 3 of [6]. For the
sake of completeness, we present the main steps of the proof in order to show how
the weak commutativity and the continuity of S or T are essentially used. Of course
the proof is modified in the details where the properties of the 2-metric d are taken
into consideration. The necessity of the condition is proved as in [2].

We now show the converse implication. Let x, be an arbitrary point in X. Then
since the ranges of S and T contain the ranges of B and A respectively, we define, as
in [2], a sequence {x,} in X such that Sx,,_,=Bx,,_, and Tx,,=Ax,,_, for n=

Adopting the same reasoning as in [2], it is not difficult to prove, using (1) and
(2), that {Sx,,_,} is a Cauchy sequence and hence that it converges to a point z€ X,
since X is complete. As in [2], it follows that

lim Sx:n_l =ulir2 me_3=linl Txm=nlim szl'l—l =2Z.

oo
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Since
A 5s SXazs @) = A(AX 1+ 3, SXppo 1)+ d(Axe 1\ 3, 0)+
+d(Sxy,-1, 2, @)
for all a€X, it follows that
3) lim d(Axy, 1, S%3y_1,3) =0

for all acX. Now assume that S is continuous. Then the sequences {S2x,,_,} and
{SAx,,_,} converge to Sz. Since S weakly commutes with 4, we have

d(ASxs,_1, 52, a) =
= d(ASXss—1, Sz, SAX3y_1)+d(ASXgy_1, SAXsy_1, a)+
+d(SAxy,—3, Sz,a) =
=d(Axg,_1, SXap_1, S2)+d(Axgy_1, SXgy_1,a)+d(SAXe,_1, S2, a)

for all a€X. By (3), this means that the sequence {4Sx,,_,} also converges to Sz.
Using (1) we now have

d(ASxe_1, Bx,y,, a) = max {cd(S*xy,_1, TXs,, a), cd(S*%gy_1, ASXs,_1, a),
cd(Txy,, Bxs,, a), hd(S*xs,_,, Bx,,, a)+kd(Txy,, ASxs,_1, a)}

for all a€X. Since d is continuous, we have, on letting n tend to infinity in the fore-
going inequality, that

d(Sz, z, a) = max {c, h+k}-d(Sz, z, a)

for all ac X and by (2), we deduce that Sz=z.
From (1), we get

d(Az, Bx,,, a) =
= max {cd(Sz, Tx,,, a), cd(Az, Sz, a), cd(Txy,, Bx,,, a),
hd(Sz, Bxs,, a)+kd(Tx,,, Az, a)}
for all acX. Since d is continuous, this implies that, on letting n tend to infinity
d(Az, z, a) = max {c, k}-d(z, Az, a)

for all acX. By (2), this means that 4z=z.
Since z=Az€T(X), there exists a point u€X such that Tu=z. Using (1)

again, we have
d(z, Bu,a) = d(Az, Bu,a) =

= max {cd(Sz, Tu,a), cd(Sz, Az,a), cd(Tu, Bu, a), hd(Sz, Bu, a)+kd(Tu, Az, a)} =
= max {c, h}-d(z, Bu, a)
for all acX. By (2), we deduce that Bu=:z.
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Since T weakly commutes with B, we have
d(TBu, BTu, a) = d(Bu, Tu,a) = d(z, z,a) =0
for all acX. This implies that 7z=TBu=BTu=Bz and from (1), it follows that
d(z, Bz,a) = d(Az, Bz, a) =
= max {cd(Sz, Tz, a), cd(Sz, Az, a), cd(Tz, Bz, a), hd(Sz, Bz, a)+ kd(Tz, Az, a)} =
= max {c, h+k}-d(z, Bz, a)

for all a€X. By (2), we deduce that z=Bz=7Tz. Thus z is a common fixed point of
A, B, S and T. Of course, the proof is similar if we assume the continuity of 7 instead
of S. The uniqueness of z is easily proved. This completes the proof of the theorem.

Remark 1. In Theorem 1 of [2] and Theorem 2 of [1], the authors assume the
continuity of both § and T and also the commutativity of 4 and S and of B and T,
but we assume only the continuity of either S or T and the weak commutativity of
Aand Sandof Band T.

Remark 2. KuBlAK [2] and KHAN and FisHER [1] assume that 4 and B are mapp-
ings of X into S(X)NT(X), but it suffices only to say that 4 maps X into 7(X) and
B maps X into S(X).

Remark 3. If we assume that h=k=

of [2].

The following example shows that the sufficiency condition of Theorem 1 of [2]
is not applicable since S and 7" do not commute with 4 and B respectively, although
both S and T are continuous.

1

5 O inequality (1) reduces to inequality (1)

Example 2. Let X be as in Example 1 and define 4, B, S and T by
A(x;, x9) = (x1/(x,+16), 0), B(x;, x5) = (x,/(x;+12), 0),
S(x;, X3) = (x1/4,0), T(xy, x3) = (x,/3, 0)

for all (x;,x,)€X. By Example 1, we know that § and T weakly commute with 4
and B respectively. It is easily shown that 4 maps X into 7(X) and B maps X into
S(X) and that S and T are both continuous. Further

4|3x, —4y,| e = |3x; — 4y,
Gy +16)(m#12) * 7 48
for all x=(x, x,), y=(»1,¥s), a=(a,,a)¢X. Thus inequality (1) holds with ¢=

=1/4 and (0,0) is the unique common fixed point of 4, B, S and T.
If neither of the mappings S and T are continuous then the following result holds.

d(Ax, By, a) = = %' d(Sx, Ty, a)

Theorem 2. Let (X, d) be a complete 2-metric space with d continuous on X and let
S and T be two mappings of X into itself. Then S and T have a common fixed point z in
X if and only if there exist mappings A of X into T(X) and B of X into S(X) such that
either A or B is continuous, A and B weakly commute with S and T respectively, and
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satisfy the inequality (1) for all x, y, acX, where 0=c<1, h, k=0 and inequalities
(2) hold. Then z is the unique commion fixed point of A, B, S and T.

PRrOOF. It is similar to the second part of the proof of Theorem 3 of [6] and we
omit it for brevity.

Remark 4. Analogous results to Theorems 1 and 2 can be formulated in complete
metric spaces.

Remark 5. Note that if we put a=max {c, h+k}, inequality (1) becomes
(4) d(Ax, By, a) =
= o-max {d(Sx, Ty, a), d(Sx, Ax, a), d(Ty, By, a), d(Sx, By, a), d(Ax, Ty, a)}

for all x, y, ac X. Example 6 of [7], where S=T is the identity mapping on X, proves
that the analogous inequality in complete metric spaces does not in general guarantee
the existence of a common fixed point of 4, B, S and T.
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