Boundedness, convergence and global stability of solutions
of a nonlinear differential equation of the second order

By STEFAN KULCSAR (Kosice)

Introduction. In this paper we shall discuss the asymptotic behaviour of solu-
tions of the second order differential equation

(1) x"4f(t, x, x")x"+ g, (8, x) g (x)+h(t, x, x')+e(t, x, x") = 0,
which is equivalent to the system
(2) X =y, Y ==f(t,x, )y =g, X)g(y)—h(t, x, y)—e(t, x, y).
In the paper [1] the author discussed the uniform boundedness of solutions and

their derivatives and further the global asymptotic stability of the trivial solution
of the second order differential equation

x"+f(t, x, X" )x" + Y ()P (x")+ h(t, x, x")+e(t, x, x") = 0.

I. W. BAKER in [4] investigated the continuation and boundedness of solutions
and their derivatives of the differential equation

"+ @t u, W)’ +p(Of(weg') = h(t, u, v').

Further in [5], M. YAMAMOTO and S. SAKATA discussed the boundedness and the
attractivity properties of solutions and their derivatives of the differential equations

(a( 0x") +b(0fi(x) g (x)x"+ (1) fo(x) g (x) = e(t, x, x")
(a(Dx') +h(t, x, x)+c()f(x)g(x") = e(t, x, X').

and

In the first part of this paper there are introduced some sufficient conditions for a
solution x(7) of the equation (1) to be defined and bounded together with its first
derivative. These results generalize some results of [4] and [5]. In the second part
there are given some results concerning the uniform boundedness of solutions and
the global asymptotic stability of the trivial solution of the system (2). Further in
this part there are introduced some sufficient conditions for the convergence of all
solutions (x(7), y(7)) of the system (2) to the origin as <o, Our results of this
part generalize some results of [1] and [5].
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Definitions and Propositions. In this paper we shall use the following definitions
and propositions of [1]—[3]. Let ¢(1)=e¢(; 75, x,) denote a solution of the system

3) X' = f(t,x), XER,, 11 = (0,), f(t, x)EC(IXR,)

through x, at 7=1,.

Definition 1. The solutions of (3) are uniformly bounded if for any (#,, 2)¢I X R,
there exists f=p(x)=0 such that |x,|=a implies |@(7; 75, X,)|=p(2) for every
t=1,.

Proposition 1 (T. YosHizavA [1]). Let there exist continuous functions V (1, x)
and Wi(x), i=1,2 in I XR, such that the following conditions hold:

L0 = W(x) = V(1 x) = Wa(x), Wi(x) =0, |x| =eco.
4
ox
Then the solutions of (3) are uniformly bounded for 1=0.

2V x)= (i.)—;:-i- f(t,x)=0.

Definition 2 (see [1]). A point x¢€R, is called an @-limit point of ¢(r) of the
system (3) if there exists a sequence {#,};=,<7 such that ¢(r,)—-x as 7,—~< and

n—»co,

Definition 3 (see [l]). The set of all @w-limit points of a solution ¢(7) of the system
(3) is called the w-limit set of a solution ¢(7) of the system (3). This set will be denoted
by Q(¢).

Definition 4 (see [2]). A function V (¢, x) is called uniformly small if there exists
a continuous, positively definite function W (x) such that

W(t, x) = W(x)
in IXR,.

Proposition 2 (see [2]). If there exists a positively definite uniformly small func-
tion V (1, x), which has a negatively definite derivative with respect to t, then the tri-
vial solution of the system (3) is uniformly asymptotically stable.

Definition 5 (see [3]). The trivial solution of system (3) is called globally asymp-
totically stable if it is asymptotically stable and for all solutions @(¢; 7y, x,) of the
system (3) @(7; 15, Xo)+0 as t—co,

Proposition3 (see [1]). Let the assumptions of Proposition 1 be fulfilled. Moreover,
suppose that the functions on the right sides of the system (3) are bounded in I'X P,
where PC R, is any compact set, and there exists a continuous function Wy(x) such
that

Vi(it,x) =—Ws(x) =0

in IXR,. Then ¢(1)—{x: |x|=p, W3(x)=0}, t—=<, where the constant B is as in
Definition 1.
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: g, (1,
Theorems. Let /(1 x,)). h(t,x.3), e(t,x,)eC(D). D) g1 e

€C(Dy), 8&(»)EC'(R,), where Ry=(—<°,=), Dy=IXR,, Ry=R\XR, and
Dl=1XR1-

Let us introduce the following notation:

x ¥y 5
Gy(1, x) = nf gi(t,5)ds, Gy(y) = 6{ Ok

and
0G,(1,x) _  dg(1,5)
R e e

In what follows suppose, in addition to the assumptions given above, that
(I) there exist functions p;(x)€C(R,) such that

xp(x) >0, x#0, i=1,2
and
[P ()] = |g1(t, x)] = |pa(x)] In IXR,,

P(x)= [ pis)ds, i=1,2 and Py(x) ~e as |x| =co.
0

(I  xg(t,x)>0, x#0, t€l.

(I1) Gy(y) === as [y| »<e.

(IV)  £(y) >0, yeR,.

(V)  g2(y)sgny =0, yeR,.

(VI) there exists a nonnegative function f,(7)€C(I) such that

f(,x,)=—fi() in Dy and [ fi(1)dt <c.
0
(VII) there exists a nonnegative function e,(#)¢C(I) such that

1 ;
le(t, x, )| = 5 |yley(r) in D,
and

(-]

[ e(dt = M <c,

0
(VIII) yh(t,x,y) =0 in D,.

dG, (1, x)

() ot

=0 in D,.
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(X) there exists a positive number M, such that

y2
= M,G for all =1,
gg(_}") 1 S(y) Iyl

We have

Theorem 1. Suppose that the assumptions (11)—(1V) and (VI)—(X) hold. Then
all solutions (x(t), y(1)) of (2) are defined for every t=0.

PrOOF. Let a solution (x(7), y(¢)) of (2) be defined on (0, T) and |x(7)|+|y(1)| -
—c as t-T_. Define the function

V(1 x, 7) = (Gy(t, )+ Go(») + K) exp (— E(1),
t
where E(t)= f e,(s)ds and K is any positive constant. Differentiate V(t)=
0
=V(t, x(1), y(t)) with respect to ¢ for any solution of (2). Then we have

G, (t, x) &

“ T SIPEY e
Y 50) L% y) h(t, x,y)

g:(»)

@ v =

R )
g:(»)

for every 1€{0,T).
By (X) there exist positive constants M, and M, such that

Y _ = M,G.()+ M,

g:(»)
for every y€R,. Hence by (1I), (1V) and (VI)—(1X) with respect to (4) we have

e(t, % D)~ ex(D(Gr (6 )+ Go(0) + K) ) exp (— E()

A 1 1
V() = My (A0 + 5 e0)+ M (A0 + 3 ) V0
in (0, T).
Integrating the above inequality from 0 to 7£(0, 7') and using Bellman’s lemma
we obtain
. 1
) v = Coorp |, [ (143 9)s] = €<=
0
for t€(0, T), where
‘ 1
Co=V(0)+ sup M, f (fl(s)+§-el(s)]d5.
10, T) 0

From (II) and (IV) there follows

Gy(») = (exp E(1)-V (1)
for 1€(0, T), hence we have in (0, T)

G:(y) = C,exp E(1) <<s.
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The condition (III) gives that y(¢) and x(7) are bounded on (0, T'), which is a con-
tradiction. The theorem is proved.

Theorem 2. Let the assumptions of Theorem 1 be fulfilled and let moreover (1)
hold. Then all solutions (x(t), y()) of (2) are bounded for t=0.

Proor. By (VI) and (VII) from (5) we get
V(= [V(O)-}-M,_ f [ﬁ(s)-;-—;-el(s)]ds]-cxp [MI f [f,(s)-}—%el(s)]ds] =
0 0

= Ko <oo,
From (II), (IV) and (VII) it follows

G:(y) =V(expM
for t€I, hence for every =0
Gy(y) = Kyexp M <o,

Furthermore (I1I) gives that y(7) is bounded for 7=0. Besides, (1I), (IV) and (VII)
yield
Gi(t,x)=V()exp M

for tc€I. Hence
(6) G,(t,x) = Kyexp M <
for every 7=0.

The last inequality implies that x(7) is bounded for r=0, for otherwise it
would be possible to find a sequence {#,};=, such that x(#,)—»<= as f,~c. Then
for positive x and all #, sufficiently large we would have by (I) that

x(r,,) x(t,)

Gt X)) = [ &ltns)ds= [ pi(s)ds.
0

0

This contradicts (6), since the right side tends to == as #,—~<<. For negative x we
could get a contradiction similarly as before. This completes the proof.

Remark. Theorem 1 and Theorem 2 extend Theorems 2.1, 3.1, 3.4 and 3.5 of [4]
to the more general equation (1).

Ifin (VI) f1(1)=0 for r=0, then the following theorems generalize Theorems
2.1, 2.2 and Corollaries 2.2, 2.3 of [1] and their proofs are similar to those in [1].

Theorem 3. Let the assumptions (1)—(X) hold. Then the solutions of (2) are uni-
Jormly bounded for t=0.

Proor. We use the same function V (¢, x, y) as in the proof of Theorem 1. The
assumptions (I), (II), (IV) and (VII) imply

0 < (Pi(x)+G:(»+K)exp (—M) = W(x,y) =V (t,x,y) =
= Py(x)+G,(»)+K = Wy(x, y),
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where by (I) and (III) W(x,y)—< as |x|—+<=, |y|—><=. Using the fact that for

YER,
& T T a N
(7) Gy(y) = 282(.")-]-2,;[ 210 Seave ds,

we get from (4) by (II) and (IV)—(IX)

¥ = [f e f%(;) ds] e,(1)-exp(=E(1)) =0 in D,.

By Proposition 1 the theorem is proved.

Theorem 4. Let the assumptions (1)—(X) be fulfilled. Moreover, suppose that
(XI) for any positive constant c there exists a positive constant K, such that
[p2(¥)] = K., |g1(t, X)) —g1(1, X5)| = K, |x;— x4,
where |x)|=c¢, |xy|=c and |f(1, x, y)|=K, for |x|=c¢, |y|=c and tcl
(X11) there exists a positive function fy(x, y)cC(R,) such that
S(t,x,¥) = fo(x, y) in D,.
(XIII) for any positive constant ¢ and x(t), y(t)eC(I)

t+1
[ (s x(s), () ds -0 as 1 e,

where |x(1)|=c and |y(1)|=c.
Then for all solutions (x(t), y(t)) of (2) x(t)—~0 and y(1)—~0 as t-<s.

Proor. Using the same function ¥V (1, x, y) as in the proof of Theorem 3, by
(1), (@V), (V), (VID—(IX), (XII) and (7), we get

V(t,x, ) =-

2(},) fo(x, p)-exp(— M) = —Wy(x, ) = 0

in D,. By Theorem 3 all solutions (x(z), y(7)) of (2) are uniformly bounded for 7=0.
Hence there exists a positive constant A4 such that |x(7)|=4, |y(t)|=4 for t€l.
Therefore the set

B = {(x(0,y(): Ix()| = 4, y(®)| =4, €I} C R,

is compact. By (I), (VII), (XI) and (XIII) the right sides of (2) are bounded in I XB.
Hence by Proposition 3 we have

(x(, y(1)) = L as 1 oo,
i.e. the w-limit set Q(x, y) is a subset of

YAy _ 0}_

L={e: =4 1= LD,
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From (IV) and (XII) it follows

. L={(x,y): |x| = 4; y =0},
e.i.
(8) y()) =0 as 1o,

Further we prove that Q(x, y)={(0, 0)}. Let (a, 0)c Q(x, y). Then by Definition 2
there exists a sequence {7,};=, such that 7,—+cc, n—c and

9) x(t,) ~a, y(t,) =0 as n —co.

Now, it suffices to show that a=0. Let a=0. Integrating the second equation of (2)
from 1, to 7,+1, we get
1,+1

YtAD)=yt) == [ f(sx(5), ¥(5)) ds— (1 X(1,)) g2(¥(1,)) —

t,+1

— [ (&a(ss x(5)— &1 (1> x(1,))) g2(¥(5)) ds—

1, +1

= f (82(y(5)—a(r (1)) &1 (1, x(1,)) ds—

1,41 1,+1
- f h(s, x(s), y(s)) ds— f e(s, x(s), y(s)) ds,

n

1.e.
&1(t,, x(1,))8:(¥(8) = ¥(t)—y(t,+1)—

1,+1

ht1
. j' [(s,x(), y(s)) ds— [ (&a(5 X(5)))— &1 (tns X(1,)) ga(¥(5)) ds—

L

t,+1 t,+1
= j. (gg(y(S)) _gz(y(’n))gl(tn’ .T(f,.)) ds— ] h(S, x(J), J'(S)) ds—
- f e(s, x(s), y(s)) ds.
Further we have 7
(10) |g1(tns X (1)) 82(¥ (1)) = 1y ()] + 1y (ta+ D] +

1, +1

1,+1 "
T ]. I_f(-!" x(s), y(s))l Iy(s)l d.i'-l— f |gl(s’ x(.s‘))—g,(r,, * x(‘n))lgi(y(s)) dS+

'n

+ Tl |g2(»(5)) — g2 (¥ (8))| - &1 (ta> x(1,))| ds+

t,+1

+| ] bl x(6 y@)ds|+ [ [e(s x(), y)]ds.

3.
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By the well-known Lagrange’s theorem there exist ££(7,,s) and a positive constant
¢, such that for g,())¢C*(R,)

g2 (r(x))— &2 (¥ (1))] = 1¥(8) =y () |ge(¥(©))] = (¥ +y(t)]) ey

Integrating the first equation of (2) from 7, to 1 we get

t
x()=x(t) = [y(s)ds and for t,=1=1t,+1
s

|x()—x(t,)| = sup |yl

t,Et=co

Let K;>0 be the maximum of all constants in this proof, then by the estimates
given above the inequality (10) yields

|g1(tss x(1))] - 22 (¥ (1) = BKE+K,+2)- sup_|y()l+

t+1

t,+1 1
+| [ bl x6hy@)ds+5 [ 1y@les) ds.

Iy

By (1) and (I1V), the last inequality gives
[Pr(x ()] g2(v(t)) = BKI+K,+2)- sup |y()l+

1,Sl<oo
t,+1 1 t,+1
+ ] o 5@y 3 s O e

In view of (I), (VII), (XIII) and (8) we have
Pi(x(%)) =0 as n oo,

Since the function p,(x) is continuous in R,, by (9) p,(a)=0 for a=0. This con-
tradicts (1), hence x(¢)+0 as 7—<. The theorem is proved.
Theorem 4 yields the following.

Corollary, The trivial solution of (2) is globally asymptotically stable.

Proor. Since h(t, x, y)eC(D,) and (VIII) holds, we have A(z, x, 0)=0 in D,.
Analogously by (II) g,(z,0)=0 for every 7=0. So by (VII) the system (2) has the
trivial solution. Let

V(t, x, p) = (Gy(t, X)+G1(»)) exp (- E(1))
in D,. Then by (I)

Vi(x, ») = (Py(x)+Ga(»)) exp (- M) =V (1, x, y) = Py(x)+Ga(») = Va(x, )
in D,, where V¥(x,»)=0 in R,\(0,0) and ¥(0,0)=0, i=1, 2. Differentiate
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V(t, x(1), y(r)) with respect to 7. By (2), (II), (IV), (V), (VII)—(IX) and (XII) we get
yﬁ
g:(»)

in D,. By Proposition 2 the trivial solution of (2) is uniformly asymptotically stable.
Therefore by Theorem 4 and Definition 5 the proof is finished.

V’(ts X, y) =-

Sa(x, y)exp(—M) = —W(x, y) =0
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