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Stability of the Cauchy equation with variable bound
By JACEK TABOR
Abstract. We investigate the problem of stability of the Cauchy equation on R .

As a result we obtain a positive answer to the problem of G. Maksa posed on 34 ISFE
concerning the Hyers-Ulam stability of the equation

flzy) = zf(y) +yf(z)

on the unit interval.

On the 3&4-th International Symposium on Functional Equations
G. Maksa posed two problems ([3]).

Problem A. Let ¢:]0,1] — R and 0 < € € R. Suppose that

(1) lp(zy) —zd(y) —yo(x)| <e,  x,y€]0,1].

Does there exist a : |0, 1] — R such that

a(zy) — za(y) —ya(z) =0, x,y €]0,1]
and ¢ — a is bounded?

Problem B. Find all functions f,g : Ry := [0,00[ — R satisfying the
functional inequality

|fu+v) = f(u) = f(v)] < glu+v), u>0,0>0.

As the Problem B is very general, we propose to investigate a more
specific one:
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Problem 1. Let E be a Banach space, let G be a commutative semi-
group, and let g : G — R, be a given function. Does there exist K > 0
such that for each f: G — F satisfying

[fx+y)—fl2) - fWI <glx+y) forz,yeG

there exists an additive A : G — E satisfying the inequality
1f(x) - A@)| < Kg(z) forzeG?

If G is a group then this problem has a positive solution for all func-
tions g in a large class of Banach spaces (cf. [2]). However, for G = R this
statement fails to hold — Z. GAJDA presents in [1] an example of a function
f Ry — R such that |f(z +vy) — f(z) — f(y)] < x+y for z,y € Ry,
but there exist no additive mapping A : R — R and K > 0 such that
|f(z) — A(z)| < Kz for z € R

In this paper we show that if G = Ry and the function g is, in some
sense, fast increasing, then the answer turns out to be positive. Thus we
give a partial answer to Problem B. This enables us to positively solve
Problem A.

Now we introduce some notations. In the whole paper we assume
that E is a sequentially complete topological vector space and that V is a
closed, convex, bounded subset of E' symmetric with respect to zero. For
f: Ry — E we denote the Cauchy difference of f by

Cf(x,y) = fx+y) — flx) = f(y).
For h € ]0,00[ and = € R we define
Eplx] := max{n € Z : nh < z}, Fy[z] :== x — Ej[x]h.

Clearly Ej[x] € Z, Fy[x] €]0, h]. To avoid distinguishing several cases and
to shorten some considerations we will use the following convention: if

n
m,n € N, m > n then by >  a; we mean zero.
i=m
In our investigations we will need the following proposition (some
connected results can be found in [5]).
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Proposition 1. Let h € |0,00[, and let f : [0,h] — E be a function
such that

(2) Cf(z,y) eV forz,y,x+y€|0,h]

Then there exists a unique additive function A : R, — E such that A(h) =
f(h) and
f(z) — A(z) € 2V for x € [0, h].

PRrROOF. We define f: Ry — FE by

3) f(x) == Ep[z]f(h) + f(Fulz]) for z € Ry.
Clearly
(4) Fliow = .

We show that Cf(z,y) € 2V for x,y € Ry. If Fy[z] + Fply] € |0, k] then
by (3),(4) and (2)

Cflx,y) = Cf(Fu[z], Fuly]) € V.

Now suppose that Fj[x] + Fi[y] € |h,2h[. Since the Cauchy difference is
symmetric we may assume without loss of generality that Fj[z] € ]0,h[.
Then

Cf(z,y) = f(Fulz] + Fuly] — h) + f(R) — f(Falz]) — f(Frly])
= Cf(Fulz], h — Fplz]) — Cf(Fulz] + Fuly] — h,h — Fy[z])
eV -V=2V.

If Fy[z] + Frly] = 2h, then Cf(z,y) =0 € 2V.
Now by the generalized Hyers Theorem (cf. Th. 4,5, [4]) we obtain
that there exists an additive function A : Ry — E such that

fla) — A(z) €2V for z € R,.
As f(0) = —C£(0,0) € V, this and (4) imply that

f(z) — A(z) € 2V for z € [0, h).
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Moreover, as f(nh) = nf(h), we have

f(h)_A(h):Weiv for n € N,

so f(h) = f(h) = A(h).
We show that A is unique. Suppose that there exists an additive A’
with the same properties as A. Then

(A— A)(h) =0,

which means that A — A’ is periodic with period h. As A — A’ is bounded
on [0, h], this implies that it is globally bounded, so it is the zero function.
O

The following theorem is a partial answer to Problem B.

Theorem 1. Let h € |0,00[, and let g : R; xR, — R be an arbitrary

function such that sup 9(y,z) < oo. Let f: Ry — E satisfy the
y,2,y+2z€[0,h]
condition

Cf(z,y) € g(z,y)V  forz,y € R;.

Then there exists a unique additive function A : Ry — FE such that A(h) =
f(h) and

Ey[z]
5 — A 2 B - ‘hv h V7
(5)  flo)—A@) e ( L () + ; glw — ih,h))
6) f(z)— A(m)E(Q”(I)‘*'1 sup  g(y,2)+ Z 2i_19<£ £))V
i=1

b
¥,2,9+2€[0,h] 202

for x € Ry, where n(x) is the smallest nonnegative integer such that
QRCUW € [Oa h]

PRrROOF. By Proposition 1 there exists a unique additive A: Ry — E
such that A(h) = f(h) and

(7) flz)—A(x)e2 sup g(y,2)V forxz €[0,h]
y,2,y+2€[0,h]
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At first we prove that A satisfies (5). For z € [0, h] this is trivial.
Suppose that x > h. Then

Eh [a:]

f(@) = f(Fulz]) = Balzlf(h) = > (f(x = (i = 1)h) = f(z — ih) — f(h))

=1
E}L [I]

€ > glz—ih V.

But Fj[z] € [0, k], so by (7)

f(@) = A(z) = Epla](f(h) — A(h)) + (f(Fh[z]) — A(Fh[z])
+ (f(z) = f(Fhlz]h) — Enlz]f(h))
Ey[z]
€ {2 sup ¢(y,2) + Z g(x —ih, h)}V.

Y,2,y+2z i=1

Now we show that A satisfies (6). For = € [0,h] this is obvious.
Suppose that z > h. Then

n(z)

J@) =2 f () = 3 (7 G~ 2 (5))

_ i—1 x E)
N Z 2 Cf(zi’ 21
=1
n(z)

. r T
S E 21_19(7,7>V
p 2072

€ [0, h], which yields by (7) that

However, v
on(x)

f@) = A@) = (F@) = 2" f (55
- ((5m) -7 (50))

n(x)
; T x
€ (2”(36)+1 sup g(y, 2) + 21—19<7" 7))‘/
y,2,y+2€[0,h] ; 2t 2t
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Definition 1. A function g : R, — Ry will be called exponentially
increasing if it is increasing and there exist v > 1 and h € Ry such that

g(x+h) >~g(z) forxeRy.

Definition 2. A function g : R, — R, will be called powerly increas-
ing if it is increasing and there exists v > 1 and h € R, such that

g(2x) > 2vg(x) for x > h.

Obviously every exponential increasing function is exponentially in-
creasing and every power function of degree greater than one is powerly
increasing.

Now we solve Problem 1 in the class of powerly increasing and in that
of exponentially increasing functions.

Theorem 2. (i) Suppose that g : Ry — R is exponentially increasing
with constants v and h as in Definition 1, and that g(0) > 0.

Let K := 2% + %, and let f : Ry — FE be an arbitrary function
such that

Cf(z,y) € glx +y)V  forz,y € Ry.

Then there exists a unique additive function A : R, — E such that A(h) =
f(h) and that

flz) — A(zx) € Kg(z)V  forz € R;.

(ii) Suppose that g : Ry — R, is powerly increasing with constants
v and h as in Definition 2, and that g(0) > 0.

Let K := 4% + 525, and let f : Ry — E be an arbitrary function
such that

Cf(az7y)€g(:c+y)V fOI"l‘,yGRJ,_.

Then there exists a unique additive function A : R, — E such that A(h) =
f(h) and that

f(z) — A(z) € Kg(z)V  forxz € R;.
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PrOOF. By Theorem 1 there exists a unique additive A : Ry, — F
such that A(h) = f(h) and

Eh[z]
(8) f(x)—A(m)e(Q sup y—i—z—i—ng—zh—i—h)V
y,z,y+z€[0,h] 1=1
9) f(z) — A(z) e (2"®* sup gy +z) + 2i—1 + =]V
©) J@) =A@ e (N ap g > 2 (5 +y))
for z € R, where n(x) is as in Theorem 1.
(i) Obviously
_ g(h)
(10) 2 sup  g(y+2)=2¢9(h) <2=ZLg(z) forzeRy.
y,2,y+2€[0,h] g(O)
By the fact that g is exponentially increasing we also have
Eh[x] Eh[x]
Z g(z —ih + h) g T
i=1 7 —1
This, (8) and (10) imply that
g(h) v
—Az) e (25 + —— %
)= Al € (2900 + T4 ) sl
which proves the assertion of (i).
(ii) Let = € Ry. We prove that
(11) gn()+1 < 49(7)
9(0)’
At first suppose that = € ]0,h[. Then n(z) = 0, so 2"®)+!1 =2 < 4 <
49%;, (11) is trivial. Now let = € [h,00[. As g is powerly increasing,
dg(a) 2 4-2°071g (B ) > 27 (0),

which yields (11). Moreover

Y2y () <2 40 < et
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This, (9), and (11) impliy that

g(h) v )
r)—Alz) € (44—~ + —— )V,
) - Al € (4557 + 71 ) ol
which makes the proof of (ii) complete. O

Remark 1. One can check that every exponentially increasing function
is powerly increasing. Therefore one may ask whether it makes sense
in Theorem 2 to investigate both powerly increasing and exponentially
increasing functions. The only reason to consider exponential functions is
that it will allow us to obtain a better constant of approximation in the
solution of Problem A.

Now we solve the Problem A.

Corollary 1. Let f :]0,1] — E be a function such that

(12) fley) —xf(y) —yf(x) eV fora,y €]0,1],

and let z € (0,1) be arbitrarily fixed. Then there exists a unique function
F, :]0,1] — E such that

(13) F.(2) = £(2)
(14) F.(zy) = 2F.(y) + yFs(z),

and that

(15) f(z) — F,(x) € K,V  forx €]0,1],

where K, := % + Ile (the minimal value of K, is equal to 3 + 2v/2 and is
obtained for z = 2 — /2).

PrOOF. For K C R we denote by EX the vector space of all functions
from K — E. We define the linear operator A : E 101 — ER+ by the
formula

A(f)(z) := exp(x) f(exp(—x)) for z € Ry.

The fact that f satisfies (12) is equivalent to

A(f)(u+v) —A(f)(u) — A(f)(v) € exp(u+v)V  for u,v € Ry.
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Obviously exp is exponentially increasing with h := —exp~1(2) = — In(2),
v := exp(h) = 1. Therefore by Theorem 2(i) there exists a unique A :
R, — FE such that

(16) An(h) = A(f)(h),
(17) Ap(u+v) = Ap(u) + Ap(v)  for u,v € Ry,
(18) A(f)(u) = An(u) € K exp(u)V,

_oexp(h) | v _ 2 1
where K, = 2exp(0) + Pt + 1=

Let F, := A71(A;). Then one can easily check that (16), (17), (18)
mean that F, satisfies (12), (13), (14).

We show that F, is unique. Suppose that there exists F satisfying
(16), (17), (18). Then A(F)) satisfies (12), (13), (14), so A(F)) = Ay =
A(F,). As A is a bijection this implies that F, = F,. O
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