Embedding partially ordered topological spaces in hyperspaces

By A. K. MISRA (Nsukka)

0. Introduction

Partially ordered topological spaces (in short POTS) are topological spaces
endowed with a closed partial order and a hyperspace is the set of all non-empty
closed subsets of a topological space topologised by the Vietoris topology. Subspaces
of Hausdorff hyperspaces are POTS under the partial order of set-inclusion. The
converse question — can all POTS, or at least members of some special class, be
realised as subspaces of hyperspaces in some systematic way? — is naturally interest-
ing, but apparently not simply answered, like the corresponding purely order-theore-
tic question.

In this paper, this question is addressed and some sufficient conditions for the
natural order-isomorphism of a POTS X into the corresponding hyperspace CL(X),
to be topological also, are noted. Such results are likely to throw more light on both
classes of spaces, specially in respect of arc-theorems in KocH [2], WArD [10, 11],
McWATERS [5] and Misra [7].

1. Preliminaries

We recall some key terms and simple facts.

1.1. A partial order = on a non-empty set X is a reflexive, anti-symmetric and
transitive binary relation on X and is viewed as a subset of XX X. For each x in X,
the subset {y: y=x} is denoted by L(x, =) or, when there is no confusion, simply
by L(x). If .# is a topology on X such that = is a closed subset of the product space
Xx X, then = is said to be closed” (or more specifically #-closed) and the triple
(X, =, F)is called a partially ordered topological space (or POTS in short).

1.2. For a topological space (X, .#) the collection of all non-empty closed subsets
of X is denoted by CL(X). For any finite collection {}],V,,...,¥,} of non-empty
open subsets of X, (/,...,¥,) stands for the subcollection of CL(X) consisting
of all F contained in W U...UV, such that FNV;#0 for i=1,2,...,m. The
family of all collections of the form (¥}, ..., ¥,,) is a base for a topology on CL(X),

1 The less natural term “Continuous partial order” is also often used (e.g., [9]), perhaps due to
the connection between a continuous function and its graph ([3], p. 142, Theorem 2).
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called the Vietoris topology. The hyperspace CL(X) is the set CL(X) provided with
the Vietoris topology.

Our main references for POTS and hyperspaces are [1], [8], [9] and [3], [6] res-
pectively.

1.3. Let (X, =, .f) be a POTS, % any Hausdorff topology on X, and Iy=
={(x, x): x€X} the identity partial order on X. Following are some easily observed
facts relevant to our discussion.

1.3.1. If FS%, then = is %-closed.

1.3.2. Iyis #-closed (see e.g., [3], p. 140, Theorem 2).

1.3.3. J is necessarily a Hausdorff topology.

(One may argue directly or note, using convergent nets from /y< =, and anti-sym-
metry of =, that Iy is also #-closed and then appeal to ([3], p. 141, Theorem 4)).

1.3.4. The function (x;,x;)~—~(x;,x;) being a homeomorphism on XXX,
(X, ="1, ) is also a POTS.

1.3.5. For each xin X, L(x, =) is a closed subset of (X, .#) and so is L(x, ="1).

1.3.6. For any regular T;-space X and any non-empty subcollection S of the
hyperspace CL(X), < is a closed partial order on S (see e.g., [3], p. 167, Theorem 1).

1.3.7. The function x~-L(x) is an order-isomorphism from (X, =) into

(CL(X), S).

2. Some embedding theorems

The hyperspace CL(X) of a discrete space (X, Z) is discrete and for any Haus-
dorff space (X, %) the function x ~—{x} is a topological embedding (see e.g., [6],
p. 153). Therefore, it is obvious that for the POTS (X, =, 2) and (X, Iy, %) the
order-isomorphism x~— L(x) of 1.3.7 is in fact a topological isomorphism, i.e., an
embedding of POTS. In general, it is not so — even for reasonably nice spaces (see
Example 2.6). Thus the question

2.1. For what POTS (X, =, ) the order-isomorphism L: X-L[X]ECL(X)
is a topological isomorphism? — is non-trivial, and its answers are of interest as
noted earlier.

Some partial answers to this question are given in this section. The lemma below,
provides a sufficient condition for the continuity of the function L, and is the main tool
used in the proofs of Theorems 2.4 and 2.5 following it.

2.2 Lemma. Let (X, =, ) be a POTS and x, a point in X. If for each net (x,)
converging to X,

(1) Every net (y;)in X—L(x,), such that y,=x, for all ., has a cluster point
in X; and

(2) For each x<x,, there is a net (y;) clustering at x and such that y,=x; for
all i.

Then L: X—CL(X) is continuous at x,.

Proor. We prove the contrapositive. Suppose L is not continuous at x,. Then,
there exists a neighbourhood (¥}, ..., ¥,) of L(x,) such that for each neighbour-
hood U of Xx,, thereisapoint xy in Usuch that L(xy)4 (¥, ..., V,). Ifitso happens
that for each neighbourhood U of x,, an x; can be picked up for which L(xy) is not
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contained in K U...UV,, then there is a point yy=xy, that does not belong to
V,U...UV,. The net (yy), being outside the open set ¥, U...UV,, cannot have
any cluster point in the set L(x,)S¥ U...UV,. But, as the net (x;) converges to x,
and = is closed all cluster points of (yy) have to be in L(x,). So, the net (yy) has
no cluster points in X and condition (1) is contradicted.
On the other hand, if a choice of (xy) as above cannot be made, then there exists
a neighbourhood W of x, such that for each point x in W, L(x) is a subset of };U
.. U¥,,, but is disjoint from some member of {¥, ..., ¥,}. Now, for each neigh-
bourhood U of x,, let x; be a point in UN W. Clearly, the net (xy) converges to x,
and since {V,...,¥,} is a finite family there is some member ¥; and a subnet
(xy,) of (xy) such that for each y, L(xy,) is disjoint from V. Thus, we are led
to a net (xy. )convergmg to x, such that no net of the form ( y,), with y,= Yu,» can
cluster to any point of the non-empty set L(x,)(¥;, and so condition (2) is contra-
dicted.

2.3 Theorem. If .5 is a minimal topology on X with respect to which the partial
order = on X is closed and (X, %) is a regular space then the function L is an embedding
of POTS (X, =, J)in CL(X), whenever it is continuous.

Proor. Let ¥~ be the topology on L[X] relativized from CL(X) and %=
={L"Y¥V]: VG*V} Then, in view of statements 1.3.6 and 1.3.7, (L[X], © S, 7) is
a POTS and % is a topology on X with respect to which = is closed. So, if L is conti-
nuous, then #S.# and hence due to the minimality of #, % =J. This means that
L:(X, =, #)~(L[X]), S, 7) is a topological isomorphism.

2.4 Theorem. For any linearly ordered space (X, =, J) where 5 is the interval
topology, L: X-~CL(X) is an embedding of POTS (X, =, #) into CL(X).

Proor. Let x, be any point of X and (x;) any net in X converging to x,. For any
net (y;) in X — L(x,) such that y,=x, for all 2, we have, x,<y,=x; forall 1 and
hence (y;) also converges to x,. Thus, condition (1) of Lemma 2.2 is satisfied. If
X< X, is any point in X, then the net (x;) is eventually in the neighbourhood X — L(x)
of x, and so the net (y;) given by: y,=x; if x;€L(x) and y,=x otherwise, conver-
ges to x, and y,=x, for all .. Thus, condition (2) of Lemma 2.2 is also satisfied, and
L is therefore continuous. As the interval topology # of a linearly ordered space is
known to be the smallest topology with respect which the linear order is closed
(see e.g., [9], p. 148), Theorem 2.3 completes the proof.

2.5 Theorem. Let (X, =, #) be a compact POTS such that

(a) no point in X has an immediate predecessar, that is there do not exist distinct
points Xy, xy in X with L(xy, =)NL(x,, =" 1)= {x,,ag} and

(b) each point x in X has a nelghbourhood W such that under =, x is comparable to all
members of W and W\ L(x) is linearly ordered.

Then L: X—-CL(X) is an embedding of POTS (X, =, ) into CL(X).

Proor. The topology .#, being compact Hausdorff, is minimal Hausdorff and so
is also a minimal topology with respect to which = is closed (see statement 1.3.3).
Therefore, in view of Theorem 2.3, it is enough to show that L is continuous. We aim
to use Lemma 2.2 for this.
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Let x, be any point in X and (x;) any net in X converging to x,. Since each net
in X has cluster points, condition (1) of Lemma 2.2 is trivially satisfied. For checking
the other condition, let x< x, be any point in X and W a neighbourhood of x, of the
type described in condition (b) above. The net (x;) is eventually in W. If it is frequently
in the set W— L(x,), then the net (y,) given by: y,=x if x;6 W—L(x,) and y,=x;
otherwise, clusters at x (it takes the value x frequently) and satisfies y,=x; for all Z,
due to the comparability property of W. If instead, (x;) is eventually in W) L(x,),
then also there is a net (y,) clustering at x and satisfying y,=x, for all 4, as shown
below.

Let C be a maximal chain from x to x,. Then C is compact (see e.g., [9], Lemma
4) and its subchain C — {x,} has x,as an accumulation point. For, otherwise, C— {x,}
is itself a compact space with a closed linear order =, and its maximal element (see
[1], p- 63, Theorem 16 or [9], Theorem 1) is an immediate predecessor of x,, violating
condition (a) of the theorem. Thus, W((C — {x,}) has infinitely many points. Let
Y1 Y2 be points in this set such that x<y,<y,<x,. Since the net (x,) is assumed to be
evemually in WN L(x.,) and is also eventually in the nelghbourhood ¢ —L( ¥y) of xg,
it is in fact eventually in the set (W L(x,)) (X —L(y,)). The point y, is a member
of this set, which being a subset of W\ L(x,), is linearly ordered under =, and as
the net (x;) is eventually also in the neighbourhood X —L(y,) of x,, it follows that
eventually y,<x;. But then, the net (y,) given by: y,=x whenever y,<x; and
¥, =x, otherwise, converges to x and satisfies the condition y,=x; for all A.

Thus, condition (2) of the Lemma 2.2 is also satisfied and the proof is complete.

2.6 Example. Let X={(r,r): réR, 0=r=1}U{(0,r): réR and 0=r=1} be
given the subspace topology from R*® and a partial order « defined by: (py, ¢,)(p2,¢2)
if and only if any of the following hold: p,=p, and ¢,=¢.; py=¢;» pP2=¢q. and
Pi=ps; p1=0=p; and ¢;=¢q;; p;=0 and g,=1=py=¢;. Then, a is a closed
partial order, the space X is compact, Hausdorff, connected and locally connected
but L: X—~CL(X) is not continuous at the point (1, 1).

3. Remarks

3.1. In Lemma 2.2, we may, in condition (1), replace ‘any net (x,;)” by “any net
(x;) in X—L(x,)” and in condition (2), replace “any x<x,” by “any x<x, in
some neighborhood V of x,,”*. This leads to a less elegant and only apparently stronger
statement (with almost the same proof as given for Lemma 2.2).

3.2. For compact Hausdorff POTS condition (1) of Lemma 2.2 is trivially satis-
fied. So for such spaces condition (2) of the lemma provides a suficient condition for
L to be a topological isomorphism (see Theorem 2.3). This observation can be used
to deduce some known embedding results for topological semi-lattices and semi-
groups. For example, given a compact Hausdorff semi-lattice (X, /A, #), any Xx,
in X and x<x,, if a net (x,) converges to x, then the net (x;/\x) converges to x,/A\
Ax=x. Thus we are immediately led to ([4], Theorem 1.2).
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