On generalized continued fraction expansions of short
period length

By JOHANNES BUCHMANN®* (Saarbriicken)

Abstract, We present infinite classes of totally complex quartic orders in which the generalized
Voronoi expansions have period length 1, 2, 4 and formulae for the fundamental units in those
orders.

1. Introduction

In [1] the author presented a generalization of the Voronoi continued fraction
algorithm. The expansions of the generalized Voronoi algorithm (GVA) are periodic
in every order of an arbitrary algebraic number field.

Since it is well known that there are infinitely many quadratic irrationalities
whose continued fraction expansions have a prescribed period length, the question
arises whether an analogous result is true for the GVA. In this paper we present
infinitely many totally complex quartic orders in which the GVA has period length 1,
2 and 4. Moreover, we give formulae for the fundamental units of these orders.

Similar results for Voronoi’s algorithm in complex cubic fields are due to DuBois
[2] and WiLLIAMS [5].

2. Preliminaries

In this paper we study the order

0=Z[y-D]
in the algebraic number field
F = Q(Y-D).
The positive integer D is of the form
D = 4k'+a,
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where k is a positive integer and d is an integer satisfying

0 < |d| = 4k.
Then Fis a totally complex quartic field.
We fix
0=yY-D=(1+i)x
where
% = (D/4)'*€R.
The map

o: 0———0
is the automorphism of F which keeps the subfield
K=Q(6%

fixed. For £€K we write WV =¢ @ =g(&). For a real number r we denote by
[r] the greatest integer smaller than r and by (r) the nearest integer to r.

3. The generalized Voronoi algorithm
First of all, we briefly recall the GVA in 0, cf. [1]. By
F -+ R?
s § = (I, 1o @)

we map the field Finto the plane R For every point j=(y,, y,)7 in the first quad-
rant of the plane we call

() ={VeRI0 =y, =y,1=k=2}
the norm body of y.
Now, 0 is a discrete set in R2. In @\ {0} we call those points u minimal points
whose norm body does not contain points of ¢ aside from 0 and m
If pis a minimal point and {u, v}={1, 2} then the u-neighbor of x is the uniquely
determined minimal point y’ with 3

(ERY [ < |

and || minimal.
Starting with the minimal point u,=1 we can form a two-sided chain of mini-
mal points {u)Jicz Wwith the property that p, ., is always the 2-neighbor of g,
whereas i, is the 1-neighbor of .. i !
Moreover, we have for every k¢€Z

2 Hoy = 9 ).
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The chain is of the purely periodic form
(3'3) 8__l$ 8_l»ul9 o | a_laup—ls 1! seey Hp—1> Es 8&; Ll

where ¢ is a fundamental unit of @, when chosen minimal the number p is called
the period length of the GVA in (.

4. The main theorems

We fix
(4.1) e = 2k2+2k0+ 02,

Theorem (4.1). If d=1, then the period length of the GVA in 0 is 1 and ¢ is a
Sfundamental unit of 0.

Theorem (4.2). If d=1 and d|4k, then the period length of the GVA in 0 is 2 and
&*/d is a fundamental unit of 0.

Theorem (4.3). If k=2 and d=—1, then the period length of the GVA in 0 is 2
and ¢ is a fundamental unit of 0.

Theorem (4.4). If k=2, d=—1 and d[4k, then the period length of the GVA
in Ois 4 and &*[d is a fundamental unit of 0.

5. The proofs

In order to be able to demonstrate the theorems of the previous section, we prove
some lemmata. We always assume in this section, that « is a number in @, given in the
representation
(5.1) d=au+019+a993+0393,
with integral coefficients a,, ..., ds.

Lemma (5.2). If |o(x)|<1 and a,#0, then |a|*=(4x*—1)>

Proor. We can write « and ¢ («) in the form

(5.3) o = (ag+a, % —2a,x%) +i(a, x+2a,%*+2a,%°),
(5.4) o(x) = (ag—a; x+2a33®)+i(—a, % +2ay3%* —2a,%%).
Now we set
A=a,x—2a3%® and B = a;x+2agx®
and obtain
|2|* = (ao+ A)*+(2a,%*+ B)?,
(5.5)

lo(@)|* = (ag—A)*+(2a,x*—~B)* < 1.

On the other hand, since a,#0, we have |A4|=2x® or |B|=2x® and therefore
sgn A=sgn a, or sgn B=sgn a,. Hence, our statement follows from (5.5). 0O
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Lemma (5.6). We have |x—k|<1/(2k?).
Proor. We know that
|d] = 4]3t — kY| = 4|sc — k| |5®+ 32k + 2k + k3.
Hence, it follows from our assumption that
(5.7) [ — k| -=:—-—:—k-——--—-.
4(min {x, k})*

If k<x, then our statement follows immediately from (5.7).
If k=3, then we have

R TIO ke
FTATAESE) T =0

and this proves our statement for k=2. For k=1, the inequality follows from an
easy computation.

Corollary (5.8). We have
(2x) =2k and (2kx) = 2k:.
Lemma (5.9). If O<=d=4k, then ¢ is the 2-neighbor of 1 in 0.

Proor. We notice that

(5.10) e=2(k+x)(k+ix) and o(e) = 2(k—x)(k—ix).
Hence,

(5.11) lg]* < 324,

and by Lemma (5.6)

(5.12) la(e)]® < 1.

Now let & be the 2-neighbor of 1 in @. Then it follows from (5.11) and (5.12) that
|o|>*<32x%*. Hence, by Lemma (5.2) we must have a,=0 for D=64 and the same is
true for D<=64, as our computations show. Without loss of generality, we assume
that a,>0. Since |o(x)|<1, we must have

a, = [2a,%] and aqy = [a,x].
Therefore, the choice a,=1, a@,=2k and a,=2k® makes |x|> minimal.
Lemma (5.13). If k=2 and —4k=d<0, then g¢—1 is the 2-neighbor of 1in 0.
Proor. Since k—x=0, it follows from Lemma (5.6) that
(5.14) lo(e—1))* < 1.
Moreover, we have
(5.15) le—112 < |ef2.
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If » is the 2-neighbor of 1 in @, then it follows as in the proof of the previous
lemma that a,=0. For k=2 we have by Lemma (5.6) %=1, and therefore we can
assume that a,=0. Now it follows from |o(2)|<1 that

(5.16) [2a,%] = a, = [2a,%]+1
and
(5.17) [a,%] = ay = [ay 2]+ 1.

If a,=2, then |«|2=32x*, which is impossible by (5.11), (5.14) and (5.15). Hence
we have a,=1. By Corollary (5.8) and (5.16) this means that either a,=2k—1 or
a, =2k, butif a;=2k—1, then we have by Lemma (5.6)

lo (@) > x*(1—2(k—x))* > 1.
Thus, a,=2k and the choice a,=2k* makes |x|> minimal.
We get immediately

Corollary (5.18). If k=2 and —4k=d<0, then ¢ is the 2-neighbor of e—1 in Q.
Finally, an easy computation shows

Lemma (5.19).
NFlK(c) = —d.

Now we can prove our theorems. First of all, we discuss the case d=0.
From (3.2) and Lemma (5.9) we learn that

(5.20) s olek Lty

is a part of the GVA expansion in @. Hence, Lemma (5.19) shows that the period
length is 1 for d=1. This proves Theorem (4.1).

If d=1, then by Lemma (5.19) the period length has to be at least 2. Now we
have

(5.21) ¢/o(e) = e¥/(—d) = (d+8Kk*0+8k202 +4k0%)/( —d)

and Theorem (4.2) follows from (5.20) and (5.21).
Now let d<0 and k=2.
Then by (3.2) ,Lemma (5.13) and Corollary (5.18)

(5.22) ..., 0(e), a(e—=1), 1, e—-1,s, ...

is a part of the GVA expansion in 0.
Since
Nplx(s— l) = 2(1 —2k2—92)—d

the period length is at least 2 and it follows from Lemma (5.19) for d=—1 that the
period length is 2. This proves Theorem (4.3). Now it follows from (4.21) that

(e=1)/o(e) = (&—2)/(—d)§0
if d|4k, but that &/ (e) is a unit in this case. This proves Theorem (4.4).
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