Almost additive functions on Ehresmann groupoids

By JANUSZ BASTER (Krakow)

RoMAN GER has proved in [1] the theorem on almost additive functions on
semigroups. In this paper we generalize this result to some substructures of an Ehres-
mann groupoid. A generalization of the notion of a group which is an Ehresmann
groupoid, resulted from geometrical considerations, but it is also used in other bran-
ches of mathematics (see [3], [4]).

Let X be an arbitrary set and “+”" an arbitrary operation on X, i.e. +: D—X,
DcC XXXV, A pair (4; +) is called an Ehresmann groupoid iff the following condi-
tions are satisfied

Gl. If in the equation x+(y+z)=(x+y)+z one of its sides is defined (i.e.
(x,y+2)eED or (x+y,2)€ D) or both the products y+z and x+y are defined
(i.e. (», 2), (x,y)ED) then both sides of the equation are defined and the equa-
lity holds.

G2. To every element x there exist elements e, ef, called the left unit and the right
unit of x, respectively, such that (e, x), (x,e})cD and equalities e +x=x
and x+ef=x hold.

G3. To every element x there exists an inverse element —x such that (—x, x),
(x, —x)éD, —x+x=e} and x+(—x)=e;.

An Ehresmann groupoid is called a Brandt groupoid iff the following condition holds
G4. To every two elements x, y there exists an element z such that (x,z)éD and
(2, y)ED.

Example 1. Let A be an arbitrary set and G an arbitrary group. Let in the sets
AXAXG and AX A an operation *“+” be defined as follows: ((x, y, @), («, v, B))eD
and ((x,y), (u,v))eD iff y=u. Then (x,y,o)+(u, v, f)=(x,v,2f) and (x,y)+
+(u, v)=(x, v). Groupoids (AXAXG; +) and (AXA; +) are called the product
groupoid and the pair groupoid, respectively. They are Brandt groupoids.

The following two theorems are known Every Brandt groupoid is isomorphic to
some product groupoid (see [4], p. 11).

Every Ehresmann groupoid is a disjoint union of Brandt groupoids (see [3],
p.11).

Let (X, +)and (¥, +) be arbitrary Ehresmann groupoids. Let Dy and Dy be the
domains of operations “+" in X and Y, respectively. A function f: X—Y is said to

1 We shall use a symbol ** 4+ instead of - as usual in groupoid because of the tradition of
the problem.
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be a homomorphism iff for every x, yeX if (x, y)¢Dx then (f(x), f(»))¢Dy and
JS(x+y)=f(x)+f(y). We shall prove the lemma

Lemma 1. Let X, Y be Ehresmann groupoids and let a function f: X—~Y be a
homomorphism. If X and Y are disjoint unions families A;, icI and B,, tcT of
Brand's groupoids, respectively then for every icI there exists t€T such that
J(4)CB,.

Proor. Let x, yeA;. If (x,y)eDy then, because f is a homomorphism,
(f(x), f(»))¢ Dy whence there exists €T such that f(x), f(y)€B,. If (x,y)iDx
there exists zcA4; such that (x,z), (z,y)€Dx. So (f(x),/(2)), (f(2),/(»))EDy
whence there exist s, €T such that f(x), f(z)éB, and f(z), f(y)€B,. Thus, be-
cause B,NB,#0, we have s=t. So there exists t€T such that f(x), f(y)EB,.

Due to Lemma 1 the problem of the almost additive function on the Ehresmann
groupoid can be reduced to the problem of almost additive function on the Brandt
groupoid.

We shall use also the following properties of groupoid
G3. e =e*, and ef=eZ,.

G6. If (x,z)éD then (—z, —x)éD and —(x+2)=—z+(=x)=—z—2x.
G7. If e} =e; =e; then (x,2)eD and x+z=x+e} +z=x+(y—y)+z=(x+y)—

—(z+y).

G8. If x=y+z then x—z=y and —y+x=z.
Put moreover W, ={ycX: ey =e;} and Wjir={ycX: e} =e}).

Let (X, +) be a group. A non-empty family # of subsets of X is called a proper
linearly invariant ideal (p.li. ideal) in X iff satisfying the following conditions

Il.  is a proper ideal in X (ie. if A€# and Bc A then B€J#; and if 4, BES
then AUBcS and X¢.J5).

12. If AcS then —AcS.

I3. If AcS and x€X then x+AcS.

Instead of a conjunction of conditions I12. and 13. it is used the equivalent condition

4. If Ac¥ and x€X then x—Acs

(see [2], p. 437). If (X, +) is a Brandt groupoid then it is easy to prove that the con-

dition I4. is necessary for this conjunction but it is not sufficient. It can be seen from

the following example

Example 2. Let K be an infinite set, let a be an arbitrary element of K and let a
family #, be an ideal in K containing infinite sets. Consider the pair groupoid
X=KXK the family % of finite subsets of X and a set {a} X4 for an infinite A€.4,.
The smallest (in the inclusion sense) ideal # containing the family %, satisfies the
condition I4. but does not satisfy neither 12. nor 13.

By a p.Li. ideal in a groupoid X we shall mean a non-empty family I of subsets X
satisfying conditions I1.—I3.

We say that a condition is satisfied #-almost everywhere in X (written J-(a.c.)
in X) where £ is a p.li. ideal in X iff there exists a set A€ such that the condi-
tion in question is satisfied for every x€ X\ 4.

Ideals . in X and 4, in XXX are called the conjugate ideals iff for every set
Ac S, we have A[x]:={yeX: (x,y)cd}c S, F-(ae.)in X, ie., iff there exists a set
Ucs, such that A[x]es for xcX\\U.
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Consider now a Brandt groupoid (X, +), a p.li. ideal # and a subset SCX
satisfying the following conditions

S1. §+S5cS.
S2. §—-§S=X.
S3. For every s,1€X if e;=e; then (s+S8)N(z+S)¢S.

Example 3. Let X=RXR and # be a family of bounded sets. The set S=
={(x,y): y=x} satisfies the conditions S1.—S3.

Example 4. Let X=KXxK be an infinite pair groupoid, 4 be an infinite subset
of K and # be a family of finite subsets. The set S=KX A satisfies the Conditions
S1.—S3.

Now, we shall prove three lemmas analogous to those proved in [1] reasoning in
the similar way.

Lemma 2. Let (X, +) be a Brandt groupoid, 5 be a p.li. ideal in X and S be a
subset of X fulfilling the conditions S1.—S3. Then, for every sets U, V€S, we have

(S\U)—-(S\V) = X.
Proor. Take an x€X and sets U, VeS. By S2. there exist s, 7€S such that
x=s—t. Then e} =e}, whence e-,=eZ, and, by S3., we have
A =[-s+(S\DIN[-t+(S\)] = [(- s+ )Nt +SNI(- s+ DU(-t + V)¢ 7.

Thus, in particular, A30. Consequently there exists y€A which means that
y€—s+(S\U) and y€—t+(S\V) whence ey =e}=ef, (s,y)eD, (1,y)ED,
s+yeSNU and t+yeS\V. We have

x =s—t=stey —t =s5+(y—y)—t = (s+y)—(1+y)E(S\U)—-(S\V),
which completes the proof, because the converse inclusion is evident.

Lemma 3. Under the conditions of Lemma 2 for every UES and every u, x, y€
ESNU if ef=e} and e; =e; then there exist s, t¢ S\U such that tcu+S and
s—t=x—y.

Proor. Taking in Lemma 2. V= —u+U we obtain (\U)—-[S\(—u+U)]=
=X. This means that for every z€X there exist we S\U and ve S\(—u+U)
such that z=w—v. Consider an expression x—y+u. By our conditions it is sen-
sible. Take z:=x—y+u and choose a suitable v. Since (z, v)€D, we can put
si=z+v=x—y+u+v and f:=u+v. It is evident that seS\U, ?€u+S§S and
s—t=x-—y. On the other hand for arbitrary VcX we have u+VcCW,” and
W, NU=u—u+U whence

t = ut+veu+[S\(—u+U)] = (u+[S\(—u+ U)W, =
= [(u+SON\w—u+U)NW = [(u+S)NWIINUNWZ) c (SNWINUNWYT) =
= (S\U)NW; c S\U.
Thus e S\U.

Let 4 and .#, be two conjugate p.li. ideals in X and in X' X X, respectively. Let,
moreover, a set SCX fulfill conditions S1.—S3. and let f/: S—Y be a function such
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that
(1 f(x+») =f(x)+f(») F(ae) in (§XS)ND

ie. M:={(x,»)e(SXS)ND: f(x+y)#f(x)+f(y)}¢S. Whence, because S, and
S, are conjugate, there exists a set UcJ, such that M[x]={yeX: (x, y)e M} A
for x4 U.

Lemma 4. For every x,y,u,vES\U the equality x—y=u—v implies

Jx) =)=/ ()= (v).

Proor. Take x, y, u, v S\U. If x—y=u—v then ey =e; whence (—v, y)eD.
We have also —v+v+ScS and by S3.

(=v+y+S)NS O (—v+y+S)N(=v+v+8)d A.

On the other hand, because x, y,u, vé U, M[x], M[y], M(u], M[v]€#,, whence
((=v+y+M[x))UMu]e S, and M[v]U(—v+y+M[y])eS;. So

A = (—o+y+(S\MED)N(S\M [W])\(M[2]U(—v+y+ M) =
= ([(~v+y+S)NSN[(-v+y+ M[xDUM [u])\[M[]U(- v+ y+ M[y])]¢ A

and, in particular, a=0. Thus there exists s€ 4 such that the expression —y+v+s
is sensible so we can define z:=—y+v+s. The elements z and s fulfill the following
conditions

SES, s§ M[u], s§ M[v], z€S, z4 M[x], z¢ M[y],

whence (u, s)¢ M, (v, 5)éM, (x,z)§ M, (y,z){M, thus because

X+z=x—y+v+s = u—v+v+s = u+s,

we have

(2 S +f(2) = f(x+2) = f(u+s) = f(u)+1(s).
Similarly, because y+z=v+s, we have

&) SO +f(2) = (@) +f(s).

Hence by (2) and (3) f(x)—f(y)=f(u)—f(v). :
Now we shall formulate the main theorem, analogous also to that proved in [1].

We shall not prove it because due to Lemmas 2—4 and the sensibility of expressions

guaranteed in the assumptions this proof is not different from the Ger’s one.

Theorem. Let (X, +) and (Y, +) be arbitrary groupoids and let S, and %,
be conjugate p.Li. ideals in X and in X X X, respectively. Further on, let a set SCX
Julfill conditions S1.—S3. If f: S—Y is a function fulfilling (1) then there exists the
unigue homomorphism g: X-Y such that

4 gls=f Sfae)in S.

In a group condition S3. and condition S¢. are equivalent (see [2] p. 441).
However in a groupoid the condition S¢.# is necessary for the Condition S3. but it
is not sufficient. We can show it taking an infinite groupoid X, an ideal of finite
subsets of X and a subset S=W;* for a certain x€X. Condition S3. cannot be
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replaced in the theorem by the condition S¢.#. It can be seen from the following
examples

Example 5. Let X=R*XR* (R*={x€R:x>0}). Let an ideal # be generated
by the family {W;"*UW, },cx. Further on, let S={(x,y): y=x}. Then S¢J
but condition S3.does not hold. Let a, b6 R* and as=b. An identity f((x,y))=
=(x, y) for x, y€S such that x, y=a fulfils the condition (1). Of course the identity
on X is an extension of f, but also the homomorphism g: X—X defined by

(x,y) for x,y#a,
g((x, ) =1(b,y) for x=a,
(x,b) for y=a,
is an extension of f.

Example 6. Let X=RXR, let J, be the family of bounded sets and let
S={(x, y): x,y(0Vx, y)OVy=0}. It is evident that S¢.#. Condition S3. is not
fulfilled because if we take s=(0,x) and t=(0,y) for x<0 and y=0 then
(s+S)N(t+8)={(0, 2): z=0}N{(0, 2): z=0}={(0, 0)}¢ 4, Condition Sl. holds
because for (x,y), (y,z)ES

if x,y<0 then »,z<0 or z=0,
if x,y>0 then y,2>0 or z=0,
if y=0 then z=0,

so in every case (x,z)eS. Condition S2. holds because (x, y)=(x,0)+(0.y)=
=(x,0)—(», 0€S—S for every x,ycR. Let a function f: S—X be defined as
follows

(x+1,y+1) for x=0,

f(x ) = {(x, »), for x=0.

Consider the set

M = {((x, y), (4, 2))E(SXS)YND: f((x, )+, 2)) # f((x, ) +f((, 2))} =
= {((x, »), (», 2)ESXS: f((x, 2)) # S ((x, ) +/ (1, 2))}.
We have M([(x, »)]={(», 2)€S: f((x, 2))+/((x, »)+/((: 2))}, so

[0 for x=0 or y#0,
M[(xsy)]*”{{(o,o)} for x=0 and y=0.

Thus for every (x,y)ES M[(x, y)]J€#. So fis a homomorphism J,-(a.e.) in
(SXS)ND for every p.li. ideal £, in X X X conjugate with 4. Suppose now that a
homomorphism g: X—X is an extension of /. Then for every x,zeéR g((x, 0))+
+2((0, 2))=g((x, z)). Two cases are possible: x=0 or x=0. If x=0 then
(u, v)=g((x, z))=g((x, 0))+£((0, 2))=(x+1, 1)+g((0, z)) whence

&) £((0, 2)) = (1, ).
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If x>0 then (u, v)=g((x,z))=g((x, 0))+g((0, z))=(x, 0)+£((0,z)) and conse-
quently g((0, z))=g(0, v) which contradicts (5). Thus the homomorphism g is not
equal to /in the set {(x,0): x=0}¢ # orin the set {(x,0): x>0}¢.4,. It is con-
tradictory to (4).
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