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Abstract: The following main result is proved in this paper. If X is a topological space and P is
a preorder on X then P is the union of two preorders P, and P, on X such that (i) the smallest closed
preorder on X containing P, is an equivalence relation (ii) P, is “equivalence-free” in P (i.e.if L isan
equivalence relation on X and the smallest closed preorder on X containing the intersection of P and
L is an equivalence relation then P, L is trivial). The decomposition is unique. A class 2 of transi-
tive relations is defined for each relation of which maximal elements exist in every compact set. It
contains the largest possible class of preorders on topological vector spaces, determined by convex
cones, with regard to existence of maximal elements. The class Z includes also the class of closed
preorders, the class of przorders admitting continuous utility functions and the class of “‘equivalence-
free” preorders. Moreover, it is closed under inverses and arbitrary intersections.
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1. Introduction and preliminaries

The paper is motivated by results obtained in [6, 8] and it has its roots un multi-
criteria optimization. In [6] the author defined the class ¥ of convex cones in real
topological vector spaces (a nonempty convex subset C is a convex cone if (CSC
for 1=0), which is the largest possible with regard to existence of maximal elements
(Definition 4.1 below) in vector optimization problems. In [8] Theorem 2.1 we des-
cribed some geometrical and topological structure of convex cones in an arbitrary
topological vector space. We proved that every convex cone can be decomposed to
two convex cones C, and C, such that C,€%, and the closure of Cj is a vector sub-
space which meets C; at the origin. The aim of the present paper is to show that
a similar decomposition can be given for an arbitrary preorder relation P on a topo-
logical space (Theorem 2.6 below). In the case when P is a preorder on a real topolo-
gical vector space determined by a convex cone C, the decomposition is induced by
the appropriate decomposition of C (Remark 3.2 below).

We define the class 2 (Section 3) of preorders on topological spaces, which
contains the class of preorders determined by convex cones from the class €. The
class carries over the property of the existence of maximal elements with respect to
every member of #. Moreover, # includes the class of closed preorders and the class
of preorders admitting continuous utility functions [2]. In mathematical economics
preorders are interpreted as preference relations whereas utility functions are nume-
rical utility indicators. The class £ is closed under inverses and arbitrary intersections
(Proposition 3.5 below).
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In what follows X is a topological space, A denotes the closure of a subset A4 in
X, 4={(x,x): x€X} and PEXXX is a preorder relation on X, i.e. P is reflexive
and transitive. We write frequently xPy instead of (x, y)é P for x, yeX. For a given
P, the inverse P! is defined by xP~'y if and only if yPx for x, yeX. If x€X, the
set P(x)={y€X: xPy} is called an upper section of P. The union and intersection of
preorders is defined in the usual set-theoretic way; however, the union usually is not
a transitive relation.

For every preorder P there exists the largest equivalence relation / (P) contained
in P, namely ¢(P)=PNP~1.

Let X denote the class of all preorders on topological vector spaces determined
by convex cones. That is, a preorder P on a topological vector space X belongs to ¢~
if there is a convex cone CEX such that P=P., where xPcy means y—x€C for
x, y€X. Observe that £(P¢c)=Pcn(-c)-

Since the topological closure of a preorder P on X may fail to be a transitive rela-
tion we define the closure of P in the following way.

1.1 Definition. 1f P is a preorder on X, the closure P of P is the intersection of all
closed preorders on X containing P. For large formulae we shall use notation (-).
The definition is meaningful because XXX is a closed preorder containing every
preorder P on X.
The properties of the closure of a preorder summarized in the following lemma
are easy to verify.

1.2 Lemma Let P be a preorder on X. Then
(i) P is a preorder on X.

(ii) P=F and (P~Y)" =(P)L.
(iii) If P, and P, are preorders on X then P,SP, implies P,<P, and
(BNR)" S ANP,.

(iv) P is closed if and only if P=P.

(v) f(P) is closed. N

(vi) If P is an equivalence relation so is P.

(vii) P is the smallest closed preorder containing P.
(viti) If X is a topological vector space and C is a convex cone in X then (Pg)” =

=Pg.

2. On the structure of preorders

Let 2 be the set of all preorders on X. Define the operation 7: -2 by T(P)=
=PN¢(P). For every ordinal o put T*(P)= T(T*~'(P)) if «—1 existsand T*(P)=
= () T?#(P) otherwise. The reader may verify that T*(P)=P N/ ((T*~*(P))") whene-

p<a

ver a—1 exists and T*(P)=PN ﬂ /((T?(P))") when « is a limit ordinal. Observe

that {7*(P)} is a chain with respect to inclusion of subsets of XX .X. Since by the
Kuratowski—Zorn Lemma there exists a maximal chain in every ordered set we must
have an ordinal «(P) such that T*P(P)=T*(P) for every a=a(P). We shall denote
T*P(P) by £(P).

The preorder #(P) has the following propertlcs
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2.1 Lemma. (i) /(P)S4(P)SP.
(ii) (£(P))" is an equivalence relation.
(iii) £(P)=PN(£(P))".
(iv) If L is an equivalence relation on X such that (P L)~ is an equivalence
relation then P(\L=T*(P)(\L for every ordinal «; in particular PN\L=4(P)NL.
(v) If £(P) is an equivalence relation then £(P)={(P).

Proor. Using Lemma 1.2 the idea of the proof is similar to that of Lemma 2.1
in [8]. We shall show for example (ii) and (iii). First observe that £(P)=T*"+(P)=
=PN¢((£(P))7). Thus £(P)S/((£(P))")S(£(P))", which completes the proof
of (ii) and (iii). [

Note that a preorder given by a ubiquitous cone in an infinite dimensional topo-
logical vector space X [4 p. 9] is an example of a preorder P for which /(P)=4,
£(P)=T(P)=P and (£(P)) =P "=XXJX.

2.2 Lemma. Let (x, y) and (y, z)EP. If (x, z)E£(P) then (x,y)and (y, z) belong
to £(P).

Proor. Since (4(P))" is an equivalence relation (Lemma 2.1 (ii)) and (x, z)€4(P)
we must have that (z, x)¢(£(P))". Hence (z, x), (x, y) and (y, z)€EP. Using transi-
tivity of P we obtain that (z, y), (, x)€ P. Consequently (x, y) and (y, z) belong to
¢(P). Using transfinite induction one can show that (x, y), (y, 2)€¢((T*(P))") for
every ordinal . Hence (x, ), (¥, 2)€PNZ/((£(P))")=4(P) by Lemmy 2.1 (ii) and
(). 0O

The following notion is auxiliary.

2.3. Definition. (i) We say that a preorder PyC P on X is equivalence-free in P
if for every equivalence relation L on X, such that (P L)" is an equivalence relation,
PyNL=A. (ii) The preorder Py is equivalence-free if it is equivalence-free in itself.

A preorder Pc€X is equivalence-free if C is pointed, i.e. CN(—C)={0} (the
converse is not true). However, it follows from Proposition 2.1 in [8] and Proposition
2.5 below that in a finite dimensional HausdorfT topological vector space X, Pc€X
is cqu)iva]ence-free if and only if CN(—C)={0} (see also Proposition 3.4 (iv) (c)
below).

2.4 Proposition. If PySPEQ are preorders on X and Py is equivalence-free in Q
then it is equivalence-free in P; in particular Py is equivalence-free.

Proor. Let (PMNL)~ be an equivalence relation for some equivalence relation
L on X. Then since

(PNL)” € (@N(PNL)7)” S ((PNL)Y)" = (PNL),

(QN(PNL)™)" is an equivalence relation and since Py is equivalence-free in Q we
must have that Py (PMNL) =4. Since PyNLEPyN(PyNL)"SPyN(PNL)” we
obtain that Py L=4, which proves that Py is equivalence.freein P. 0O

2.5 Proposition. A preorder P is equivalence-free if and only if £(P)=A4. In par-
ticular, if P is equivalence-free then {(P)=4£(P)=A.
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Proor. Assume that P is equivaience-free. Using Lemma 2.1 (ii) and (iii) we obta-
in that (PN(£(P))")" =(4(P))" is an equivalence relation. Hence again by Lemma

2.1 (iii) we have that
4 = PN(£(P))” = £(P).

Conversely, assume that £(P)=A4 and (PNL)" is an equivalence relation for
some equivalence relation L on X. Applying Lemma 2.1 (iv) we have that PNL=
The second part follows from Lemma 2.1 (i). O

The next theorem is the main result concerning the decomposition of an arbit-
rary preorder.

2.6 Theorem. (i) Let P be a preorder on X. Then the relation o(P) on X defined by
o(P) = (P\(#(P))7)U4
is a preorder on X which is equivalence-free in P and
P = £(P)JUe(P)

In particular £(o(P))=4 and (£(P))” Ne(P)=A4.
(ii) If P=P,UP, where P, and P, are preorders on X such that P, is an equiva-
lence relation and P, is equivalence-free in P then P,=4£(P) and Py,=p(P).

Proor. Since PN (£(P))” =£(P) (Lemma 2.1 (iii)) we must have that P=4(P)U
Ue(P).

Let (x,¥), (v,2)€0(P). If (x,2)¢0o(P) then (x,z)E£(P) and by Lemma 2.2
(x, y), (y, 2)€E£(P), which is a contradiction. Thus (x, z)€¢(P), which shows that

o(P) is transitive.
Let L be an equivalence relation on X such that (P L)~ is also an equivalence.

Using Lemma 2.1 (iv) gives PNL=4£(P)NL, thus o(P)NLZe(P)NA(P)=A4,
which proves that o(P) is equivalence-free in P.
The second part of the theorem is straightforward. [

Let 2 denote the class of preorders P with £(P)=/(P). The class # will be sub-
ject of investigation in Sections 3 and 4.

3. Properties of the class #

The following proposition gives equivalent characterizations of the class #.

3.1 Proposition. Let P be a preorder on X. The following conditions are equivalent.
(i) PeR.

(i) For every equivalence relation L on X, P\ L is equivalence relation whenever
(PNL)" is an equivalence relation.

(iii) For every closed equivalence relation L on X, PN\ L is an equivalence relation
whenever (PN L)" is an equivalence relation.

(iv) For every closed equivalence relation L on X such that LS/(P), PNL isan
equivalence relation whenever (PN L)~ is an equivalence relation.
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Proor. The implications (ii)=>(iii)=>(iv) are obvious. The implication (i)=(ii)
follows from Lemma 2.1 (iv). In order to show that (iv) implies (i) observe that (£(P))”
is a closed equivalence relation in (P) and apply Lemma 2.1 (iii) twice and then Lem-
ma 2.1 (i). O

3.2 Remark. If X is a topological vector space and we restrict our consideration
only to the class ] i.e. we use equivalence relations L€ in Proposition 3.1, then
we obtain exactly the class of preorders P.€%  with C satisfying the following con-
dition ( #) introduced in [6]:

(#) For every closed vector subspace L of X CNL is a vector subspace whene-

ver C( L is a vector subspace.
The class of convex cones satisfying () was called € in [8]. Thus ¥ NZ ={Pc}cc«.-
Moreover C€% if and only if £(Pc)=CM(—C)(see Proposition 2.1in[8]). O

Hence, by Proposition 3.1 we obtain the following corollary.

3.3 Corollary, Let X be a topological vector space and C be a convex cone in X.
Then the following conditions are equivalent.

(i) For every closed vector subspace L contained in CN(—C), CNL is a vector
subspace whenever C ()L is a vector subspace.

(ii) For every equivalence relation L on X, P:(\ L is an equivalence relation whene-
ver (PcML)™ is an equivalence relation.

We say that a real-valued function fon X 'is a utility function for a preorder P on
Xif f(x)=f(y) whenever xPy and f(x)#/f(y)if xPy and not yPx (see for instance

: ]

3.4 Proposition. The following classes of preorders are contained in R.
(1) The class of closed preorders.

(ii) The class of preorders admitting continuous utility functions.

(ili) The class of equivalence-free preorders; in particular ¢(P)ER for every P.

(iv) If X is a topological vector space and C is a convex cone in X then P.cR
whenever [6, 8]:

(a) C is closed (a particular case of (i));

(b) there exists a continuous C-positive linear functional f on X, i.e. f(x)=0 for
x€C and f(x)=0 if xeC\(—C) (a particular case of (ii));

(c) the vector subspace CN(—C) is Hausdorff and finite dimensional; in parti-
cular if C is contained in a finite dimensional Hausdorff vector space or if CN(—C)=
={0} (the latter is a particular case of (iii)).

Proor. The proof of (i) is straightforward using Lemma 1.2 (iv), since then
T(P)=PN¢(B)=PN¢(P)=C(P).

To demonstrate (ii) assume that fis a continuous utility function for a preorder
P. Define the preorder Ron X by xRy if and only if f(x)=f(y) for x, y€X. Observe
that PER, (x, y)€/(R) implies f(x)=/f(y) and since fis continuous the preorder R
is closed. Thus PSR by Lemma 1.2 (iii) and (ii). Since PNZ(R)S/(P) we have

1(P) S PNI(P) S PNZ(R) S £(P).
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Hence, by Lemma 2.1 (ii),
((P) S £(P) S PN¢(P) = ¢(P),

which proves that P<Z.
The proofs of (iii) and (iv) follow from Proposition 2.5 and Corollary 3.3 respec-
tively.

3.5 Proposition. The class R is closed under inverses and arbitrary intersections.

Proor. The closedness under inverses follows from Proposition 3.1 and from
the fact that (P~'NL)"=((PNL)")~! for every preorder P and every equivalence
relation L (Lemma 1.2 (ii)).

Let {P;};c; be a family of preorders in %, i.e. £(P;))(=T*"P)(P;))=((P;) for
every i€]. Put P= (N P,. By the definition of the operation £ and since PEP; we

i€l

£(P) S T*P)(P) S T*P)(P;) = £(P)

obtain that

for every i€l. Hence
£(P) S NAWP)= NZ(P).
iel el

On the other hand (4 (P;) is an equivalence contained in every P;so in P and /(P)

icl
is the largest equivalence relation contained in P. Thus ()4 (P;)S/(P). By Lemma

iel

2.1 (1) £(P)SA(P) so £(P)={(P), which proves that PeZ. [J

From Remark 3.2 and Proposition 3.5 we obtain

3.6 Corollary. The class € is closed under arbitrary intersections.

4. On the existence of maximal elements

Let P be a transitive relation on X and let B be a nonempty subset of X. Observe
first that the relation P_ =PU4 is a preorder on X. \

4.1 Definition. We say that e€B is maximal up to indifference (also called effi-
cient) in B, and write e€ Ep(B), if ePx and x€B implies xPe (see [6] and the refe-
rences therein).

Observe that Ep_(B)=Ep(B) for every subset B of X and every transitive rela-
tion P.

We say that a subset B of X is P-compact if there exists x€X such that either
BNP_(x) or BN(P.) (x) is nonempty and compact. Of course, every nonempty
and compact subset is P-compact for every transitive relation P. It is easy to show
that Ep(BN(P.)" (x))SEp(BNP_(x))SEp(B) for every subset B of X, x€X and
every transitive relation P on X.

The following proposition was proved in [3] (Theorem 2.3 and Corollary 2.8).
We present another proof below which is shorter and straightforward, without making
use of the quotient structure.
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4.2 Proposition. Let P be a transitive relation such that P_(x) is closed for every
x€X. Let B be a P-compact subset of X. Then Ep(B)# ®.

Proor. Without loss of generality we may assume that B is nonempty and com-
pact. Consider the family # ={F,},.p of nonempty closed subset of B, where F,=
=BNP.(x) for x€B, ordered by inclusion. Since any chain {Fm}“E ; in F has
a finite intersection property we must have that some z€ ﬂ F,,. Using transitivity

of P we have that F,C F, forevery i€l. Thus F, is a lower bound for the chain.
By Kuratowskl—Zorn Lemma there exists a minimal element F, in & for some e€B.
It follows from transitivity of P that ec Ep_(B)=Ep(B). [

4.3 Theorem. Let P be a transitive relation on X and let P_cR. Then Ep(B)#=®
for every P-compact subset B of X.

Proor. Without loss of generality we may assume that P is a preorder and that B
is nonempty and compact. If « is an ordinal we denote by [x], the equivalence class
of x€ X with respect to the equivalence relation #((7*(P))"). Define a transfinite sequ-
ence of nonempty compact sets B, as follows

(i) Bo=

(ii) B,y1=BN[e 41,41 for some e, € Eqspy~(B), which existence is guaran-
teed by Proposition 4.2.

(iii) B,= [ B, if ais a limit ordinal.

p=a J
The sets B, are nonempty and compact, because equivalence classes of closed equi-

valence relations are closed subsets in X and {B,} has a finite intersection property
since it is a chain.
The proofs of the following inclusions are rather technical so we omit them
(compare the proof of Theorem 2.2 in [6]). Put P,=T*(P) for every ordinal a.
(a) EP (B¢+1)CEP (B,+1)E EP (B,)
(b) EP (B JEEp(B) for a a limit ordinal.
Thus EP (B,)S Ep(B) for every .
Since P€# we must have that

Pupy = 4(P) = ((P)
is an equivalence relation. Hence we obtain
P # Bypy = Ep,p,(Byp) S Ep(B),
which completes the proof of the theorem. [J

The proof of the following theorem uses Theorem 2.6, Lemma 2.1 (ii) and (iii)
and it is similar to that of Theorem 3.1 in [8] so we omit it.

4.4 Theorem. If P is a transitive relation then for every subset B of X
Ep(B) = Eyp_)(B)N Egp_(B).
In particular, if P_€R then
Ep(B) = Ea(f'g)(B)-
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Theorem 4.3 states that P_c4# is a sufficient condition for the existence of
maximal points in every compact (in fact, P-compact) set. It is obvious that this con-
dition is not a necessary one. One can find a preorder P with closed upper sections
(by Proposition 4.2 Ep(B)# @ for a nonempty compact set B) yet not a member of
. For instance the preorder P on the space of real numbers R defined by P(x)=R
if x€Z and P(x)=ZN{y:x=y} if x€Z, where Z is the set of integers, has closed
upper sections but P does not belong to 2 (P is not an equivalence relation whilst
P=RXR is an equivalence relation). However, il X is a topological vector space and
C is a convex cone in X such that C¢% and (4(Pc))” is a metrizable vector space
(see Remark 3.2) then Proposition 2.1 in [6] applied to (£(P¢))” and £(P¢) says that
we can find a compact set BE(4(Pc))” such that Ep,(B)=® (see also Theorem
3.2 (ii) in [8]). The metrizability assumption is essential as shown by Example 1.1 in
[7).
HpE A be the class of preorders P which are determined by convex cones
C such that (£(Pc))” is metrizable and #,,S ., be the sublcass of preorders defined
on metrizable topological vector spaces. Then P£X;Z is also a necessary condi-
tion for Ep_(B)# @ for every nonempty compact set B in the domain of P.

4.5 Problem. Find other classes 2 (containing ;) of transitive relations on
topological spaces for which the condition P23\ # is a necessary one for the
existence of maximal elements in compact sets.
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