On a problem of G. O. H. Katona

By Á. VARECZA (Nyíregyháza)

Dedicated to Prof. Béla Gyires on his 80th birthday

Abstract. Let H be a finite ordered set (say, different real numbers, |H|=n) however the ordering is unknown for us.

G. O. H. Katona raised the following problem: If $A = \{p, q\}$ $(1 \le p < q \le n)$ and x, y are arbitrary elements of H then find the minimal number of comparisons needed to decide whether the indexes of the elements x, y are in A or not (say in decreasing order). In the general case the answer is unknown. In this paper we prove that if $A = \{1, q\}$ $(1 < q \le n)$ then the number of comparisons is at least

$$\min\left(n+q-3,\,2n-\left\lceil\frac{q}{2}\right\rceil-2\right).$$

1. Introduction

Let H be a finite ordered set (say, different real numbers), however the ordering is unknown for us. There are many situations when we want to obtain certain information concerning H using pairwise comparisons of the elements. The simplest question of this type: Which is the largest (smallest) element in H? It is easy to prove that any strategy for finding the largest (smallest) element needs at least n-1 comparisons.

It we want to determine the two largest elements then $n-2+\lceil \log_2 n \rceil$ comparisons are needed ([3], [4. 211—212 p.]). Moreover it is proved ([8], [9]) that it is impossible to find a pair of consecutive elements with a smaller number of comparisons.

([x]([x]) denotes the smallest (largest) integer $\ge x(\le x)$.) IRA POHL ([1]) has proved that at least $n + \left\lceil \frac{n}{2} \right\rceil - 2$ comparisons are needed if we want to determine the largest and smallest elements simultaneously (see also [5], [7], [8]). If we want to decide only whether x_1 and x_2 are the largest and smallest elements in H then we need at least $n + \left\lceil \frac{n-1}{2} \right\rceil - 2$ comparisons ([5]) and to decide whether x_1 , x_2 are neighboring, element in H we need at least 2(n-2) ($n \ge 3$) comparisons ([11]).

AMS (MOS) subject classifications (1980)

Primary: 05A05 Secondary: 05A15

Key words and phrases: Finite ordered set, searching, optimal strategy.

166 Á. Varecza

G. O. H. KATONA suggested the following problem:

Let $A = \{r_1, r_2, ..., r_k\}$ $(1 \le r_1 < r_1 < ... < r_k \le n)$ and let x be an arbitrary element of H. The question is: how many comparisons are needed if we want to decide whether the index of the element x is in A or not?

KATONA proved ([2]) that the minimal number of comparisons is n-1 (see also [6], [8]).

G. O. H. KATONA suggested the following problem, too:

If $A = \{p, q\}$ and x, y are arbitrary elements of H and we want to decide whether the indexes of elements x, y are in A or not then how many comparisons are needed?

He found the strategy ([2]) which gives the answer using n+q-3 comparisons if $1 \le p < q \le \left\lceil \frac{n}{2} \right\rceil$ and he conjuctured that this strategy is optimal.

In the recent paper [6] it is proved that the conjecture of G. O. H. Katona is true (see also [8]).

In a recent paper [10] the following cases were proved: If $A = \{r_1, r_2, ..., r_k\}$ $(1 \le r_1 < r_2 < ... < r_k = n)$ and $r_k = k$ $(r_k \ne n)$ then we need at least n-1 comparisons and if $r_k \ne k$, $r_k \le \left\lceil \frac{n}{2} \right\rceil$ then we need at least $n+r_k-3$ comparisons.

In this paper we prove the following:

If $A = \{1, q\}$ $(1 < q \le n)$ then the number of comparisons is at least

$$\min\left(n+q-3, 2n-\left[\frac{q}{2}\right]-2\right) \quad (n>2).$$

2. Notations, definitions

Let x, y be arbitrary e'ements of the set H and let $A = \{1, q\}$ $(1 < q \le n)$.

Suppose that we want to decide whether the indexes of elements x, y are in the set A or not (that is the element x or y is the largest and the other the q-th)? The first pair to be compared is denoted by $S_0 = (a, b)$. If the result of the comparison is a > b then the value of the variable ε_1 is 1. In the opposite case (a < b) $\varepsilon_1 = 0$.

The choice of the next pair $S_1(\varepsilon_1)$ depends on ε_1 . Suppose $S_1(\varepsilon_1) = (c(\varepsilon_1), d(\varepsilon_1))$. Define ε_2 to be 1 if $c(\varepsilon_1) > d(\varepsilon_1)$ and to be 0 otherwise. Continuing this procedure

(1)
$$S_{i-1}(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{i-1})$$

is defined for some 0, 1 sequences $\varepsilon_1, \varepsilon_2, ..., \varepsilon_{i-1}$ with the restriction that if $S_{i-1}(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{i-1})$ is defined then $S_{i-2}(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{i-2})$ is defined, too. The value of ε_i is 1 or 0 according to whether the first or the second member is larger. A set of questions given in this way will be called a strategy suitable for deciding the questions "whether the indexes of x, y are in A or not" iff for all sequences $\varepsilon_1, \varepsilon_2, ..., \varepsilon_l$ when

(2)
$$S_{l-1}(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{l-1})$$
 is determined, but

- (3) $S_l(\varepsilon_1, \varepsilon_2, ..., \varepsilon_l)$ is not
- (4) then the answers $\varepsilon_1, \varepsilon_2, ..., \varepsilon_l$ (together with the questions $S_0, S_1(\varepsilon_1), ...$ $..., S_{l-1}(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{l-1})$ give a unique reply to the problem: the indexes of x, y are in A or not.

We use the notation $\mathcal{S}(A)$ for such a strategy. We say that the strategy $\mathcal{S}(A)$ is finished for the sequence $\varepsilon_1, \varepsilon_2, ..., \varepsilon_l$ if the conditions (2)—(4) are satisfied. The maximum length of the sequence $\varepsilon_1, \varepsilon_2, ..., \varepsilon_l$ finishing the strategy is called its length. It will be denoted by $L(\mathcal{S}(A))$.

Denote by $T_i(\varepsilon_1, \varepsilon_2, ..., \varepsilon_i)$ the inequality set up from the pair $S_{i-1}(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{i-1})$ on the basis of the answer ε_i . Now we can express condition (4) in a modified way: The inequalities

(5)
$$T_1(\varepsilon_1), T_2(\varepsilon_1, \varepsilon_2), ..., T_l(\varepsilon_1, \varepsilon_2, ..., \varepsilon_l)$$

uniquely decide whether the indexes of x, y are in A or not. The situation $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_i)$ of $\mathcal{S}(A)$ is the situation after answering the question $S_{i-1}(\varepsilon_1, \varepsilon_2, ..., \varepsilon_{i-1})$. That is, we have the inequalities $T_1(\varepsilon_1), T_2(\varepsilon_1, \varepsilon_2), ..., T_i(\varepsilon_1, \varepsilon_2, ..., \varepsilon_i)$ and denote them by E_i .

We will use the following fact several times.

If a system of inequalities E_i is given, then only those inequalities are consequences of them which are deducible by transitivity.

That is let

$$H = \{h_1, h_2, ..., h_n\}$$

be an ordered set:

$$h_1 < h_2 < \ldots < h_n$$
.

A set of inequalities

(*)
$$x_i < x_i \ (i \neq j, i, j \in \{1, 2, ..., n\})$$

is given and we are looking for a solution of (*) in the set H. If the inequalities

$$x_{i_1} < x_{i_2}, x_{i_2} < x_{i_3}, ..., x_{i_{k-1}} < x_{i_k} \quad (1 < k)$$

are all in (*), then $x_{i_1} < x_{i_k}$ is deducible from (*). The set of inequalities deducible from (*) is called the extension of (*). (*) is non-contradictory if there is no inequality $x_i < x_i$ in the extension of (*).

Lemma 0. If (*) is non-contradictory and the inequalities $x_v < x_w$ and $x_o > x_w$ are not in the extension of (*), then there is a solution of (*) in H satisfying $x_v > x_w$ and such a solution too for which $x_v < x_w$.

In this paper we dont prove Lemma 0. The proof of Lemma 0, can be found in [11].

We now introduce the concept of graph — realization. Let the elements of a set H correspond to the vertices of a graph \overline{G} . Let a comparison be an edge of \overline{G} between the corresponding vertices. Let the answer be the orientation of this edge in the following way: if we compare two elements — say c and d — in some state and the result of the comparison is c>d then we direct the edge from c to d, conversely, when c<d we direct the edge from d to c.

168 Á. Varecza

In the state $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_i)$ let \vec{G}^i denote the graph derived in this way. By the above correspondence we uniquely associate an oriented graph to all states of $\mathcal{S}(A)$. It follows from the correspondence that in an arbitrary state $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_i)$ of $\mathcal{S}(A)$ the relation a > b is realised if and only if an oriented path leads in \vec{G}^i from a to b. Denote by G^i the graph obtained from \vec{G}^i by cancelling the direction of edges.

3. The result

Theorem. If $A = \{1, q\}$ and the set \mathcal{C} is the strategy which is able to decide whether the indexes of elements x, y are in a set A or not (that is the element x or y is the largest and the other is the q-th in H), then

(6)
$$\min_{\mathscr{S}(A) \in \mathscr{C}} L(\mathscr{S}(A)) = \min \left\{ n + q - 3, \ 2n - \left\lceil \frac{q}{2} \right\rceil - 2 \right\}$$
 if $n > 2$.

PROOF OF THE THEOREM.

We distinguish two cases: 1. $n > \left[\frac{3q}{2}\right] - 1$, 2. $n \le \left[\frac{3q}{2}\right] - 1$.

1. Suppose that $n > \left[\frac{3q}{2}\right] - 1$.

We can easily find a strategy $\mathcal{S}(A)$ which in at most n+q-3 steps gives the answer to the question. This strategy is due to G. O. H. KATONA. Let $S_0=(x,y)$. We can suppose that x>y. We compare all the elements $H\setminus\{x,y\}$ with y.

If the element y is larger in n-q cases and smaller in q-2 cases then y is the q-th element in H.

After this we compare the element x with the elements which are larger than y. If the element x is larger in these comparisons, then the element x is the largest in H. The number of comparisons is n+q-3.

2. Suppose that
$$n \le \left[\frac{3q}{2}\right] - 1$$
.

We determine the strategy $\mathcal{S}(A)$ which gives the answer to the question in at most $2n - \left[\frac{q}{2}\right] - 2$ steps. We compare the elements x, y with the elements from $H \setminus \{x, y\}$ until for some element from $H \setminus \{x, y\} -$ say a - x > a > y or x < a < y holds. Such element obviously exists if the indexes of x, y are in A.

We can suppose that x>a>y.

If x>a>y holds and in this situation the number of those elements which are smaller than y is n-q, then from the elements not occurring until now we determine the largest and the smallest element and finally we compare x with the largest, y with the smallest element and we get the answer to our question.

Suppose that whenever x>a>y, the number of those elements which are smaller than y is smaller than n-q. If there exist two elements which have not occurred yet — say c, d — then we compare these two elements. We can suppose that c>d. We compare the element y with the element d. If y>d then we compare c with the element not yet occurred — say e — and the smaller element with y etc. If there is

no such an element e then we compare c with y and in case y < c we compare c with x, too. If y < d, then we compare c with x. We can suppose that x > c.

If there exist two elements which have not occurred yet — say f, g — then we compare these two elements. We can suppose that f < g. Compare y with f. If y > f, then we compare g with the element not yet occurred and the smaller with y etc. If y < f then we compare x with g. If there exist two elements which have not occurred until.... In this way we give the answer to our question and we have done at most

$$2(n-q)+q-1+\left[\frac{q-3}{2}\right]=2n-q+\left[\frac{q-1}{2}\right]-2=2n-\left[\frac{q}{2}\right]-2$$

comparisons.

We have proved by this that

$$\min_{\mathscr{S}(A) \in \mathscr{C}} L(\mathscr{S}(A)) \leq \min\left(n + q - 3, \ 2n - \left\lceil \frac{q}{2} \right\rceil - 2\right).$$

It remains to prove that

(7)
$$L(\mathcal{S}(A)) \ge \min\left(n+q-3, \ 2n-\left\lceil\frac{q}{2}\right\rceil-2\right)$$

holds for any strategy $\mathcal{G}(A)$.

This will be done in the following way.

An algorithm will be given which determines a branch of the strategy, that is, a sequence $\varepsilon_1, \varepsilon_2, ..., \varepsilon_l$ finishing it. This branch will have a length

$$\geq \min\left(n+q-3, 2n-\left\lceil\frac{q}{2}\right\rceil-2\right).$$

The algorithm determines the ε 's recursively.

Partitions of $H - \{x, y\}$ will be used. These partitions will also be defined recursively, for any situation $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_i)$ along the indicated branch. The branch and the partitions will be determined simultaneously. A partition has 5 classes: $B_1^i, B_2^i, B_3^i, B^i, C^i$.

The heuristic meaning of the classes is:

 $B_1^i \cup B_2^i \cup B^i$: the set of elements which will be greater than the element y(x) and smaller than x(y);

 B_3^i : the set of elements which will be smaller than both x and y;

 C^i : the set of elements yielding essential information in the given situation.

At the beginning $C^0 = H \setminus \{x, y\}$, B_1^0 , B_2^0 , B_3^0 , $B^0 = \emptyset$. Suppose that ε_1 , ε_2 , ..., ε_i and B_1^i , B_2^i , B_3^i , B^i , C^i are already defined.

The next description determines ε_{i+1} and B_1^{i+1} , B_2^{i+1} , B_3^{i+1} , B_1^{i+1} , C^{i+1} .

Let $S_i(\varepsilon_1, \varepsilon_2, ..., \varepsilon_i) = (g, h)$.

The new values of ε_{i+1} , B_1^{i+1} , etc. will depend on the classes containing g and h, resp. The classes which can be obtained by interchanging the role of g and h will not be treated separately. As regards B_1^{i+1} , etc. we will indicate the new class only for an element.

Then it will be obviously omitted from its old class. We can suppose that the element y has not occurred as x before.

170 A. Varecza

Suppose that the element x first occurs in $S_i(\varepsilon_1, \varepsilon_2, ..., \varepsilon_i)$. Let

$$S_j(\varepsilon_1, \varepsilon_2, ..., \varepsilon_j) = (x, c).$$

We distinguish two cases:

Case I. $c \in B_1^j \cup B_2^j \cup B^j$. In this case x < c and if $c \in B^j$ then $c \in B_1^{j+1}$.

Case II. $c \in \{y\} \cup B_3^j \cup C^j$. In this case x > c and if $|B_3^j| < n-q$, $c \in C^j$ then $c \in B_3^{j+1}$ and if $|B_3^j| = n - q$, $c \in C^j$ then $c \in B_2^{j+1}$.

9. g = x, h = y

We define
$$\varepsilon_{i+1}$$
.

1. $g, h \in C^i$
 $\varepsilon_{i+1} = 1$ and if $|B_1^i \cup B_2^i \cup B^i| < q - 2$,
 $|B_3^i| < n - q$ then $h \in B_3^{i+1}, g \in B^{i+1}$;
if $|B_3^i| = n - q$ then $g \in B_1^{i+1}, h \in B_2^{i+1}$;
if $|B_1^i \cup B_2^i \cup B^i| = q - 2$ then $g, h \in B_3^{i+1}$.

2. $g \in B^i, h \in C^i$
 $\varepsilon_{i+1} = 1$ and
if $|B_3^i| < n - q$ then $h \in B_3^{i+1}$;
if $|B_3^i| = n - q$ then $h \in B_3^{i+1}$, $g \in B_1^{i+1}$.

3. $g, h \in B^i$
 $\varepsilon_{i+1} = 1, g \in B_1^{i+1}, h \in B_2^{i+1}$.

4. $g \in B_1^i, h \in B_3^i$
 $\varepsilon_{i+1} = 1$.

 $(r < s; r, s \in \{1, 2, 3\})$

5. $g \in B_3^i, h \notin B_3^i$
 $\varepsilon_{i+1} = 0$ and
if $h \in C^i, |B_1^i \cup B_2^i \cup B^i| < q - 2$ then $h \in B_3^{i+1}$.
if $h \in C^i, |B_1^i \cup B_2^i \cup B^i| = q - 2$ then $h \in B_3^{i+1}$.

6. $g \in B_1^i, h \in B^i \cup C^i$
 $\varepsilon_{i+1} = 1, \text{ and}$
if $|B_3^i| < n - q, h \in C^i$ then $h \in B_2^{i+1}$;
if $|B_3^i| = n - q, h \in C^i$ then $h \in B_2^{i+1}$;
if $|B_3^i| = n - q, h \in C^i$ then $\varepsilon_{i+1} = 1, h \in B_3^{i+1}$;
if $|B_3^i| < n - q, h \in C^i$ then $\varepsilon_{i+1} = 1, h \in B_3^{i+1}$;
if $|B_3^i| < n - q, h \in C^i$ then $\varepsilon_{i+1} = 1, h \in B_3^{i+1}$;
if $|B_3^i| < n - q, h \in C^i$ then $\varepsilon_{i+1} = 0, h \in B_1^{i+1}$;
if $|B_3^i| < n - q, h \in C^i$ then $\varepsilon_{i+1} = 0, h \in B_1^{i+1}$;
if $|B_3^i| < n - q, h \in C^i$ then $\varepsilon_{i+1} = 0, h \in B_1^{i+1}$;
if $|B_3^i| < n - q, h \in C^i$ then $\varepsilon_{i+1} = 0, h \in B_1^{i+1}$;
if $|B_3^i| < n - q, h \in C^i$ then $\varepsilon_{i+1} = 0, h \in B_1^{i+1}$;
if $h \in B^i$ then $\varepsilon_{i+1} = 0, h \in B_1^{i+1}$.

8. $g, h \in B^i$
 $\varepsilon_{i+1} = \text{arbitrary, except if it is}$
determined by the extension of ε_i .

in the case I.: x < y; in the case II.: x > y.

10.
$$g = x, h \in C^i$$
 in the case I.: if $|B_1^i \cup B_2^i \cup B^i| < q-2$ then $\varepsilon_{i+1} = 0, h \in B_1^{i+1};$ if $|B_1^i \cup B_2^i \cup B^i| = q-2$ then $\varepsilon_{i+1} = 1, h \in B_3^{i+1};$ in the case II.: $\varepsilon_{i+1} = 1$ and if $|B_3^i| < n-q$ then $h \in B_3^{i+1};$ if $|B_3^i| = n-q$ then $h \in B_2^{i+1}.$

11. $g = x, h \in B_1^i \cup B_2^i \cup B^i$ in the case I.: $\varepsilon_{i+1} = 0$ and if $h \in B^i$ then $h \in B_2^{i+1};$ in the case II.: $\varepsilon_{i+1} = 1$ and if $h \in B^i$ then $h \in B_2^{i+1}.$

12. $g = y, h \in C^i$ in the case I.: $\varepsilon_{i+1} = 1$ and if $|B_3^i| < n-q|$ then $h \in B_2^{i+1};$ if $|B_3^i| = n-q|$ then $h \in B_2^{i+1}.$ in the case II.: if $|B_1^i \cup B_2^i \cup B^i| < q-2$ then $\varepsilon_{i+1} = 0, h \in B_1^{i+1};$ if $|B_1^i \cup B_2^i \cup B^i| = q-2$ then $\varepsilon_{i+1} = 1, h \in B_3^{i+1}.$

13. $g = y, h \in B_1^i \cup B_2^i \cup B^i$ in the case I.: $\varepsilon_{i+1} = 1$ and if $h \in B^i$ then $h \in B_2^{i+1}$ in the case II.: $\varepsilon_{i+1} = 0$ and if $h \in B^i$ then $h \in B_2^{i+1}$ in the case II.: $\varepsilon_{i+1} = 0$ and if $h \in B^i$ then $h \in B_2^{i+1}$ in the case II.: $\varepsilon_{i+1} = 0$ and if $h \in B^i$ then $h \in B_2^{i+1}$ in the case II.: $\varepsilon_{i+1} = 0$ and if $h \in B^i$ then $h \in B_2^{i+1}$.

In this way we have defined the value of ε_{i+1} and the sets B_1^{i+1} , B_2^{i+1} , B_3^{i+1} , B_3^{i+1} , B_4^{i+1} ,

It is worth-while to show in a figure the possible changes of elements among the classes (see Fig. 1).

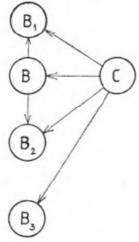


Fig. 1.

172 Á. Varecza

Suppose that the strategy $\mathcal{S}(A)$ is finished for the sequence $\varepsilon_1, \varepsilon_2, ..., \varepsilon_l$. It will be denoted by P(A). The length |P(A)| of P(A) is l. We shall prove

$$l \ge \min\left(n+q-3, \ 2n-\left[\frac{q}{2}\right]-2\right).$$

We can easily see that if the strategy $\mathcal{S}(A)$ is finished for the sequence $\varepsilon_1, \varepsilon_2, ..., \varepsilon_l$ then case I. or case II. holds. If case I. has resulted then largest element in H is y and the q-th is x, and if case II. has resulted the largest element in H is x and the q-th is y.

From definition P(A) it follows that if some element — say $b = \{B_r^i \ (r \in \{1, 2, 3\})\}$

then $b \in B_r^j$ (j > i) and if $b \in B^i$ then $b \in B_1^l \cup B_2^l$.

From definition P(A) it follows, too, that if $b > a \in \mathcal{E}_l$ and $b \in B_r^l$, $a \in B_s^l$ $(r \neq s)$ then r < s $(r, s \in \{1, 2, 3\})$ and the elements of $B_1^l \cup B_2^l$ are smaller than y(x) and larger than x(y) and the elements of B_3^l are smaller than x, y.

Suppose that $|B_1^i \cup B_2^i \cup B^i| < q-2$, $|B_3^i| < n-q$ and that either $|B_1^{i+1} \cup B_2^{i+1} \cup B_2^{i+1}|$

 $\bigcup B^{i+1} = q-2$ or $|B_3^{i+1}| = n-q$ holds. We prove the following Lemma:

Lemma 1. If $|B_3^{l+1}| = n - q$, then the elements of B_3^{l+1} occur at least twice as smaller ones in \mathcal{E}_l .

If $|B_1^{l+1} \cup B_2^{l+1} \cup B^{l+1}| = q-2$ then in case I. (in case II.) the elements of $B_1^l \cup B_2^l$ occur with at least one element from $\{x\} \cup B_3^l$ $(\{y\} \cup B_3^l)$ in \mathcal{E}_l .

PROOF. We prove the first half of the statement. Suppose that $|B_3^i| < n-q$, $|B_1^i \cup B_2^i \cup B^i| < q-2$ and $|B_3^{i+1}| = n-q$ hold.

Let — say — a be an arbitrary element in B_3^{l+1} . Suppose that the element a first occurs in the $S_j(\varepsilon_1, \varepsilon_2, ..., \varepsilon_j)$. Let

$$S_j(\varepsilon_1, \varepsilon_2, ..., \varepsilon_j) = (a, b) \quad (j < i+1).$$

From definition P(A) it follows that $a \in C^j$, $\varepsilon_{j+1} = 0$ (because $a \in B_3^{j+1}$). Thus we used 1., 2., 6., 7., 10. or 12.

If we used 1., 2., 6. or 7. then $b \in B_1^{j+1} \cup B_2^{j+1}$ and $b \in B_1^l \cup B_2^l$. It follows from this that the element a occurs in \mathcal{E}_l as a smaller one with an element from $\{x\} \cup B_3^l$ (in case I.) or with an element from $\{y\} \cup B_3^l$ (in case II.), that is the statement holds. If we use 10,, then x has already occured and in its first occurance with some element, say e, x is greater than e. On the basis of \mathcal{E}_l a < y because the element a occurs in \mathcal{E}_l with an element from $\{y\} \cup B_3^l$ and the element a is smaller in this inequality.

The statement follows from this.

If we use 12, then — as we can easily see — the statement again holds.

With this we proved the first half of the Lemma.

Now we prove the other half.

Suppose that $|B_3^i| < n-q$, $|B_1^i \cup B_2^i \cup B^i| < q-2$ and $|B_1^{i+1} \cup B_2^{i+1} \cup B^{i+1}| = q-2$. Let — say — a be an arbitrary element in $B_1^i \cup B_2^i$. Suppose that the element a first occurs in the $S_i(\varepsilon_1, \varepsilon_2, ..., \varepsilon_i)$. Let

$$S_j(\varepsilon_1, \varepsilon_2, ..., \varepsilon_j) = (a, b).$$

From the definition of P(A) it follows that $a \in C^j$, $\varepsilon_{j+1} = 1$ (because $a \in B_1^{i+1} \cup C^j$)

 $\bigcup B_2^{i+1} \bigcup B^{i+1}$). Now we use 1., 2., 5., 6., 7., 10. or 12.

If we use 1, then a>b, $b\in B_3^{j+1}$, $b\in B_3^l$. We can easily see that the use of cases 2., 6., 7. is impossible. If we use 5, then $b\in B_3^l$, $b\in B_3^l$. If we use 10, then b=x, $\varepsilon_{l+1}=1$ (because $a\in B_1^l\cup B_2^l$).

This implies that the case I. holds and $a \in B_1^{j+1}$, $a \in B_1^l$. We can similarly prove

the statement when we use 12. With this the Lemma is proved.

Finally we prove (7).

We distinguish two cases: 1. $|B_3^{i+1}| = n-q$; 2. $|B_1^{i+1} \cup B_2^{i+1} \cup B^{i+1}| = q-2$. 1. If $|B_3^{i+1}| = n-q$ ($|B_3^{i}| < n-q$, $|B_1^{i} \cup B_2^{i} \cup B^{i}| < q-2$), then $|B_3^{i+1} = B_3^{i}|$ and — according to Lemma 1. — the elements of $|B_3^{i}| = q-2$. The elements of $|B_3^{i}| = q-2$ at least $|B_3^{i+1}| = q-2$.

We can suppose that the element x is the largest and y is the q-th in H. (If the element y is the largest and x is the q-th then we can prove the statement similarly.) From definition P(A) it follows that $B^l \cup C^l = \emptyset$. Consider the inequalities between the elements of the set $\{x, y\} \cup B_1^l \cup B_2^l$.

We can easily see that if $a \in B_1^l(B_2^l)$ then there exists an inequality a > b (a < b)

in \mathscr{E}_l with $b \in \{y\} \cup B_2^l$ $(b \in \{x\} \cup B_1^l)$.

Suppose that $a \in B_1^l$ and the element a first occurs in $S_j(\varepsilon_1, \varepsilon_2, ..., \varepsilon_j)$. Let $S_j(\varepsilon_1, \varepsilon_2, ..., \varepsilon_j) = (a, b)$. By the definition of P(A) we have $a \in C^j$, $\varepsilon_{j+1} = 1$. If j < i+1, $b \ne y$ then we use 1., 5. (supposing x > y and $a \in B^{j+1}$, $b \in B_3^{j+1}$.

Later the element a occurs with the element e from $\{y\} \cup B \cup B_2$: in S_j as a

larger one because $a \in B_1^l$ and $e \in \{y\} \cup B_2^l$.

If j < i+1 and b=y then we use 12. and $a \in B_1^{j+1}$, $a \in B_1^l$.

If $j \ge i+1$ then we use 1., 5., 7. or 12. If we used 1., 7., 12. then $a \in B_1^{j+1}$, $b \in \{y\} \cup B_2^{j+1}$. If we used 5. then $b \in B_3^j$, $a \in C^j$, $a \in B^{j+1}$ and later the element a occurs with the element e from $\{y\} \cup B_2 \cup B$ and a > e because we supposed that

 $a \in B_1^l$ therefore the element e is in $\{y\} \cup B_2^l$.

With this we have proved that if $a \in B_1^l$ then there exists an inequality a > b in \mathcal{E}_l with $b \in \{y\} \cup B_2^l$. We can prove similarly that if $a \in B_2^l$ then there exists an inequality a < b in \mathcal{E}_l with $b \in \{x\} \cup B_1^l$. With this the proof of the statement is finished. We prove that the element x occurs with an element from $\{y\} \cup B_2^l$ or the element y occurs with an element from $\{x\} \cup B_1^l$ in \mathcal{E}_l (we supposed x > y). Suppose the element y does not occur with an element from $\{x\} \cup B_1^l$. We prove that in this case the element x occurs with an element from $\{y\} \cup B_2^l$ in \mathcal{E}_l . Let $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{j+1})$ be the first statement in which the element x occurs with an element from $B_1^{j+1} \cup B_2^{j+1} \cup B_2^{j+1} \cup \{y\}$ in \mathcal{E}_{j+1} . Let

$$S_j(\varepsilon_1, \varepsilon_2, ..., \varepsilon_j) = (x, b)$$

and — because we supposed the element x to be the largest — x>b. From the definition of P(A) it follows that

$$b \in B_1^j \cup B_2^j \cup B^j \cup C^j \cup \{y\}, b \in B_2^{j+1} \cup \{y\}.$$

With this the statement is proved.

From these it follows that the number of inequalities a>b in \mathcal{E}_l in which $a\in B_1^l\cup\{x\},\ b\in B_2^l\cup\{y\}$ is at least $\left\lceil\frac{q-1}{2}\right\rceil$ because $\left|B_1^l\cup\{x\}\right|+\left|B_2^l\right|=q-1$.

Consider the graph G^{l} . We can easily see that the subgraph induced by $\{x\} \cup B_{1}^{l}$ $(\{y\} \cup B_2^l)$ is connected.

Consequently there are at least $|B_1^l|$ ($|B_2^l|$) edges among the vertices in $\{x\} \cup B_1^l$

 $(\{y\} \cup B_2^l).$

From these it follows that the number of inequalities in \mathcal{E}_{l} is at least

$$2(n-q)+\left[\frac{q-1}{2}\right]+q-2=2n-\left[\frac{q}{2}\right]-2.$$

2. Suppose that $|B_1^i \cup B_2^i \cup B^i| < q-2$, $|B_3^i| < n-q$ and $|B_1^{i+1} \cup B_2^{i+1} \cup B^{i+1}| = q-1$ =q-2. (We can suppose that x is the largest element in H.)

Suppose that the element x first occurs in $S_i(\varepsilon_1, \varepsilon_2, ..., \varepsilon_i)$. Let

$$S_j(\varepsilon_1, \varepsilon_2, ..., \varepsilon_j) = (x, c).$$

Because x>c it follows that the case II. holds and $c \in \{y\} \cup B_3^{j+1}$.

It follows from Lemma 1. that if $a \in B_1^l \cup B_2^l$ then there exists an inequality a > b in \mathcal{E}_l with $b \in B_3^l \cup \{y\}$. This implies that the number of inequalities a > b in \mathcal{E}_l with $a \in \{x\} \cup B_1^l \cup B_2^l$, $b \in \{y\} \cup B_3^l$ is at least q-1. We can easily see that the subgraph induced by $\{x\} \cup B_1^l \cup B_2^l$ $(\{y\} \cup B_3^l)$ is connected.

Consequently there are at least $|B_1^l \cup B_2^l|$ ($|B_3^l|$) edges among the vertices in $\{x\} \cup B_1^l \cup B_2^l \ (\{y\} \cup B_3^l)$. From these it follows that the number of inequalities in

 \mathcal{E}_{i} is at least

$$q-1+|B_1^l \cup B_2^l|+|B_3^l|=n+q-3$$

since $|B_1^l \cup B_2^l| + |B_3^l| = n-2$. From the cases 1. and 2. it follows, that

$$l \ge \min\left(n+q-3, \ 2n-\left\lceil\frac{q}{2}\right\rceil-2\right).$$

With this the proof of our theorem complete.

Acknowledgement. Finally the author would like to thank professor G. O. H. KATONA for his valuable remarks.

References

- IRA POHL, A sorting problem and its complexity Com. of the ACM 15, 6 (1972), 462—464.
 G. O. H. KATONA, Personal communication.
- [3] S. S. KISZLICYN, On the Selection of k-th Element of an Ordered Set by Pairwise Comparisons (russian) Sib. Math. Z., 5 (1964), 557-564.
- [4] D. E. Knuth, The Art of Computer Programming vol. 3., Sorting and Searching, Addison Wesley, New-York, 1975.
- [5] Á. VARECZA, On the smallest and the largest elements, Annales Univ. Sci. Budapest IV. (1983),
- 1—10.
 [6] Á. VARECZA, On a conjecture of G. O. H. Katona, Studia Sci. Math. Hung. 23 (1988), 41—52.
 [7] Á. VARECZA, Methods for determination of principle bounds of ordering algorithms (in Hungarian) Alk. Mat. Lapok 5 (1979), 191-202.
- [8] Á. VARECZA, Optimális rendezési algoritmusok. Kandidátusi értekezés (1981).
 [9] Á. VARECZA, Finding two consecutive elements, Stud. Sci. Math. Hung. 17 (1982), 291—302. [10] Á. VARECZA, Katona G. O. H. egy problémájának általánosításáról. Alk. Mat. Lapok 10 (1984),
- 359-372. [11] Á. VARECZA, Are two given elements neighbouring? Disc. Math. 42 (1982), 107-117.

(Received June 2, 1984, in a reviewed form on February 20, 1989.)