On the n-dimensional SE-connection
and its conformal change*

By KYUNG TAE CHUNG & CHUNG HYUN CHO

Abstract, The purpose of the present paper is to investigate properties of the n-dimensional
SE-connection and its change induced by the conformal change (5.2). In the present paper, we intro-
duce the concept of the SE-connection, find a necessary and sufficient condition for the existence of
a unique SE-connection, and derive its representations. We also derive a useful representation of its
change induced by the conformal change.

I. Introduction

The conformal change in a generalized 4-dimenzional Riemannian space con-
nected by an Einstein’s connection was primarily studied by HLAVATY (1957). CHUNG
(1968, 1974) also investigated the same topic in 4-dimensional *g-unified field theory.
In the present paper, we first introduce the concept of an n-dimensional SE-manifold,
SEX,, a generalized Riemannian space connected by the SE-connection I'j, which
is both semi-symmetric and Einstein. In the sequel, we find a necessary and sufficient
condition for the existence of a unique SE-connection and derive several represen-
tations of the unique SE-connection. In the last section we finally investigate the
change I'},—~TI7, of two n-dimensional SE-connections induced by the conformal
change (5.2).

All considerations and results presented in the present paper hold for all classes,
all possible indices of inertia, and an arbitrary n>1.

IL Preliminaries

This section is a brief collection of definitions, notations, and basic results which
are needed in our subsequent considerations. The detailed proofs are given in CHUNG
(1963, 1981, 1982), HLAVATY (1957), and MisHRA (1958).

Let X, be a generalized n-dimensional Riemannian space referred to a real coor-
dinate system x*, which obeys only coordinate transformations x*--x* for which

ox’
(2.1 Det[ ‘j'x—]] [

* This paper was supported by an 1983—1984 Oversea Research Fellowship of the Korean
Government and prepared during the author’s visit at the University of Chicago in this period.
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The space X, is endowed with a general real nonsymmetric tensor g,, which may be
split into its symmetric part h;, and skew-symmetric part k;,*):

(2'2) gl.n — hln+kiu’
where

(2.3) a2 Det((g:)) =0, b2 Det((hy) =0, 2L Det((k).
We may define a unique tensor h*" by
(2.4) By i o= 5%,

which together with h;, will serve for raising and/or lowering indices of tensors in X,
in the usual manner.
The space X, is connected by a general real connection I'}, with the following
transformation rule:
y x> ( 9x* ox’ *x*
2.5 \f‘ ¢ = [ ] ’ y [ ’ ] .
=) = o \oxF o BT o o

It may also be decomposed into its symmetric part A4}, and its skew-symmetric part
S, called the torsion tensor of I'},:

(2.6) I, = A3+ 83 A% =T, Siu = Thy-

A connection I'}, is said to be Einstein if it satisfies the following Einstein equations:

(2.7)a amglp"rimga.u ""r:ugh =0,
or equivalently
(2'7)]) D w8 AR ZS:m Lia

where D, is the symbolic vector of the covariant derivative with respect to I'j,. The
space X, in this case is a generalization of the space-time Xj. A connection I'},, is said
to be semi-symmetric if its torsion tensor S}, is of the form

(2.8) Sia =201, X

for an arbitrary vector X,,. A connection I'j, which is both semi-symmetric and Ein-
stein is called an SE-connection. An n-dimensional SE-manifold, denoted by SEX, in
our further considerations, is a space X, on which the differential-geometric structure
is imposed by g;, through an SE-connection I'},.

* Throughout the present paper, all Greek indices take the values 1,2, ..., n and follow the
summation convention.
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The following quantities are frequently used in the present paper:

t
2.9)a i E, k i —_
(2.9) e b
- o {0, if n 1is even
(20 =1, if n is odd’
(2.9)c Oky L83, @Ky L3k, (p=1,2,..);
(2.9)d K, Z kg k.. ki, (2=0,1,2,..);
2.9)e Ty &£ Oz @RBORIT,, -
(2.9)f Koy LV o k4, kg + Vo Ky

Here T,,, is an arbitrary tensor and V,, is the symbolic vector of the covariant deri-
vative with respect to the Christoffel symbols { 11:1} defined by h;, .

In a general X, it may be easily shown that

5 10 O i Anighe [symmelric if p is even
(210 as &0 A€ skew-symmetric if p is odd;
(2.10)b K=1 K,=k if niseven, K,=0 if pis odd;

000 par apr ’
(2.10)0 Tm_uv = Tmsv! Tm_uv i Tumv if Tmnv = —Tumv;
(2.10d g= 2 Ki;

s=0
(2.10)e S K,"-9k3 =0 (Recurrence relation).
5=0

Here and in what follows we assume that s rakes only even integers in the given range.
If the system (2.7) admits a solution I'},, it must be of the form

v
(2.11) r5#={l,u}+ Ulet+S%ss
where
001
(2.12) Ulh=2 Sy

5‘
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II1. The SE-connection I'},

In this section we shall obtain a necessary and sufficient condition for a general
connection I'}, of X, to be a unique SE-connection and derive some useful represen-
tations of the SE-connection.

Theorem (3.1). If there is an S E-connection I'} ,, it must be of the form

Vv
(3.1) I = {;,F}+2thm+25Ea.Xu

Jor a vector X,,.

Proor. If I'}, is an SE-connection, it must be of the form (2.11). Substituting
(2.8)and

(3.2) Uy = 2k (88X 3 kg — 08X n K 2p) = 2k1, X,y

into (2.11), we have (3.1).
In the next Theorem we shall assume that the symmetric tensor

df
(3.3) P, —= Pk, —h,,
is of rank n®), so that there exists a unique symmetric tensor Q* = Q"* satisfying

(3.4) P, 0% = 3.

Theorem (3.2). There exists a uniqgue SE-connection I'}, if, and only if there is a
vector X, such that

(3.5) Vq, k4”+2pw[aX#] = 0.
The vector X, satisfying (3.5) is unique and may be given by

1
(3.6) X, = —— 0"V ky,.

Proor. Multiply both sides of (3.5) by Q“" and contract for v and A in order
to obtain (3.6). The uniqueness of the vector X, satisfying (3.5) is obvious.

Suppose that I'j, is an SE-connection. Then it must be of the form (3.1) and
satisfy (2.7). Substituting (3.1) into (2.7)a, we have the condition (3.5). Conversely,
assume now that there exists a vector X, satisfying (3.5). With this vector X, define
a semi-symmetric connection I'}, by (3.1). This connection I'j, is clearly Einstein
since it satisfies (2.7)a in virtue of our assumption (3.5).

Besides the SE-connection I';, defined by (3.1) and (3.5), assume that there exists
another S E-connection

v
(3.7) - I" = {).#}"'2!(:;*1"”)'{'26{1*)’“], ‘X,‘ = Xl"

* In Remark (4.3) we shall show that the rank of P,,, is n.
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Then, in virtue of the above discussion, *X,, must satisfy
(3-8) mGln+2Pm[i*Xu] = 0.
Applying the same method used to derive (3.6), we have from (3.8)

1
Xy = 5 C Vb = X
which contradicts the assumption (3.7). This proves the uniqueness of the SE-con-

nection.

Remark (3.3). In virtue of the previous Theorems, we note that our n-dimen-
sional SE-manifold SEX, is connected by the unique SE-connection I'}, given by
(3.1) and (3.6).

Theorem (3.4). The following relations hold in SEX,, :
(3.9) Kow = 2V kous  2Viokuy+ Vo ke, = 0.
Proor. These assertions may be obtained from (2.9)f and (3.5).
In our subsequent considerations, we need the following tow vectors:
(3.10) Eafe .20
Theorem (3.5) In SEX,, the vectors X,,, S,, and U, may be given by
1

(3.11)a X, =Tn—_1_)-K"“’Q“’

(3.11)b S, = (1=n)X, ==1,K,,0%,
1 100

(3.11)0 U“= k:X¢= mKnC’Q".

Proor. Substituting for V,k,, into (3.6) from (3.9), we have (3.11)a. The first
representations of (3.11)b, ¢ may be obtained by contracting for A and g in (2.8) and
(2.12), respectively. The remaining representations are clear in virtue of (3.11)a and

(2.9)e. g
Remark (3.6). In a manifold connected with an Finstein connection, HLAVATY
(1957) proved that the vector U, is a gradient of a scalar In}g. That is,

(3.12) U, =/,0,(In g).
Theorem (3.7). The unique SE-connection I, of SEX, may be given by

v 1
e Fin =+ T € Ve 8 Vakad 70,
or equivalently

. 55 _
(3.13)b r,= { M} + — (1iKone + KaKores) 2.
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ProoF. In virtue of (2.2), the representation (3.1) may be written as

(3.14) r, = { 1;}+(g s B XD
Substituting for X, into (3.14) from (3.6), we have (3.13)a. The representation (3.13)b
is a consequence of (3.1) and (3.11)a.

Theorem (3.8). The following five statements are equivalent in SEX,, :

@ S,=0, (b) X,=0, (c) V,k;,=0,
@ Kan=0, @ Ii={y}.
PRroor. Since the tensor Q*' is of rank n, the equivalence follows from the follow-
ing diagram:
(a) (3.11)b (b) (3.6) (c) (3.9) (d) Ey (3-13)13’ (c)

Remark (3.9). Note that Theorem (3.8) is very important for the study of field
equations in SEX, since the statement (a) is one of the field equations.

IV. The tensor 0*

In this section, we first derive a representation of the tensor Q*' in a general X,
connected by Einstein's connection and exhibit several useful representations of the
unique n-dimensional SE-connection.

We need the following abbreviations for an arbitrary tensor X**:

(4.1)a Ot =Pprx* (p=0,1,2,..)

(4.1)b K, = 1+K,+K+... +K,.
Direct calculations show that

(4..2)3.' ; ' O yiv X“", (q)k:(p) X4 = (r+a)ydv

(4'2)b Rl] = l) kt'*'K.H-z = Rgyz-

Theorem (4.1). ( Recurrence relation) An arbitrary tensor ‘P X*" satisfies the follow-
ing relation in SEX, : '

(4.3)a, "2"‘ K’(lt—s) XP = 0’
s=0
or
(4.3)b M xv g g, (=Dydv g = ydv

et Ky g g OHOXP LK, OXW = 0,
Proor. Multiplying X** to both sides of (2.10)e, we get have (4.3).

Now, we are ready to derive a representation of Q*".
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Theorem (4.2). In X, the tensor Q** may be given by

(4.4 o» = _% M,
or

r_é((N—S)k1v+Xz(n—i)kh+g‘(n—6)klv+
(4.4b g%y wE RN E M), A 1t e

_%((u—l)kj.v_{_Kg(u—a)kh_f_&(n—ﬁ)klv_i_“.
e+ Ky Pk +K,_ BY), if n is odd,

where M* is a symmetric tensor defined by

(4.5) MP &SR erromnp,
§=0

Proor. Consider a tensor X** defined by
(4.6) P X" = 5].

Since the symmetric tensor P, is of rank n, the tensor X**=X"* exists uniquely and
equals Q* in virtue of (3.4). Hence it suffices to find a representation of the tensor X4,
We first note that the tensor X*" satisfies the following recurrence relations:

(4_'}") (Pyyiv — (p-—!)le_i_(p-—z)k.h’ (p = 2)’

which may be obtained multiplying both sides of (4.6) by ?~®k#** and making use
of (3.3) and (4.1)a.

In order to derive (4.4), we now substitute for ™X** into (4.3)b from (4.7) and
make use of (4.1)b to obtain

(4.8)a go(x—=)k1w+gz(n—z)X1-+K‘(n-nxzu_*____+Ku_¢(,,Xh ol
Substituting again for =2 X*" into (4.8) a from (4.7), we have
(4.8)b R, =Dphv R (=0pdv y B (=) v

+KO-OX .+ K X = 0.
After = ; 2 steps of repeated substitutions for ¥ X**, we have
(4.8)c Ro(m-i)kiv+Ks(n—l)k1v+K‘(;..o)k3,+."

AR g g CTORP LR, s @K+ K, DX = 0.
Now, multiply both sides of (4.8)c by (Pk* to obtain
(4.8)d R, (—2+opivy R (—d+odpdvy R (n—8to)pdvy
ot By g (OO LR, OOk K, @) = 0,

Substitutin
g (zc)x).v = (0)X1v+ a.(o)kh
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into (4.8)d and making use of (2.9)c, (2.10)d, and (4.2), we finally get have a represen-
tation (4.4)b for the tensor X**=Q*. (4.4)b can be easily summarized as (4.4)a. Note,
in particular, that the tensor "~2+7-%k4" js symmetric according to (2.10)a since
n—2+0—sis an even integer. Hence the tensor M*' is also symmetric.

Remark (4.3). We note that according to Chung’s previous results (Chung, 1981,
1985),
(4'9) P‘l‘ i _*hiu o _13“3), le o __thh = _*g(a.v)'
Therefore, the tensors P;, and Q*' are both of rank .

The next two Theorems are consequences of Theorem (4.2). They may be obtai-
ned from (3.11) and (3.13) making use of (3.9).

Theorem (4.4). In SEX, the vectors X, S,, and U, may be given by

! 1
el af - Tl zp
(4.10)a X, = iy M Ve = =y Kot M.
(4.10)b S, = —%M'ﬁv,k,,, - z—ngMM",
! 1w
= e—m—_—_|™,— ‘3 ¥ = e—————— "
(4.10)c = iye MKV ke, = g Kuas M.

Theorem (4.5). The unique SE -connection I';, may be given by the following
expressions:

v 1
G s hn = {).#} T rl)g- (847 Vakpu— 8 Ve kg:) B* M*,
v x l ].vy af

4.11)b = . +m(g3?Kuwﬂ_g?nKM)" M,

. v 2 "
(4.11)c r;,= { 5 ﬂ} +m((v.. kpp) 0%+ (Vekp) ki) M2,

¥ 1 %

(4.ll)d i“ = {Au}+m(0E1Kﬂm+k‘(’;~Kl‘m)Mﬂﬁ'

Remark (4.6). In the following table we illustrate the representations of g and
the tensor M** for the lower dimensional cases, which may be used to calculate the
corresponding representations of the vectors X, S,, and U, and the SE-connection
ry, for n=2,3,4.

g MAv
1+k &®
1+K,  gh*+®k*
14+K;+k K+ @k

(4.12)

blw | o=
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V. Conformal change of SEX,

In this final section we investigate the change I'j,—~I", of the SE-connection
induced by a conformal change of the tensor g;,,.

Consider two n-dimensional SE-manifolds SEX, (SEX,), on which the differen-
tial geometric structure is imposed by a general real tensor g,, (g,,) through the SE-
connection I, (I'},) given by (4.11) ((5.1)):

v y l v I v
(5.1) I'“, = {j.p} + -(-l_—n):g:-(ﬁuf(,,w+kuf(,),,)ﬁ".
We say that SEX, and SEX, are conformal if, and only if
(3.2) £iu(x) = €7g,,(x),

where Q=Q(x) is an at least twice differentiable function. This conformal change
enforces a change of the connection. An explicit representation for I'j, will be exhi-
bited in this section.

Agreement (5.1). Throughout this section, we agree that, if 7 is a function of
;x> then we denote by T the same function of g,,. In particular, if T'is a tensor, so is
T. Furthermore, the indices of 7 (T) will be raised and/or lowered by means of
h**(h*) andfor h;,(h;,).

The results listed in the following Theorem are immediate consequences of (5.2)
and Agreement (5.1).

Theorem (5.2). The conformal change (5.2) induces the following changes:

(5.3)a (p)EM . em”k“, (PAv — e“m”k"", (’)Ei -t "’k‘i:

(5.3)b h=e%, T=6%, G=e% 2=3 K,=K,
(»=0,1,2,..)

Theorem (5.3). The conformal change (5.2) induces the following changes:

(5.4)a {):z} = {AL}+6‘{19”,—-1/2!1,1,,11""!?&, (0,=9.0)

(5.4)b Vo Koy = €2V, Koy +kyo 21— Mo ki 20,

(5.4)c Ko = € (Kopy— Koy 2, —2h 1, k5,2,),

(5.4)d M?* = e~2 M,

Proor. The first relation follows by substituting (5.3)a into
[J.::} = " (@ haye—/20:h2,).

Substituting (5.3)a and (5.4)a into
6\r'Emc - avEm"_Eu{(: }_Em ;:.}s
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we have (5.4)b. (5.4)c may be obtained by substituting (5.4)b into the corresponding
representation for K,,,, in (2.9)f. The last relation is obvious in virtue of (4.5) and
(5.3).

Theorem (5.4). If SEX, and SEX, are conformal, the function Q satisfies
(5.5) 2ky10 2+ kou 2, = 0.

ProoOF. Since SEX and SEX, are SE-manifolds, we have

(5.6) R =W hae K=k,

in virtue of Theorem (3.4). Our assertion follows from (5.6), (5.4)b, and (5.4)c.
Remark (5.5). In virtue of (5.5), we may simplify the relation (5.4)b as

(5.7)- VoEow = €2(VyKop =2 R, Koy — oo k21 2,).

Now we are ready to derive representations of the changes X,~X, and I},
» induced by the conformal change (5.2).

Theorem (5.6). The vector X, is transformed by the conformal change (5.2) as
Sfollows:

1

(5.8)a Xp = Xﬁ-f'm Maﬂ(lfzknsﬂﬂ—h‘wk;]ﬂr),
or equivalently
1 n—1 (s)
(5.8)b X,, = X,,+——-——-—-(n_ e "Zo I?,Zu,
where (
5)
(5_9) | . df ((u l4a-— s}kz 1/ (n—2+¢—s)kﬂk:)9

Proor. In virtue of _(4.10)a and Agrccmcnt (5.1), we have
(5.10) 2 Xll = (ﬂ— ])_ M‘ V E‘“

The relation (5.8)a may be obtained by substituting (5.3)b, (5.4)d, and (5.7) into
(5.10). The second relation follows from (5.8)a, using (2.9)c, (4.5), and (5.9). Note
that the tensor "—2+7-9k*# js symmetric.

Theorem (5.7). The SE-connection I, is transformed by the conformal change
(5.2) as follows:

(5.11) F;-ll - F§”+5¥AQ”—llgh1,h“Q¢+

2 n=1 (s)
(?l- 1) Z K(all #]+k(4 ))'
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PRroOF. In virtue of (3.1), (5.4)a, and (5.8)b, the relation (5.11) may be derived as
follows:

I3, = { A‘;}+25;AX,‘,+2E;1 X, = { 1:1}4-5‘('19,,,—‘/,&1,&"9,4-

2 n—1 n—1 (s)
+BuXoto—pe 2 R‘éuzﬂ-{-ZkﬁX L ey Kk,

= (The right-hand side of (5.11)).

Remark (5.8). The relation (5.11) may be derived directly from (4.11), using
(4,5) and (5.4).

Remark (5.9). As direct consequences of the above two theorems, we still state
the representations of the changes of tensors §3,, U}, , and vectors S, and U, induced
by the conformal change (5.2):

o n—1 )

(512)3 Ll = S;y. ( o 1) Z R allzﬂ]’
s 2 n—1 * (s)
(5.12)b Uin = Ut Gy & Kokl
( )
(5.12)c Sp=S,—— Z
-I-O
5.12)d () SRR W T

()
Remark (5.10). The following table, which illustrates the tensor Z, for n=
=2, 3, 4, may be used to calculate various representations of changes given in (5.8)b,
(5.11), and (5.12) for the lower dimensional cases.

N2 (0) (@
n\fn Zu Zn

3 (DKi+KkQ, —.kiQ,
4 (Dki+K,k2)Q, —2kiQ

According to this table and (5.11), we have for n=2

(5.14) E" = F},+5{;Q“)-‘/gh;,h"’9¢.
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As an immediate consequence of (5.14), we have

Theorem (5.11). In a 2-dimensional SE-manifold SEX,, the tensors S, and U},
are conformal invariant with respect to (5.2). That is,

(5.15) Siu=S85, UL=Uj.
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