A note on radicals and torsion theories

By W. G. LEAVITT (Lincoln)

For a subclass M of a universal class C of not necessarily associative rings we
define as usual:

UM = {AcC| if A-~ B#0 then BQM}, and
SM = {4€C| if 0# B<iA then BM}, where

A-B means B is a homomorphic image of 4, and B<tA means B is an ideal of A.
In a recent paper [2] several possible properties of a class M were listed :

(a) M is homomorphically closed.

(a*) M is hereditary.

(A) M is “co-regular”, thatis MSUSM.

(A*) M is “regular”, thatis MCSUM.

(A**) M is “hereditarily regular”, that is H(M)SSUM, where H(M) is the

hereditary closure of M.

Note: In [3] a class M was called “‘co-regular” if SUM S M. However, it appears
that the definition (A) given above is a preferable use of the term.

It is well-known that M regular is a sufficient condition that UM be a radical
class. However, the following example shows that M can be co-regular with SM not
semisimple and USM not radical:

Example 1. Let M ={Z3, the homomorphic closure of Z,[y]}, then M=USM
and note that except for Z,[y], all members of M are finite. Now let R=
=Zy[y, X1, Xy, ...] where yx;=x;y=x;;, for alli, and x}=x;x;=x;x;=0 for all
i,j. Itis easy to check that every non-zero ideal of R is infinite and contains nilpo-
tents so is not in M. Thus R€ SM. Then if I={Zx;x;} then I is an ideal of R and any
0#1/J contains an ideal =Z% M. Thus I¢ USM so SM is not semisimple. In fact,
also we have R/I=Z,[y]c USM, so USM is not radical.

Also considered in [2] are pairs (E, F) of classes satisfying one or more conditions,
including :

(1) ENF=0.

(3) For any ring A€C there exists B<aA with BEE and A/BEF.

We will call (E, F)a “radical pair” if Eis a radical class with F the corresponding
semisimple class. It is well-known that (E, F) is a radical pair if and only if E=UF
and F=SE, and in [2] are given several equivalent conditions including :
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I1 (E, F) satisfies (1), (3), and (a, A*) where (a, A*) means E satisfies (a) while
F satisfies (A").
In [2; Section 3.4] was asked:

Question 1. If the pair (E, F) satisfies

(2) Conditions (1), (3), and (A, A*), is (E, F) a radical pair? (The converse is,
of course, clear.)

In [4] we defined a *‘torsion theory™ as a pair (E, F) satlsfymg (1), (3),and (a, *),
and we showed (as is also clear from II) that a torsion theory is 51mply a radical pair
whose semisimple class is hereditary. The two concepts thus coincide in any universal
class in which all semisimple classes are hereditary (such as the class of all associative,
or all alternative, rings). Another query in [2] was:

Question 2. If the pair of classes (E, F) satisfies:

(B) Conditions (1), (3), and (A, A**), is (E, F) a torsion theory? (Again the con-
verse is clear.)

Since attempts to give affirmative answer to the above questions seem to fail, the
next step is to try to construct a counter-example. In such a project it is useful to
examine the properties required.

We will say that a pair of classes (E, F) is “entwined” in a ring R if there exists
an infinite properly descending chain R/, =I,... and an infinite properly ascend-
ing chain (of accessible subrings) 0=J,<J,<J,<1... such that for all k=1 each
Jial,, Ji_y<l, with 0=1/J,_,€E and 0#I/J,€ F. Then we have

Theorem 1. If (E, F) satisfies (x) or (f) and F#SUF then there exists a ring
R in which (E, F) is entwined.

PrOOF. By (A*) or (A**) we have FC SUF and if F# SUF then there will exist
aring RESUF with R¢ F. By (3) there is some 0+#I;<aR with I,€ E. Writing
Jo=0 then L/I,cE and since I,/J,=I,<xRESUF it follows that I,/J, has an
image I,/J,€ F. For induction assume we have a properly descending chain R/, =
eI, ... oI, and a properly ascending chain 0=Jy,<aJ,<aJ,<a...<aJ; such that for
all i=1,2,...,k wehave J;_,<l; and J;<al; with 0=1;/J;_,€E and 0#I/J,€ F.
Since ECUSE there is some 0#I,.,/Jy<al}/J; such that I, .,/J,€E and since
ENF=0 we have I, .,<al, but not equal. But also [,/J,€ FESUF so I,4,/J; has
a proper image I .,/J; 1€ F. Againfrom ENF=0 we have J,<J,,, butnotequal.
The result then follows by induction.

Theorem 2. If (E. F) satisfies (x) or (f) and E#= USE then there exists a ring R
in which (E, F) is entwined.

Proor. Let REUSE with R¢ E then by (3) there is some J,<aR such that
J,€E and 0#R/J,€ F. But REUSE so there is some 0#1/J,<aR/J, with L/J,€E
and I;<<R but not equal. Then since R/J,€ FESUF it follows that I,/J, has a pro-
per image I,/J,€ F. The induction is then the same as for Theorem 1 and (E, F) is
entwined in R/J,.

From the proof of the above theorems we see that

Corollary 1. Let E be homomorphically closed. If (E, F) satisfies (x) then it is a
radical pair and if (E, F) satisfies (f) then it is a torsion theory (see [2; Theorem 3.311
and Theorem 2.311]).
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Corollary 2. Let F be hereditary . If (E, F) satisfies («) or (B) then it is a torsion
theory (see [2; Theorem 2.3111]).

We now proceed to the construction of a counter-example to Questions 1 and 2.
The example will be constructed in the universal class C of all associative rings so
from now on all rings will be assumed to be associative.

Write A<w<aB when A is an accessible subring of B. Let R be a commutative
ring with unit 1. For any integer k=1 we will designate as a “k-structure” any set
L<<l,_<<..<<al,<<al,=R for which there is a set {f}, fs, ..., fy} Where
fi=1, fi€l; and f;4J; defined by

Jo=0, J; = {x€L|x" = u—fiu+y for some n = 1, some ucl;, and some y€J;_,}
forall i=12 ...

Note that when R admits a k-structure then for i=1, 2, ..., k each I,/J; has a unit
and zero nil ideal. We now define a class F as follows: Fis the class of all commuta-
tive rings R with unit 1, zero nil ideal, and no minimal ideal such that for any k-
structure contained in R if [ ,/J;<s<al/J, then there exists f,.,€1,,, such that
Sfrs16€xs1 wWhere Ji = {x€L \|X"=u—f, . u+y for some n=1, some u€l;,,,and
some y€J), and such that I,,/J,,, has no minimal ideal. Furthermore, for
any fel, ., if f¢ H where H={x€l, |x"=u—fu+y forsome n=1, some u€l,,,
some y€J,} then I,.,/H has no minimal ideal. As usual we assume 0 is a member of
all classes, so also O€ F.

To show that Fis non-zero we note a ring given in [1] whose description we repeat
here for completeness :

Example 2. Let R be the ring generated over Z, by commutative symbols
{x1, x5, ...} with relations described using the following diagram:

P \
/\ /\ A A

Each x; is an identity for all x; below it in the diagram, and (for i<7) x;x;=0 if
x; is not below x;. Also each x is the sum of the two symbols directly below. Thus
xgxe—x, but x..xls—O and x;=xg+x,. The accessible subrmgs of R are the ideals
of R and every ideal is a direct sum of copies of R. Also R is isomorphic with any
finite direct sum of copies of R. Thus R is a commutative ring with unit, zero nil ideal,
and no minimal ideal. Also if /<R and J={u—fu for all ucl} for any f€I, then
fis a finite sum of a set {x;} (all at the same level in the diagram) which then generate
I modulo J, that is I/J is a finite direct sum of copies of Rso I/J=R. Thus REF.

4
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Theorem 3. H(F)S SUF.

PrOOF. Let I A<a<aREF. We have that R together with f,=1 and J;=
is a k-structure in R with k=1. Thus since /<t < R, there is some f&€7such that f¢J
where J={x€I|x"=u—fu for some n=1, and some u€l}, and such that I/J has
no minimal ideal. Thus I=7J/J is a ring with unit f=f+J, zero nil ideal, and no
minimal ideal. Suppose (for some k = 1) I contains the k-structure [,<<...[,<s<l,=
=1 where we have {f,=1./;,.... i} with ficl; and f;¢J, where J,= {xEI;Ix" u—
—fiu+y forsome n=1, some uelf, and some y€J,_,} for all i=l, 2, ..., k. Then
L<<..<<lj=I<<l;=R with {f,=1,f,, ..., £} is a (k+1)-structure in R. If
L . li<<al /], then I, .,/Jys<ali/J;, so there exists fii1€Jii1s fis16Jisy Where
Jpsr={x€L o\ |x"=u—f, ,,u+y for some n=1, some u€l,,,, and some y€J,}.
Then f,41€I 4, and fi.,6J,., and moreover I, /J, 1221, 1/J;+; has no minimal
ideal. Furthermore if fel, ., with f¢ H where H={x€I, ,,|x"=u—jfu+y for some
n=1, some wu€l,.,, and some yEJ,‘} then fcl,,, with f¢ H so IH,/H L., /H
has no minimal ideal. Thus 7 has an image I=I/J€ F so A¢SUF. Then since A was
an arbitrary accessible subring of R€ F it follows that H(F)S SUF.

Theorem 4. If A, BEF then A@BCF.

ProoF. Clearly A@B has a unit, zero nil ideal, and if it had a minimal ideal it
would be of form 7/@J with either 7 or J non-zero and minimal in A or B. Now an

accessible subring of A@®B will be a subdirect sum I @ J where 7 is an accessible
subring of 4 and J accessible in B. Suppose A®B contains a k-structure

L® H<a..<<l,® H<<l,OH,=A®B, with {(f,2)=L1), (fir2D), ...
ey (Sfis &)} where (f;, g)€1, @Hn(ﬁ,&)ﬁ-f: B Ki={x€l, ® Hi|x"=u—(f;,8)u+y

for some n=1, some u€l; @ H,, and some y€J,_, D K,_,}foralli=1,2,...,k
Now if for some r we have f,€J, so that I,=J,. Then for all j=r we would
bave I;S1,=J,SJ; so I;=J;. Thus in this case we would have g;¢K; for all i.

We therefore have elther fe{.ff or g4 K; foralli,say f,¢J; foralli. Then L<a=...
<.1<::|11—A w1th ¥ A fg, s Sy} 18 a k-structure in A€F. Suppose

(Zx 41 EB Hi )/ EB Ky <<(l, @ H))/(J, & K,) then the projection 4 & B— A induces
I 41/Jy<a <ali/J,. Therefore there exists some fi 1€ 41y fis1§Jis1={XEL 4 |X"=
=u—fyu+y for some n=1, some u€l,,,, and some y€J,}. Furthermore
I +1/Jx +1 has no minimal ideal. If ( f;,,, &+,) 1s the inverse image of f, ., under the
projection we can define

Je1 D Ky = {xEIk+l @D Hyalx" = u—(fiy1s 8s)u+y forsome n =1,

5 s
some u€ .y @ Hyy,, and some yeJ, ® K}
NOW if gl'l‘lGKt'l'] thcn H*+1=K*+l al:ld we Would have

(Ik+l &%) Ht+1)/(JI¢+l @ KH!) = L/ i

But if g,.,4 K., then since B€F we know that H,,,/K,,, has no minimal ideal.
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Therefore (1,44 é H; /(i 41 é K, 1) also could not have a minimal ideal. Further-
more, for any (f, g)€l,4, @D H,., such that (f, g)¢ H where

H = {x€ly4; @ Hya|x" = u—(f, g)u+y forsome n = 1, some u€ly;y @ Hysa,
and some y€J, E[’) K.},

then by the same argument 7 ,, 6.3 H, .,/H does not have a minimal ideal. We have

thus shown that A ®BEF.
We now let E be the class of all (associative) rings not in F, so that ENF=0.
Then by definition

Lemma 1. UFSE.
Also we have
Lemma 2. Every non-zero ring contains a non-zero ideal from E.

Proor. Suppose there could exist 0 R all ideals of which are in F. Then R€F
so has a unit 1, and since R has no minimal ideal it has a proper ideal I. Thus 147
and let 7 be maximal relative to 1¢7. Since /€ F it has a unitso R=I®J for some
J<aR. But then also J€ F so has a proper ideal J;. Then J;<sR so by maximality we
would have the contradiction 1€/@J,.

Corollary 3. ECUSE
Corollary 4. The pair (E, F) is entwined in every 0= REF.

Proor. We have 0=REF and by Lemma 2 some 0#/<sR with I€E. Since
FCSUF and EC USE the construction is the same as that of Theorem 1.

Theorem 5. Every ring A has an ideal I€ E such that A[IEF.

Proor. We have shown that F is regular so UF is radical. We have A/UF(A)¢
€SUF and UF(A)EE, soif AJUF(A)€F we are done. Thus without loss of gene-
rality we may assume A€SUF but A¢F. Then for some I<A we have AJIEF.
But if /€ F we would have A=I®J for some J<tA. Then we would have J=
=AJI€ F so by Theorem 4 the contradiction A€ F.

We now have a pair (E, F) of classes satisfying conditions («) and (). And to
show it is not a radical pair we have

Theorem 6. If a pair (E, F) of classes is a decomposition of a universal class C,
admitting finite direct sums then (E, F) is a radical pair in C if and only if it is either
(0,C) or (C, 0).

PRroOF. Suppose (E, F) is a radical pair and 0#A€E and 0#B¢F. But every
ring is either radical or semisimple and if 4@ B is radical we would have the contra-
diction A®B-B, while if it is semisimple then A<A®B would be a contra-
diction.

4
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Corollary 4. Property (o) does not define a radical pair and (f) does not define a
torsion theory.

We now give another example of an F-ring.

Example 3. Let R=2Z,[x,, X,, ...}, so that R is a commutative ring with unit,
zero nil ideal, and no minimal ideal. Now suppose R has the k-structure i< <a...
w<a<lhb<<alj=R and (fi=1fy ....f;} with ficl; and fi4J; where J,=0,
Ji={x€l|x"=u—fiu+y forsome n=1, some u€l;, and some y€J;_;}.

Lemma 3. We may assume that f;z€I; for all zER and for any g€l there is
some h congruent to g modulo J; such that hz€l; for all z€R.

PRrOOF. Since f; is a unit of I; modulo J; the same is true of any power of f;, and
J; can be generated by any such power. Since f"z€I; for sufficiently large n, we can
assume that fiz€l; for all z€R. Also any g€, is congruent modulo J; to h=gf;
and gf;z€l; for all z€R.

Note that if x€/; is such that x"=u—f,u+y for some n=1, some uc/l;, and
some y€J;_;, we may assume nis even (multiply by x if n is odd).

Lemma 4. Let t= all subscripts of all symbols appearing in any of the terms of
any of {fasfss ---s fi}- For all k=i if weJ; and w=2r’ w;x] with each w; free of
0
x, then fiw;€J; for all j.

Proor. This is certainly true for J,=0 and assume for induction that the result
is true for i—1. Let weJ; so w"=u—fu+y for some (even) n,some u€I;, and some
y€Ji—1. Writing u=2Zu;x} and y=2ZXy,x], then since n is even and R has characte-
ristic 2, we have

-

y oij','-’ = E(“J—f;”j)x'r"*'zij{-

Equating coefficients of x, yields
W} e unf_ﬂunj+yuj'

Now fu,,€[,<I; and by the induction hypothesis f,y,;€J;—; so since i€ ,S1;_,
we have f"y,;€J;_;. Thus fiw;€J; so the result follows by induction.

Corollary 5. Let fel,, f&J, be such that fz€I, for all z€R. Let t=> all sub-
script of all symbols appearing in any of the terms of any of {f,fa,fss ..., [i} then
fx€ly, fxiddy.

Proor. Since f if free of x, then if fx,€J, it would follow from Lemma 4 that
fif€J,. But f, fis congruent to f modulo J, so the contradiction f€J,.

Proposition 1. If 01, ,,/Ji<a<al,/J, then there exists some fi 1€1iiy, frsr18
§ S s1={xX€EL 1 |xX"=u—fy . u+y for some n=1, some ucl,,,, and some y€J}.

Proor. Let f€1,.,, f¢J, and such that fz€/ ,, for all z€R, and let r> all
subscripts of all symbols appearing in any term of any of {f, f;, ..., fi}. By Corollary
5 we have fx,€1I,, fx,4J;. Let fi,,=fx, so if I,,,=J;,, then f€J, ., so for some
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v€l,,, we have f"—(v—fx,v)€J,. Writing v=v,+v,x,+...+v,x;, where since
fxv is congruent to v modulo J,, we can assume each v;€/,. Then by Lemma 4
(again using congruence modulo J,) we have

f'-—voGJ,‘
Ul-quEJt

U, — 0,1 f€J;
v, f€J,.
But then we obtain f"+"+!¢J, so the contradiction f€J,. Thus fi 6 Jysq-
Proposition 2. [, ,/J, ., has no minimal ideal.

ProoF. Let A/J,., be a minimal ideal of I, ,/J,.,. Let g€ A, g¢Jy,,. Since
fix+1 1s a unit of I, ., modulo J,,, where f;,,z€l,,, for all zéR then gf,.,z€A
for all z€R. Thus we may assume gz€A4 for all z€R. By Corollary 5 for suffi-
ciently large + we have gx,€A4 with gx,4J,,,. But then gx, would generate A
modulo J, ., so that for some wéA4 we would have g—wgx,€J,,,. By Lemma 4
this would give the contradiction g€J,.,.

Corollary 6. For any fcl,,, if fé¢ H={x€l ,|x"=u—fu+y for some n=l,
some ucl,.,, and some y€J,} then I, ,/H has no minimal ideal.

PROOF. Again since f'is a unit of I, ., modulo H we may assume fz€I,,, for all
z€ R. The construction is then the same as for Proposition 1 and the proofis the same
as that of Proposition 2.
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