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Cut-elimination in the theory of definable sets
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Abstract. We prove a cut-elimination theorem for the second order arithmetic
with the omega-rule and with the second order quantifiers running only on definable
subsets of the set of natural numbers. Particulary, we get the consistency theorem for
the semiformal axiomatic theory – the second order arithmetic of definable sets – with
the Π1

1 notion of deducibility.
The proof of the cut-elimination is produced by a synthese of the method of the

completion of semivaluations and descriptive methods of axiomatic set theory.

1. We prove a cut-elimination theorem for the sequent calculus in
the second order arithmetic. In this theory the second order variables (i.e.
variables for the sets of natural numbers) are considered as variables for
definable sets i.e. sets can be defined in the language considered. This
situation is reflected in the rules of our theory, for example, in the rule
introducing the second order universal quantifier. Our theory contains the
following rule of inference with the infinite set of premises:

Γ → ∆ϕ(t) for all second-order closed terms t

Γ → ∆ ∀xϕ(x)

where x is a second-order variable and t is a second-order term.
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The proof of the cut-elimination is produced by a synthese of the
method of the completion of semivaluations (cf. [10], [11]) and descriptive
methods of axiomatic set theory ([7], [1]). Our exposition here is some
strengthening and modification of the results which was announced firstly
in [3] and published in [4].

2. Let us describe the language of our theory.

2.1. Types are, by definition, three natural numbers 0, 1 and 2. We
fix some infinite countable set of symbols Var(τ) for every type τ , the
elements of the set Var(τ) are variables of the type τ .

Intuitively, variables of the type 0 are considered as variables for nat-
ural numbers 0, 1, 2, . . . . The set of all natural numbers we denote by ω,
so a variable x ∈ Var(0) runs over the set ω. Variables of type 1 are con-
sidered as variables for concrete statements of our language. And, finally,
variables of type 2 are considered as variables for some subsets of the set ω.
We do not suppose, in the general case, that a variable x ∈ Var(2) runs
over the whole set Pω of all subsets of ω.

If we consider variables of Var(2) as running over the whole set Pω
then we shall speak about the natural interpretation of variables.

2.2. Our language contains the constant 0 of type 0 and the one-place
functional symbol S which corresponds to the familiar successor function
(plus-one function).

Moreover, our language might contain some arbitrary list of functional
symbols such that every symbol is of the type 0 and the argument places
of these symbols are of type 0. We suppose that for any functional symbol
f of our language some general recursive function f̃ is prescribed in some
canonical way. Of course, f̃ is an n-argument place total function if f is
an n-argument place functional symbol, particularly, S̃(x) = x + 1.

Our language might contain also some set of predicate symbols all
argument places of which are of type 0. We suppose also that some gen-
eral recursive predicate P̃ is prescribed in some canonical way to every
predicate symbol P of our language with the same number of argument
places. For example, the reader can suppose that our language contains
the two-place familiar predicate symbol = with the usual interpretation
(the equality of two natural numbers).

2.3. Let us give now the inductive definition of the notion: an expres-
sion of the type τ ; the set of all expressions of the type τ we denote by
Exp(τ), so we define, in an inductive way, the sets Exp(τ).

1) 0 ∈ Exp(0).
2) x ∈ Var(τ) =⇒ x ∈ Exp(τ).



Cut-elimination in the theory of definable sets of natural numbers 155

3) If t1, . . . , tn ∈ Exp(0) and f is an n-places functional symbol of
our language then f(t1, . . . , tn) ∈ Exp(0).

4) If t1, . . . , tn ∈ Exp(0) and P is an n-places predicate symbol of
our language then P (t1, . . . , tn) ∈ Exp(1).

Let us put in the items 5) – 7) below: ϕ,ψ ∈ Exp(1), x ∈ Var(τ).
Then

5)–7) (ϕ ∧ ψ), ¬ϕ, ∀xϕ ∈ Exp(1).
8) If x ∈ Var(0), ϕ ∈ Exp(1), then {x | ϕ} ∈ Exp(2).
9) t ∈ Exp(0), T ∈ Exp(2) =⇒ (tεT ) ∈ Exp(1).
The definition of sets Exp(τ) is complete. Expressions of the type one

we shall call by formulas. The set of all formulas we denote by Fm, so
Fm = Exp(1). Formulas of the kind 4) we call atomic formulas and we
denote the set of all such formulas by AtFm.

2.4. We classify the occurrences of variables in an expression as free
and bound in the usual way. The quantifier prefixes in our case are the
parts like ∀x and {x | . . . } which “bound” the corresponding occurrences
of the variable x.

We identify systematically the expressions which differ only by a re-
naming of bound variables (congruent expressions in the terminology of
[8]) and, in particular, change freely such expressions in our inferences.

An expression (t)(x1, . . . , xn ‖ t1, . . . , tn) denotes the result of simul-
taneus substitutions instead of free occurrences of distinct variables x1, . . . ,
xn in t by the expressions t1, . . . , tn respectively. Here the variable xi and
the expression ti have the same type. We suppose, moreover, that in the
process of substitution some renaming of bound variables of t is produced
avoiding the collision of variables. The expression considered we abbre-
viate sometimes as t(x1, . . . , xn ‖ t1, . . . , tn) or even as t(t1, . . . , tn) if the
mention of the variables x1, . . . , xn is inessential.

The variable x is free in an expression t if x occurs (at least once) freely
in t, in such case x is a parameter of t. The expression t is called closed if it
does not contain any free occurrence of variables, i.e. all variables in it are
bound, there is no parameter in t. The set of all closed expressions of the
type τ we denote by ClExp(τ). The set of all closed formulas we denote
by Cl Fm, so Cl Fm = ClExp(1), elements of Cl Fm are, by definition,
sentences of our language. Similarly, the set of all closed atomic formulas
we denote by Cl AtFm.

2.5. Every closed formula ϕ of our language expresses some analytical
statement if one takes into account that atomic closed formulas of our
language have a natural general recursive interpretation and suppose that
quantifiers of the type 2 run over all subsets of the set ω. From the usual
set theoretical point of view (which we adopt in this article) such a ϕ is
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true or false in this natural interpretation. We shall write |= ϕ if ϕ is true
in the natural interpretation.

2.6. We use the usual theory of the sequent inference (see, for example,
[8] §77 or [5] Part 1, §5) with minor changes which are connected mainly
with the circumstance that we use rules of inference with infinite number
of premises (so-called, ω-rules). So we are dealing not with the usual
formal axiomatic theories but rather with so-called, semiformal theories.

The sequent is a figure of the kind Γ → ∆ where Γ and ∆ are (maybe
empty) lists of closed formulas. A list is, by definition, an unordered finite
set of formulas with possible repetitions of formulas in it (a multiset of
formulas). Note, that in sequents we use only lists of closed formulas.

3. Let us consider some semiformal axiomatic theory – the second-
order arithmetic of definable sets – we denote this theory by Def Ar ω2. In
Def Ar ω2 one can deduce some sequents of our language.

3.1. The axioms of our theory have one of the following forms:

1) ϕ → ϕ where ϕ is an arbitrary closed formula.

2) → ϕ where ϕ ∈ ClAtFm, |= ϕ.

3) ϕ → where ϕ ∈ ClAtFm, |= ¬ϕ.

3.2. The structural rules of inference of Def Ar ω2 are the usual rules
of addition, shortening and cut :

Γ → ∆
ϕΓ → ∆

(ad → );
Γ → ∆
Γ → ∆ϕ

(→ ad);

ϕϕΓ → ∆
ϕΓ → ∆

(st → );
Γ → ∆ϕϕ

Γ → ∆ϕ
(→ st);

Γ → ∆ϕ ; ϕΓ → ∆
Γ → ∆

(cut).

3.3. The logical rules of inference introduce logical connectives at
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right and left:

ϕΓ → ∆
(ϕ ∧ ψ)Γ → ∆

;
ψΓ → ∆

(ϕ ∧ ψ)Γ → ∆
(∧ → );

Γ → ∆ϕ; Γ → ∆ψ

Γ → ∆(ϕ ∧ ψ)
(→ ∧);

Γ → ∆ϕ

¬ϕΓ → ∆
(¬ → );

ϕΓ → ∆
Γ → ∆¬ϕ

(→ ¬);

ϕ(x‖t)Γ → ∆
(tε{x | ϕ})Γ → ∆

(ε → );
Γ → ∆ϕ(x‖t)

Γ → ∆(tε{x | ϕ}) (→ ε);

ϕ(x‖t)Γ → ∆
∀xϕΓ → ∆

(∀ → );

Γ → ∆ϕ(x‖t) for all t ∈ ClExp(τ)
Γ → ∆∀xϕ

(→ ∀),

here x ∈ Var(τ) and t ∈ ClExp(τ).
The formulation Def Ar ω2 is complete.

3.4. A sequent S is, by definition, deducible in the theory Def Ar ω2
(in symbols, ` S) if there exists an inference for S in Def Ar ω2.

A formula ϕ is deducible if the sequent → ϕ is deducible in Def Arω2.
An inference in Def Ar ω2 is an infinite branching tree-like figure such

that some sequent is prescribed to every node of this tree and each relation
between the parent-node and its sons forms some rule of inference of the
theory Def Ar ω2. Axioms are prescribed to the leaves of the inference-
tree. Moreover, we suppose that an ordinal (in the usual set-theoretical
sense of this term) is prescribed to every node of the inference-tree and
the following conditions are fulfilled:

– the ordinal 0 is prescribed to the leaves and
– the ordinal prescribed to the parent is the smallest ordinal which

exceeds all ordinals prescribed to the sons.
Thus, the last node of the inference has some uniquely prescribed

ordinal, it is the, so-called, height of the inference. Every inference has
a height. Because of the infinitistic rule of inference (→ ∀) the height
might be an infinite ordinal, but it is always a countable ordinal. The
prescribing of ordinals provides that all paths in inferences are finite so
every inference-tree is well-founded.

As nodes of inference-trees some standard objects with the natural
tree-like ordering could be chosen. For example, one can use as nodes
finite corteges of natural numbers. The precise definition of the notion
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of inference in Def Arω2 could be given by transfinite induction on its
height. At each step of this transfinite induction the corresponding tree-
like figure is defined by some fixed rule, say, in a minimal way. Such a
definition provides a very important property: every inference in Def Arω2
is a constructible object in a Gödel sense [7] and the notion of deducibility
in Def Ar ω2 is absolute. It means that every inference belongs to Gödel’s
constructible universe L and, moreover, some set in L is an inference if
and only if it is true in the universe L. This follows easily from the form
of the definition of inference in Def Arω2 according to Gödel’s theory of
absoluteness [7].

3.4.1. A sequent S is deducible without cuts (in symbols, `+ S) if
there exists an inference for S in Def Arω2 such that the cut-rule (3.2
(cut)) does not occur in this inference. Now our main result could be
formulated as

` S =⇒ `+ S

for every sequent S.

3.5. Note than one can deduce in Def Arω2 all usual laws of (classical)
logic, the principle of arithmetical induction for all formulas of Def Ar ω2
and the full impredicative comprehension axiom:

∀̃∃y∀x(xεy ≡ ϕ(x)),

where ∀̃ means bounding all parameters of the following formula by uni-
versal quantifiers. Besides that, x ∈ Var(0), y ∈ Var(2) and ϕ(x) is an
arbitrary formula such that y is not a parameter in ϕ(x).

So the full classical second order arithmetic with the full impredicative
comprehension axiom is imbedded in Def Arω2.

Nevertheless, it is impossible to prove in the traditional Zermelo–
Fraenkel system ZFC that every deducible formula is true in the natural
interpretation:

` ϕ =⇒ |= ϕ.

The difficulty arises in the rule (→ ∀): if we have ϕ(x‖t) for all closed
expressions t, we cannot conclude that ∀xϕ(x). And what is more, it is not
clear that our theory Def Ar ω2 is consistent . Our cut-elimination result
(3.4.1) just demonstrates that it is and, hence, our theory has some model.

4. A constant semivaluation is, by definition, a function V such that
domV ⊆ ClFm, rngV ⊆ {0, 1} and the following conditions 1)–10) are
fulfilled. Note that V is not necessary defined on the whole set Cl Fm
so the denotation like V (ϕ) = 1 below means that V (ϕ) is defined and
V (ϕ) = 1.
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1) ϕ ∈ ClAtFm, V (ϕ) = 1 =⇒ |= ϕ;
2) ϕ ∈ ClAtFm, V (ϕ) = 0 =⇒ |= ¬ϕ;
3) V (ϕ ∧ ψ) = 1 =⇒ V (ϕ) = 1 and V (ψ) = 1;
4) V (ϕ ∧ ψ) = 0 =⇒ V (ϕ) = 0 or V (ψ) = 0;
5) V (¬ϕ) = 1 =⇒ V (ϕ) = 0;
6) V (¬ϕ) = 0 =⇒ V (ϕ) = 1;
7) x ∈ Var(τ), V (∀xϕ) = 1 =⇒ V (ϕ(x‖t)) = 1 for all

t ∈ ClExp(τ);
8) x ∈ Var(τ), V (∀xϕ) = 0 =⇒ there exists t ∈ ClExp(τ),

V (ϕ(x‖t)) = 0;
9) V (tε{x | ϕ}) = 1 =⇒ V (ϕ(x‖t)) = 1;

10) V (tε{x | ϕ}) = 0 =⇒ V (ϕ(x‖t)) = 0.

4.1. If some constant semivaluation V and a sequent Γ → ∆ is given
then we define V (Γ → ∆) = 1 if there exists ϕ ∈ ∆ such that V (ϕ) = 1,
or,there exists ψ ∈ Γ such that V (ψ) = 0. Further, we put V (Γ → ∆) = 0
if V (ψ) = 1 for all ψ ∈ Γ, and V (ϕ) = 0 for all ϕ ∈ ∆. Particularly,
V (→ ) = 0. Note that in the definition V (Γ → ∆) = 1 we do not demand
that V is defined on all members of Γ or ∆.

A constant semivaluation V is total if it is defined on the whole set
Cl Fm, i.e. if domV = Cl Fm.

4.2. Our definition of a constant semivaluation only differs slightly
from the definition of semivaluation in [10] and [11]. Namely, we use only
closed formulas, so we are forced to change, for example, points 7) and 8)
in the definition 4 and use there only closed expressions.

Theorem. Let the sequent Γ → ∆ be not deducible in Def Ar ω2
without cuts (i.e. it is not true that `+ Γ → ∆). Then there exists a
constant semivaluation V such that V (Γ → ∆) = 0.

Proof. We construct the semivaluation V by systematic search of
an inference without cuts for the sequent Γ → ∆. If the sequent Γ →
∆ is not deducible without cuts then there is some infinite path in this
systematic searching tree. This path defines the semivaluation V . Namely,
for all formulas on the left hand side of the infinite path we prescribe the
value 1 in the semivaluation V and, correspondingly, for all formulas on
the right hand side of our path we prescribe the value 0. A detailed
construction for the systematic searching of the inference can be found in
[10], [11]. For our theory this construction needs some obvious changes
only.
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5. Let us consider some constant semivaluation V . For every type
τ we define the relation g ≈ t between some object g and expression
t ∈ ClExp(τ).

τ = 0. In this case n ≈ t if and only if n ∈ ω and the standard
arithmetical value of t in the standard interpretation is just n.

τ = 1. In this case ε ≈ ϕ if and only if ε is 1 or 0 (i.e. ε is a truth
value) and ϕ ∈ ClFm and

V (ϕ) = 1 =⇒ ε = 1, V (ϕ) = 0 =⇒ ε = 0.

τ = 2. In this case g ≈ t if and only if g ⊆ ω, t ∈ ClExp(2) and for
every n ∈ ω, l ∈ ClExp(0) such that n ≈ l, we have

V (lεt) = 1 =⇒ n ∈ g, V (lεt) = 0 =⇒ n /∈ g.

5.1. For every type τ we define a set – an object domain B(τ). Namely,

B(τ) = {g | (∃t ∈ ClExp(τ))(g ≈ t)}.
Now we define the set Exp+(τ) of expressions of type τ with the con-

stants from B. The definition of Exp+(τ) goes quite parallel to the defi-
nition in Sect. 2.3 and only in point 1) of the new definition do we add a
new inductive condition:

a ∈ B(τ) =⇒ a ∈ Exp+(τ).

One can imagine that an element t+ ∈ Exp+(τ) is obtained from an ele-
ment t ∈ Exp(τ) by the substitution of some parameters of t by constants
from B. Let us denote by Cl Exp+(τ) the set of all closed elements of
Exp+(τ), furthemore, Fm+ = Exp+(1) and Cl Fm+ = Cl Exp+(1).

5.2. For every t ∈ Cl Exp+(τ) we define an object W (t) by induction
according to the definition of t (see the definition in 5.1):

1) W0 = 0;
2) a ∈ B(τ) =⇒ Wa = a;
3) W (f(t1, . . . , tn)) = f̃(Wt1, . . . , Wtn);
4) W (P (t1, . . . , tn)) is defined as 0 or 1 and W (P (t1, . . . , tn)) = 1

if and only if the statement P̃ (Wt1, . . . ,Wtn) is true;
5) W (ϕ ∧ ψ) = min(Wϕ, Wψ);
6) W (¬ϕ) = 1−Wϕ;
7) W (∀xϕ) is defined as 0 or 1 and W (∀xϕ) = 1 iff W (ϕ(x‖a) = 1

for all a ∈ B(τ) (here x ∈ Var(τ), of course);
8) W ({x | ϕ}) is a set of natural numbers, W ({x | ϕ}) ⊆ ω, namely,

n ∈ W ({x | ϕ}) ⇐⇒ W (ϕ(x‖n)) = 1;
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9) W (tεT ) = 1 ⇐⇒ Wt ∈ WT and W (tεT ) = 0 ⇐⇒ Wt /∈ WT ;
Thus, Wt is defined for all t ∈ ClExp+(τ) for every τ = 0, 1, 2 but, at this
moment, we cannot assert Wt ∈ B(τ) (see 5.4 below).

5.3. Let t be an arbitrary expression, x = (x1, . . . , xn) is a list of
distinct variables such that all parameters of t are among the members of
x. Let xi ∈ Var(τi). Let, further, g = (g1, . . . , gn) be a list of objects,
gi ∈ B(τi), and r = (r1, . . . , rn) a list of closed expressions, ri ∈ ClExp(τi)
such that gi ≈ ri. In this situation we shall say that θ = 〈x, g, r〉 is a
valuation for the expression t associated with the constant semivaluation
V and we shall write θ ≈ V .

If we have some valuation θ = 〈x, g, r〉 for the expression t then let us
define t′(θ) = t(x‖r) and t′′(θ) = t(x‖g). We abbreviate these denotations
by t′ = t′(θ), t′′ = t′′(θ) if it is clear what θ is. Thus, if t ∈ Exp(τ) then
t′ ∈ Cl Exp(τ) and t′′ ∈ ClExp+(τ).

5.4. Theorem. Let θ ≈ V be a valuation for an expression t, t ∈
Exp(τ). Then Wt′′ is defined, Wt′′ ∈ B(τ) and Wt′′ ≈ t′.

Proof. It goes by induction on the construction of the term t. A
similar construction (for a slightly different language and notations) could
be found in [11], point 3.4.4.

Corollary. If ϕ ∈ Cl Fm and V (ϕ) is defined then Wϕ = V ϕ.

So W is an extension of V on the whole set Cl Fm.

6.1. Let V be a constant semivaluation which is not total , i.e. domV
is a proper subset of Cl Fm. Then B(2) is the set of all subsets of ω,
B(2) = Pω. Hence, it is easy to see that in this case Wϕ = 1 ⇐⇒ |= ϕ
for all ϕ ∈ ClFm+ and, moreover, W ({x | ϕ}) = {n ∈ ω ||= ϕ(x‖n)} for
all {x | ϕ} ∈ Cl Exp+(2).

Indeed, let ϕ0 be a closed formula such that V ϕ0 is not defined. Then
V (eε{x | ϕ0}) is not defined for every e ∈ Cl Exp(0) (in view of 4, 9)–10)).
Hence (in view of 5) g ≈ {x | ϕ0} for every g ⊆ ω. So g ∈ B(2) for every
g ⊆ ω. But, in this situation, the definition of W in 5.2 coincides with the
definition of classical truth in the natural interpretation.

6.2. Let us define now the domains C(τ) for any type τ = 0, 1, 2 in
the following way: C(0) = B(0) = ω, C(1) = B(1) = {0, 1}, C(2) = {Wt |
t ∈ ClExp(2)}. It is evident that C(τ) ⊆ B(τ).

For every closed expression t which contains constants from C only, we
define an object Ut by induction on the construction of t. The definition
goes parallel to 5.2 but, of course, we define now not Wt but Ut. The
difference arises in the point 7) of 5.2. Namely, now we assert: U(∀xϕ) = 1
iff we have U(ϕ(x‖a)) = 1 for all a ∈ C(τ). So we appeal only to a ∈ C(τ)
and do not use the whole domain B(τ).
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6.3. Lemma. Let V be a constant semivaluation, such that V is not
total. Let us assume that the axiom of constructibility of Gödel V = L
takes place (see, for example, [7], [1]). Let t ∈ ClExp+(τ) and let all
constants of t be from C. Then we have Wt = Ut.

Proof. It goes by induction on the construction of t. The only
nontrivial case arises when t = ∀xϕ, x ∈ Var(2) and we need to prove
U(∀xϕ) = 1 =⇒ W (∀xϕ) = 1.

Indeed, let us assume, that U(∀xϕ) = 1 and W (∀xϕ) = 0. Let
ϕ = ϕ(x, g1, . . . , gk) where all parameters and the domain of the two-
type constants in ϕ are explicitely denoted. In view of the condition, we
have gi ∈ C(2) so there are ti ∈ ClExp(2) such that gi = Wti. Let
us denote ψ(x) = ϕ(x, t1, . . . , tk). We have ψ(x) ∈ Fm and (see 5.4)
W (ϕ(g)) = W (ψ(g)) for all g ∈ B(2).

It follows from V = L that there is an analytical formula γ(u, v) with
two parameters u, v ∈ Var(2) which gives the well-ordering of the set Pω
of all subsets of ω in the sense of the strict ordering < in the universe L
(see [1]).

Let us put ξ(x) = (¬ψ(x) ∧ ∀v(γ(v, x) ⊃ ψ(v)). In view of our sup-
positions W (∀xϕ(x)) = 0 and 6.1 there exists g ⊆ ω such that |= ¬ϕ(g).
Then we have |= ¬ψ(g). According to the definition of ξ(x) there exists
g0 ⊆ ω such that |= ξ(g0) and, moreover, |= ξ(g1)∧ξ(g2) =⇒ g1 = g2. Let
us define a closed expression t0 = {y | ∃x(yεx ∧ ξ(x))} where y ∈ Var(0)
and x ∈ Var(2). In view of the definition of ξ(x) and 6.1 we get Wt0 = g0.
Hence, g0 ∈ C(2), |= ξ(g0). Then |= ¬ψ(g0) and |= ¬ϕ(g0). So, by (6.1),
W (ϕ(g0)) = 0. Because of g0 ∈ C(2) (and the inductive supposition) we
have W (ϕ(g0)) = U(ϕ(g0)) = 0. But this contradicts U(∀xϕ(x)) = 1.

6.4. Lemma. Let us assume V = L. Let V be an arbitrary constant
semivaluation. Then there exists a total constant semivaluation H which
extends V , i.e. if ϕ ∈ ClFm and V ϕ is defined then V ϕ = Hϕ.

Proof. If V is total then simply put H = V . Let us suppose that V
is not total. Let us consider the function U defined in 6.2 and let H be U
– limited on the set Cl Fm. We state that H is the wanted semivaluation.
In view of 6.3 H coincides with W on Cl Fm so it is the prolongation of
V as it follows from Corollary 5.4. We need only to check that H is really
a semivaluation, i.e. that the conditions of Sect. 4 are fulfilled for H. The
only nontrivial points in this checking are 7) and 8) when x ∈ Var(2).

Let H(∀xϕ) = 1 and t ∈ ClExp(2). We show H(ϕ(t)) = 1. Indeed,
H(ϕ(x‖t)) = W (ϕ(x‖t)) = W (ϕ(x‖Wt)) = 1 in view of W (∀xϕ(x)) = 1
and the definition of W .
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Conversely, let H(∀xϕ) = 0, then W (∀xϕ) = U(∀xϕ) = 0. Hence,
there exists g ∈ C(2), U(ϕ(x‖g)) = 0. By the definition of C(2), there ex-
ists an expression t ∈ Cl Exp(2) such that g = Wt = Ut. But U(ϕ(x‖g)) =
U(ϕ(x‖Ut)) = U(ϕ(x‖t)) = W (ϕ(x‖t)) = H(ϕ(x‖t)) = 0.

7. Theorem. If H is a total constant semivaluation and the sequent
S is deducible in Def Ar ω2, i.e. ` S, then H(S) = 1.

Proof. By a straightforward induction on the construction of the
inference for the S in Def Ar ω2.

7.1. Lemma. Let us assume the axiom V = L. Then for every se-
quent S we have

` S =⇒ `+ S.

Proof. Let us assume that ` S and nevertheless, not `+ S. Accord-
ing to 4.2 then there exists a constant semivaluation V such that V (S) = 0.
According to 6.4 then there exists some total constant semivaluation H
such that H(S) = 0. This contradicts Theorem 7.

8. Theorem. If a sequent S is deducible in Def Ar ω2 then it is de-
ducible without cuts also.

In other words, ` S =⇒ `+ S for every sequent S, and now this fact
does not depend on the hypothesis V = L.

Proof. According to 7.1 this fact is true assuming V = L. But the
deducibility of a sequent in Def Ar ω2 is an absolute fact. Hence, we have a
theorem. In a more detailed way one can argue as follows. If ` S then there
exists an inference D for S in Def Ar ω2. Note that D is a constructible
object (see 3.4) and so D is an element of L and D is an inference for S in
the universe L too. Hence, in view of 7.1, in L there exists an inference D′

for S containing no cuts. But in view of absoluteness, D′ is an inference
for S from an outer point of view too.
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