On a problem of G. O. H. Katona

By A. VARECZA (Nyiregyhaza)
Dedicated to Prof. Béla Gyires on his 80th birthday

Abstract. Let H be a finite ordered set (say, different real numbers, |H|=n) however the
ordering is unknown for us.

G. O. H. Katona raised the following problem: If A={p, q} (1=p<g=n) and x,y are
arbitrary elements of H then find the minimal number of comparisons needed to decide whether the
indexes of the elements x, y are in A or not (say in decreasing order). In the general case the answer
is unknown. In this paper we prove that if 4={l, g} (1<=g=n) then the number of comparisons

is at least
min[ﬂ+q-3,2n—[-g—]—-2].

1. Introduction

Let H be a finite ordered set (say, different real numbers), however the ordering
is unknown for us. There are many situations when we want to obtain certain infor-
mation concerning H using pairwise comparisons of the elements. The simplest
question of this type: Which is the largest (smallest) element in H? It is easy to prove
that any strategy for finding the largest (smallest) element needs at least n—1 com-
parisons.

It we want to determine the two largest elements then n—2+[log, n] compari-
sons are needed ([3], [4. 211—212 p.]). Moreover it is proved ([8], [9]) that it is im-
possible to find a pair of consecutive elements with a smaller number of comparisons.

(Ix1(1x]) denotes the smallest (largest) integer =x(=x).) IRA PoHL ([1]) has
n
2
largest and smallest elements simultaneously (see also [5], [7], [8]). If we want to
decide only whether x, and x, are the largest and smallest elements in H then we need

proved that at least n+ | = | —2 comparisons are needed if we want to determine the

at least n-{—[ e ]—2 comparisons ([5]) and to decide whether x,, x, are neigh-

2
boring, element in H we need at least 2(n—2) (n=3) comparisons ([11]).
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G. O. H. KAToNA suggested the following problem:

Let A={ry, rs, ..., 1} (1=r;<ry<...<r,=n) and let x be an arbitrary element
of H. The question is: how many comparisons are needed if we want to decide
whether the index of the element x is in 4 or not?

KATONA proved ([2]) that the minimal number of comparisons is n—1 (see
also [6], [8]).
G. O. H. KATONA suggested the following problem, too:

If A={p, q} and x, y are arbitrary elements of H and we want to decide whether
the indexes of elements x, y are in 4 or not then how many comparisons are needed ?
He found the strategy ([2]) which gives the answer using n+¢—3 comparisons

if lép-:qé[—;—] and he conjuctured that this strategy is optimal.

In the recent paper [6] it is proved that the conjecture of G. O. H. Katona is
true (see also [8]).

In a recent paper [10] the following cases were proved: If A={r,,ry, ..., 7}
(1=r,<ry=<...<r,=n) and r,=k (r,5n) then we need at least n—1 comparisons

\ n g
and if r,=k, ’*—['f then we need at least n+r,—3 comparisons.

In this paper we prove the following:
If A={l,q) (1<=g=n) then the number of comparisons is at least

min [n+q—3, 2n—[—g-]—2] (n=>2).

2. Notations, definitions

Let x, y be arbitrary e’ements of the set H and let 4={1, g} (1<g=n).

Suppose that we want to decide whether the indexes of elements x, y are in the
set A or not (that is the element x or y is the largest and the other the g-th)? The
first pair to be compared is denoted by S,=(a, b). If the result of the comparison is
a=b then the value of the variable g, is 1. In the opposite case (a<b) & =0.

The choice of the next pair S, (¢,) depends on &,. Suppose S, (g,)=(c(e,), d(g)).
Define &, to be 1 if ¢(e;)=>d(¢;) and to be 0 otherwise. Continuing this procedure

(1) Si—l(sl’ Eay vuey ei-l)

is defined for some 0, 1 sequences &, &, ..., &-, with the restriction that if S;_,(e,,
&5y ..., &—1) Is defined then S;_.(g,, &, ..., &_s) is defined, too. The value of ¢;
is 1 or 0 according to whether the first or the second member is larger. A set of
questions given in this way will be called a strategy suitable for deciding the questions
“whether the indexes of x, y are in A or not™ iff for all sequences ¢, &, ..., & when

(2) S;-1(&y, &5, ..., 1) is determined, but
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(3) Sl(sl’ 82: sevy 81) iS not

then the answers &, &, ..., & (together with the questions S, S,(¢,), ...
4) 1..., S;_1(e, &3, ..., 1) give a unique reply to the problem: the indexes of
x,y are in A or not.

We use the notation & (A) for such a strategy. We say that the strategy % (A) is
finished for the sequence g, &, ..., & if the conditions (2)—(4) are satisfied. The
maximum length of the sequence &, , &, ..., & finishing the strategy is called its length.
It will be denoted by L(¥(4)).

Denote by T;(s,, &, .., &) the inequality set up from the pair S;_,(e,, &, ...
..., &_y) on the basis of the answer ¢;. Now we can express condition (4) in a modified
way: The inequalities

©) Ty(e), Ta(ers 82)s oo Tuler 85 s )

uniquely decide whether the indexes of x, yare in 4 or not. The situation (g,, &,, ..., &)
of &#(A) is the situation after answering the question S;_,(e,, &, ..., &-,). That is,
we have the inequalities T,(¢,), T5(&,, &), ..., T;(&, &, ..., &) and denote them by E;.
We will use the following fact several times.
If a system of inequalities E; is given, then only those inequalities are conse-
quences of them which are deducible by transitivity.

That is let
H = {hy, hy, ..., h,}

hl":hz": en MK h”-

be an ordered set:

A set of inequalities
(%) xi<x; (i#], i, je{l,2,...,n))

is given and we are looking for a solution of (%) in the set H. If the inequalities

Xiy < Xigs Xiy < Xpgs oes Xg_, <X, (1 <k)

1 K

are all in (*), then x;,<x, is deducible from (). The set of inequalities deducible
from (*) is called the extension of (#). (*) is non-contradictory if there is no ine-
quality x;<x; in the extension of ().

Lemma 0. If (%) is non-contradictory and the inequalities x,<x,, and x,> Xx,,
are not in the extension of (*), then there is a solution of (*) in H satisfying x,>x,,
and such a solution too for which x,<x,,.

In this paper we dont prove Lemma 0. The proof of Lemma 0, can be found
in [11].

We now introduce the concept of graph — realization. Let the elements of a set
H correspond to the vertices of a graph G. Let a comparison be an edge of G between
the corresponding vertices. Let the answer be the orientation of this edge in the follow-
ing way : if we compare two elements — say ¢ and d — in some state and the result
of the comparison is ¢>d then we direct the edge from ¢ to d, conversely, when
c<d we direct the edge from d to c.

1*
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In the state (g,, &, ..., &) let G' denote the graph derived in this way. By the
above correspondence we uniquely associate an oriented graph to all states of & (A4).
It follows from the correspondence that in an arbitrary state (&,, &, ..., &) of ¥ (A)
the relation a=b is realised if and only if an oriented path leads in G’ from a to b.
Denote by G the graph obtained from G by cancelling the direction of edges.

3. The result

Theorem. If A={1, q} and the set € is the strategy which is able to decide whether
the indexes of elements x, y are in a set A or not (that is the element x or y is the lar-
gest and the other is the g-th in H), then

o) -mofosa-s - [g]
(6) Jmin, L(¥(A4)) = min {n+q 3, 2n [ 5 2
if n=2,

PROOF OF THE THEOREM.

We distinguish two cases: 1. n:-l‘-%-]—l. 2 nél-g-'g— -1.

1. Suppose that n::-lizq-]—-l.

We can easily find a strategy & (A4) which in at most n+¢g—3 steps gives the
answer to the question. This strategy is due to G. O. H. KATONA. Let S,=(x, »).
We can suppose that x=>y. We compare all the elements H\{x, y} with y.

If the element y is larger in n—g cases and smaller in ¢ —2 cases then y is the g-th
element in H.

After this we compare the element x with the elements which are larger than y.
If the element x is larger in these comparisons, then the element x is the largest in H.
The number of comparisons is n+g—3.

2. Suppose that né[-szi]—-l.

We determine the strategy & (A4) which gives the answer to the question in at
most 2n—[-%]—2 steps. We compare the elements x, y with the elements from

HN\{x, y} until for some element from H\{x, y} —saya — x>a>y or x<a<y
holds. Such element obviously exists if the indexes of x, y are in A.
We can suppose that x=>a=>y.

If x=>a=>y holds and in this situation the number of those elements which are
smaller than y is n—g¢, then from the elements not occurring until now we determine
the largest and the smallest element and finally we compare x with the largest, y with
the smallest element and we get the answer to our question.

Suppose that whenever x=>a=y, the number of those elements which are
smaller than y is smaller than n—gq. If there exist two elements which have not occur-
red yet — say ¢, d — then we compare these two elements. We can suppose that
¢>d. We compare the element y with the element d. If y>d then we compare ¢ with
the element not yet occurred — say e — and the smaller element with y etc. If there is
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no such an element e then we compare ¢ with y and in case y<c we compare ¢ with
x, too. If y<d, then we compare ¢ with x. We can suppose that x=>c.

If there exist two elements which have not occurred yet — say f, g — then we
compare these two elements. We can suppose that f<g. Compare y with f. If y=>f,
then we compare g with the element not yet occurred and the smaller with y etc. If
y</f then we compare x with g. If there exist two elements which have not occurred
until.... In this way we give the answer to our question and we have done at most

014152 - 2egs [ 522 an-[ 5]

comparisons.
We have proved by this that

: - q
E"l}?? L(.V(A) = min (n +q -3, 2n— I—2] = 2] .
It remains to prove that

(7 L(¥(A)) = min [n+q—3, 2n— [%] = 2]

holds for any strategy % (A).

This will be done in the following way.

An algorithm will be given which determines a branch of the strategy, that is, a
sequence &, &, ..., & finishing it.
This branch will have a length

= min [n+q—3, 2n—[%]—2].

The algorithm determines the &’s recursively.

Partitions of H—{x, y} will be used. These partitions will also be defined recursively,
for any situation (g,, &, ..., &) along the indicated branch. The branch and the par-
titions will be determined simultaneously. A partition has 5 classes: B, B, Bi, B!, C.

The heuristic meaning of the classes is:

BiUBLUB': the set of elements which will be greater than the element y(x) and
smaller than x(y);

Bi: the set of elements which will be smaller than both x and y;

C': the set of elements yielding essential information in the given situation.

At the beginning C°=H\({x,y}, B{, B}, B}, B°=0. Suppose that g, &, ..., &

and Bi, Bi, Bi, B', C' are already defined.

The next description determines &;,, and Bi*l, Bitl, Bit1 Bi+1 Ci+1,

Let S;(e;, &3 ..., 8)=(g, h).

The new values of g;,,, Bi*, etc. will depend on the classes containing g and h,
resp. The classes which can be obtained by interchanging the role of g and A will not
be treated separately. As regards Bit1, etc. we will indicate the new class only for an
element.

Then it will be obviously omitted from its old class. We can suppose that the
element y has not occurred as x before.
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Suppose that the element x first occurs in S;(z,, &,, ..., &). Let
S;(e1s &5 ...y &) = (x, €).
We distinguish two cases:
Case I. c€B{UBJUB’. In this case x<c and if c€B’ then c€Bj*'.

Case II. cc{y}UBJUCI. In this case x>c and if |Bj|<n—gq, c€C’/ then
ceBj** and if |Bjl=n—gq, c€C’ then ccBj*.

We define ¢;,,.
1. g, heC gsy=1 and if |BIUBLUB/| < g—2,

|Bi| < n—q then heBitY, geBi+;
if |Bi =n—gq then geBi*!, he Bi*Y;
if |BjUBiUB|=q—2 then g, h€éBitl.

2. g€B, heC? g+1=1 and
if |Bil <n—gq then heBitl;
if |Bil =n—q then heBLtY, geBitL,

3. g, heB 8.1 = 1, gEBLY, heBLtL.
4. g€B:, heB! gi1= 1

(r<s; r,5€{1,2,3))
5. g€BS, hi By 8.1 =0 and

if heC,|BiUBiUB'| < g—2 then heB'*!;
if heC',|BiUBLUB| = g—2 then hEBi*™.
6. g€Bi, heB'UC! &4y =1, and
if |Bi| < n—gq, h¢C' then heBLHY;
if |Bi| =n—gq, héC' then heBit,;
if heéB' then hEBH.
7. geBl, he BUC! if |Bi| <n—gq, heC' then &, =1, heBi*;
if |Bi = n—gq, heC' then &g, =0, heBi*1;
if heB' then ¢, =0, heBi*.,

8. g, heB! &;,, = arbitrary, except if it is
(ref{1,2,3)) determined by the extension of e;.
9.28=xh=y in the case I.: x < y;

in the case II.: x > y.
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10. g = x, heC' in the case I.:
if |BIUBLUB| <q—2 then g, =0, heBi+1;
if |BIUBLUB| =gq—2 then g, =1, heBi;
in the case II.: ¢;;, =1 and
if |Bil <n—g then heBit;
if |Bil =n—gq then heB*.
11. g =x, hé BiUBUB' in the case I.: g;,;, =0 and if heB
then heBi+t;
in the case II.: g,, =1 and if heB
then héeBLH.,
12. g =y, heC! in the case I.: ¢,,, =1 and
if |Bi|<n—gq then hEBiY;
if |Bil =n—q then heBiH.
in the case II.:
if |BIUBLUB!| <gq—2 then &g, =0, heBi*1;
if |BIUBLUB/| =gq—2 then g., =1, heBitl,

13. g=y, hé BBUBLUB' in the case I.: g,,=1 and if heB' then héBi*! in
the case II.: ¢;,,=0 and if h€B' then heBi*.

In this way we have defined the value of ¢;,, and the sets Bi*!, Bi*!, Bi*, B'+1,
oM,
It is worth-while to show in a figure the possible changes of elements among the

classes (see Fig. 1).

Fig. 1.
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Suppose that the strategy & (A) is finished for the sequence g, ¢, ..., &. It will
be denoted by P(A4). The length |P(A4)| of P(A) is I. We shall prove

I = min [n+q-—3, 2n—[%]-2].

We can easily see that if the strategy & (A) is finished for the sequence
&, &s, ..., & then case I. or case II. holds. If case I. has resulted then largest element
in H is y and the g-th is x, and if case II. has resulted the largest element in H is x
and the g-th is y.

From definition P(A) it follows that if some element — say b— €Bi (re{l, 2, 3})
then beB! (j=i) and if beB' then bEB]UBj.

From definition P(A) it follows, too, that if b>a€é&, and beB!., acB. (r#s)
then r<s (r,s€{1,2,3})) and the elements of BjUB} are smaller than y(x) and
larger than x(y) and the elements of B} are smaller than x, y.

Suppose that |B{UBLUB!|<g—2, |Bi|<n—gq and that either |Bi*'UBi*'U
UBi*+)=¢—2 or |Bi*'|=n—gq holds. We prove the following Lemma:

Lemma 1. If |Bi*!|=n—gq, then the elements of Bi*' occur at least twice as
smaller ones in &.

If |Bit*UBL**UB*|=g—2 then in case 1. (in case 11.) the elements of
BYUBY occur with at least one element from {x}UB} ({y}UBY}) in &,.

Proor. We prove the first half of the statement. Suppose that |Bi|<n—g,
|BiUB}UB!|<gq—2 and |B{*'|=n—g hold.

Let — say — a be an arbitrary element in Bi*!, Suppose that the element a
first occurs in the S;(e,, &;, ..., &;). Let

S;(e1s €9y onr ) = (@, b) (j < i+1).

From definition P(A) it follows that a€C/, ¢;,,=0 (because acBj*'). Thus we
used 1., 2., 6., 7., 10. or 12.

If we used 1., 2., 6. or 7. then beB{*'UB{+*UB/*! and beB{UB}. It follows
from this that the element a occurs in &; as a smaller one with an element from
{x}UBj (in case 1.) or with an element from {y}UBj (in case II.), that is the state-
ment holds. If we use 10,, then x has already occured and in its first occurance with
some element, say e, x is greater than e. On the basis of &, a<y because the element
a occurs in & with an element from {y}UB} and the element a is smaller in this
inequality.

The statement follows from this.

If we use 12. then — as we can easily see — the statement again holds.

With this we proved the first half of the Lemma.

Now we prove the other half.

Suppose that |Bi|<n—gq, |BiUB}UB!|<g—2 and |Bi**UB*UB* | =¢g-2.

Let — say — a be an arbitrary element in B} UB}. Suppose that the element a
first occurs in the S§;(e, &, ..., €;). Let

Sj(gl.’ €25 vy sj) = (aa b)'
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From the definition of P(A) it follows that acC/, ¢;,,=1 (because acB{*'U
UBLUB'*), Now we use 1., 2., 5., 6., 7., 10. or 12,

If we use 1. then a=b, beBi+t', bcB,. We can easily see that the use of cases
2., 6., 7. is impossible. If we use 5. then beBj, beBi. If we use 10. then b=x,
gj41=1 (because acBjUBy).

This implies that the case I. holds and a€B{*!, ac B}. We can similarly prove
the statement when we use 12. With this the Lemma is proved.

Finally we prove (7).

We distinguish two cases: 1. |Bi*|=n—q; 2. |BiH*UBIHUB*|=¢g-2.

1. If |Bi*Y|=n—gq (|Bi<n—gq, |BiUBLUB|<g—2), then Bit*=B} and —
according to Lemma 1. — the elements of B} occur in &, at least 2(n—gq) times as a
smaller one.

We can suppose that the element x is the largest and y is the g-th in H. (If the
element y is the largest and x is the g-th then we can prove the statement similarly.)
From definition P(A) it follows that B'JC'=0. Consider the inequalities between
the elements of the set {x, y}UBjUB}.

We can easily see that if a€Bj(Bj) then there exists an inequality a=>b (a<b)
in & with be{y}UB} (be{x}UB).

Suppose that a€Bj and the element a first occurs in S;(g,, &, ..., &). Let
S;(&, &, ..., 8))=(a, b). By the definition of P(4) we have acC’, g;,,=1. If
j<i+1, b=y then we use 1., 5. (supposing x>y and acB/+', beB{*!.

Later the element a occurs with the element e from {y}UBUB,: in S; as a
larger one because acBj and ec{y}UB}.

If j<i+1 and b=y then we use 12. and a€B{*', acBi.

If j=i+1 then we use 1., 5., 7. or 12. If we used 1., 7., 12. then a€B{*},
be{yyUB{*!, If we used 5. then beB], acC’, acB/*' and later the element a
occurs with the element e from {y}UB,UB and a>e because we supposed that
ac B} therefore the element e is in {y}UBj.

With this we have proved that if acB} then there exists an inequality a=b
in & with be{y}UB}. We can prove similarly that if a€B} then there exists an
inequality a<b in & with bé{x}UB]. With this the proof of the statement is
finished. We prove that the element x occurs with an element from {y}UB} or
the element y occurs with an element from {x}UB] in & (we supposed x=>Y).
Suppose the element y does not occur with an element from {x}UB}. We prove that
in this case the element x occurs with an element from {y}UB} in &,. Let (g, &, ...
...y £741) be the first statement in which the element x occurs with an element from
B{**UB{+**UB**U{y} in &;4,. Let

S;(Sl, 32, ceey 8}) — (x, b)

and — because we supposed the element x to be the largest — x>b. From the de-
finition of P(A) it follows that

be B{UBJUB/UCIU {y}, be B{+ U {y).

With this the statement is proved.
From these it follows that the number of inequalities a=b in & in which

acB{U{x}, beBiU{y} is at least [q;l ] because [B{U{x}[+|BL|=q—-l.
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Consider the graph G'. We can easily see that the subgraph induced by {x}UB}
({»}UBY) is connected.
Consequently there are at least |Bj| (|B}|) edges among the vertices in {x}UB}

({»VUBy). , . £ :
From these it follows that the number of inequalities in & is at least

2(n—q)+[—q—;l] +g—-2= 2n—[%] -2.

2. Suppose that |BiUB}UB!|<g—2, |Bij|<n—g and |Bi**UBi**UB*| =
=g—2. (We can suppose that x is the largest element in H.)
Suppose that the element x first occurs in S;(e,, &, ..., &;). Let

S;(81, 835 ...» 8)) = (X, C).

Because x=>c it follows that the case II. holds and cé€{y}UBj*.

It follows from Lemma 1. that if acB}UB} then there exists an inequality
a=>b in & with beB{U{y}. This implies that the number of inequalities a>b in
&, with ac{x}UB{UB}, be{y}UB} is at least g—1. We can easily see that the
subgraph induced by {x}UB{UB} ({y}UB}) is connected.

Consequently there are at least |BjUB%| (|Bi]) edges among the vertices in
{x}UBJ{UB; ({y}UB}). From these it follows that the number of inequalities in
&, is at least

g—1-+|BlUBY +|BY = n+q—3

since |B}UB}|+|B|=n—2. From the cases 1. and 2. it follows, that
Iémin(n+q—3, 2n—[%]-2].

With this the proof of our theorem complete.

Acknowledgement. Finally the author would like to thank professor G. O. H.
KATONA for his valuable remarks.
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