Stability of the Cauchy equation with variable bound

By JACEK TABOR

Abstract

We investigate the problem of stability of the Cauchy equation on \mathbb{R}_{+}. As a result we obtain a positive answer to the problem of G. Maksa posed on 34 ISFE concerning the Hyers-Ulam stability of the equation $$
f(x y)=x f(y)+y f(x)
$$ on the unit interval.

On the 34 -th International Symposium on Functional Equations G. Maksa posed two problems ([3]).

Problem A. Let $\phi:] 0,1] \rightarrow \mathbb{R}$ and $0<\varepsilon \in \mathbb{R}$. Suppose that

$$
\begin{equation*}
|\phi(x y)-x \phi(y)-y \phi(x)| \leq \varepsilon, \quad x, y \in] 0,1] . \tag{1}
\end{equation*}
$$

Does there exist $a:] 0,1] \rightarrow \mathbb{R}$ such that

$$
a(x y)-x a(y)-y a(x)=0, \quad x, y \in] 0,1]
$$

and $\phi-a$ is bounded?
Problem B. Find all functions $f, g: \mathbb{R}_{+}:=[0, \infty[\rightarrow \mathbb{R}$ satisfying the functional inequality

$$
|f(u+v)-f(u)-f(v)| \leq g(u+v), \quad u \geq 0, v \geq 0
$$

As the Problem B is very general, we propose to investigate a more specific one:

Problem 1. Let E be a Banach space, let G be a commutative semigroup, and let $g: G \rightarrow \mathbb{R}_{+}$be a given function. Does there exist $K>0$ such that for each $f: G \rightarrow E$ satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq g(x+y) \quad \text { for } x, y \in G
$$

there exists an additive $A: G \rightarrow E$ satisfying the inequality

$$
\|f(x)-A(x)\| \leq K g(x) \quad \text { for } x \in G ?
$$

If G is a group then this problem has a positive solution for all functions g in a large class of Banach spaces (cf. [2]). However, for $G=\mathbb{R}_{+}$this statement fails to hold - Z. Gajda presents in [1] an example of a function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ such that $|f(x+y)-f(x)-f(y)| \leq x+y$ for $x, y \in \mathbb{R}_{+}$, but there exist no additive mapping $A: \mathbb{R}_{+} \rightarrow \mathbb{R}$ and $K>0$ such that $|f(x)-A(x)| \leq K x$ for $x \in \mathbb{R}_{+}$.

In this paper we show that if $G=\mathbb{R}_{+}$and the function g is, in some sense, fast increasing, then the answer turns out to be positive. Thus we give a partial answer to Problem B. This enables us to positively solve Problem A.

Now we introduce some notations. In the whole paper we assume that E is a sequentially complete topological vector space and that V is a closed, convex, bounded subset of E symmetric with respect to zero. For $f: \mathbb{R}_{+} \rightarrow E$ we denote the Cauchy difference of f by

$$
\mathcal{C} f(x, y):=f(x+y)-f(x)-f(y) .
$$

For $h \in] 0, \infty[$ and $x \in \mathbb{R}$ we define

$$
E_{h}[x]:=\max \{n \in \mathbb{Z}: n h<x\}, F_{h}[x]:=x-E_{h}[x] h .
$$

Clearly $\left.\left.E_{h}[x] \in \mathbb{Z}, F_{h}[x] \in\right] 0, h\right]$. To avoid distinguishing several cases and to shorten some considerations we will use the following convention: if $m, n \in \mathbb{N}, m>n$ then by $\sum_{i=m}^{n} a_{i}$ we mean zero.

In our investigations we will need the following proposition (some connected results can be found in [5]).

Proposition 1. Let $h \in] 0, \infty[$, and let $f:[0, h] \rightarrow E$ be a function such that

$$
\begin{equation*}
\mathcal{C} f(x, y) \in V \quad \text { for } x, y, x+y \in[0, h] . \tag{2}
\end{equation*}
$$

Then there exists a unique additive function $A: \mathbb{R}_{+} \rightarrow E$ such that $A(h)=$ $f(h)$ and

$$
f(x)-A(x) \in 2 V \quad \text { for } x \in[0, h] .
$$

Proof. We define $\tilde{f}: \mathbb{R}_{+} \rightarrow E$ by

$$
\begin{equation*}
\tilde{f}(x):=E_{h}[x] f(h)+f\left(F_{h}[x]\right) \quad \text { for } x \in \mathbb{R}_{+} . \tag{3}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
\left.\widetilde{f}\right|_{j 0, h]}=f . \tag{4}
\end{equation*}
$$

We show that $\mathcal{C} \tilde{f}(x, y) \in 2 V$ for $x, y \in \mathbb{R}_{+}$. If $\left.\left.F_{h}[x]+F_{h}[y] \in\right] 0, h\right]$ then by (3),(4) and (2)

$$
\mathcal{C} \widetilde{f}(x, y)=\mathcal{C} f\left(F_{h}[x], F_{h}[y]\right) \in V .
$$

Now suppose that $\left.F_{h}[x]+F_{h}[y] \in\right] h, 2 h[$. Since the Cauchy difference is symmetric we may assume without loss of generality that $\left.F_{h}[x] \in\right] 0, h[$. Then

$$
\begin{aligned}
\mathcal{C} \tilde{f}(x, y) & =f\left(F_{h}[x]+F_{h}[y]-h\right)+f(h)-f\left(F_{h}[x]\right)-f\left(F_{h}[y]\right) \\
& =\mathcal{C} f\left(F_{h}[x], h-F_{h}[x]\right)-\mathcal{C} f\left(F_{h}[x]+F_{h}[y]-h, h-F_{h}[x]\right) \\
& \in V-V=2 V .
\end{aligned}
$$

If $F_{h}[x]+F_{h}[y]=2 h$, then $\mathcal{C} \tilde{f}(x, y)=0 \in 2 V$.
Now by the generalized Hyers Theorem (cf. Th. 4,5, [4]) we obtain that there exists an additive function $A: \mathbb{R}_{+} \rightarrow E$ such that

$$
\tilde{f}(x)-A(x) \in 2 V \quad \text { for } x \in \mathbb{R}_{+} .
$$

As $f(0)=-\mathcal{C} f(0,0) \in V$, this and (4) imply that

$$
f(x)-A(x) \in 2 V \quad \text { for } x \in[0, h] .
$$

Moreover, as $\widetilde{f}(n h)=n f(h)$, we have

$$
\widetilde{f}(h)-A(h)=\frac{\tilde{f}(n h)-A(n h)}{n} \in \frac{2}{n} V \quad \text { for } n \in \mathbb{N}
$$

so $f(h)=\widetilde{f}(h)=A(h)$.
We show that A is unique. Suppose that there exists an additive A^{\prime} with the same properties as A. Then

$$
\left(A-A^{\prime}\right)(h)=0
$$

which means that $A-A^{\prime}$ is periodic with period h. As $A-A^{\prime}$ is bounded on $[0, h]$, this implies that it is globally bounded, so it is the zero function.

The following theorem is a partial answer to Problem B.
Theorem 1. Let $h \in] 0, \infty\left[\right.$, and let $g: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be an arbitrary function such that $\sup _{y, z, y+z \in[0, h]} g(y, z)<\infty$. Let $f: \mathbb{R}_{+} \rightarrow E$ satisfy the condition

$$
\mathcal{C} f(x, y) \in g(x, y) V \quad \text { for } x, y \in \mathbb{R}_{+}
$$

Then there exists a unique additive function $A: \mathbb{R}_{+} \rightarrow E$ such that $A(h)=$ $f(h)$ and

$$
\begin{align*}
& \text { (5) } f(x)-A(x) \in\left(2 \sup _{y, z, y+z \in[0, h]} g(y, z)+\sum_{i=1}^{E_{h}[x]} g(x-i h, h)\right) V \tag{5}\\
& \text { (6) } f(x)-A(x) \in\left(2^{n(x)+1} \sup _{y, z, y+z \in[0, h]} g(y, z)+\sum_{i=1}^{n(x)} 2^{i-1} g\left(\frac{x}{2^{i}}, \frac{x}{2^{i}}\right)\right) V
\end{align*}
$$

for $x \in \mathbb{R}_{+}$, where $n(x)$ is the smallest nonnegative integer such that $\frac{x}{2^{n(x)}} \in[0, h]$.

Proof. By Proposition 1 there exists a unique additive $A: \mathbb{R}_{+} \rightarrow E$ such that $A(h)=f(h)$ and

$$
\begin{equation*}
f(x)-A(x) \in 2 \sup _{y, z, y+z \in[0, h]} g(y, z) V \quad \text { for } x \in[0, h] . \tag{7}
\end{equation*}
$$

At first we prove that A satisfies (5). For $x \in[0, h]$ this is trivial. Suppose that $x>h$. Then

$$
\begin{aligned}
f(x)-f\left(F_{h}[x]\right)-E_{h}[x] f(h) & =\sum_{i=1}^{E_{h}[x]}(f(x-(i-1) h)-f(x-i h)-f(h)) \\
& \in \sum_{i=1}^{E_{h}[x]} g(x-i h, h) V .
\end{aligned}
$$

But $F_{h}[x] \in[0, h]$, so by (7)

$$
\begin{aligned}
f(x)-A(x)= & E_{h}[x](f(h)-A(h))+\left(f\left(F_{h}[x]\right)-A\left(F_{h}[x]\right)\right. \\
& +\left(f(x)-f\left(F_{h}[x] h\right)-E_{h}[x] f(h)\right) \\
\in & \left\{2 \sup _{y, z, y+z} g(y, z)+\sum_{i=1}^{E_{h}[x]} g(x-i h, h)\right\} V .
\end{aligned}
$$

Now we show that A satisfies (6). For $x \in[0, h]$ this is obvious. Suppose that $x>h$. Then

$$
\begin{aligned}
f(x)-2^{n(x)} f\left(\frac{x}{2^{n(x)}}\right) & =\sum_{i=1}^{n(x)}\left(2^{i-1} f\left(\frac{x}{2^{i-1}}\right)-2^{i} f\left(\frac{x}{2^{i}}\right)\right) \\
& =\sum_{i=1}^{n(x)} 2^{i-1} \mathcal{C} f\left(\frac{x}{2^{i}}, \frac{x}{2^{i}}\right) \\
& \in \sum_{i=1}^{n(x)} 2^{i-1} g\left(\frac{x}{2^{i}}, \frac{x}{2^{i}}\right) V .
\end{aligned}
$$

However, $\frac{x}{2^{n(x)}} \in[0, h]$, which yields by (7) that

$$
\begin{aligned}
f(x)-A(x)= & \left(f(x)-2^{n(x)} f\left(\frac{x}{2^{n(x)}}\right)\right) \\
& -\left(2^{n(x)} A\left(\frac{x}{2^{n(x)}}\right)-2^{n(x)} f\left(\frac{x}{2^{n(x)}}\right)\right) \\
\in & \left(2^{n(x)+1} \sup _{y, z, y+z \in[0, h]} g(y, z)+\sum_{i=1}^{n(x)} 2^{i-1} g\left(\frac{x}{2^{i}}, \frac{x}{2^{i}}\right)\right) V .
\end{aligned}
$$

Definition 1. A function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$will be called exponentially increasing if it is increasing and there exist $\gamma>1$ and $h \in \mathbb{R}_{+}$such that

$$
g(x+h) \geq \gamma g(x) \quad \text { for } x \in \mathbb{R}_{+} .
$$

Definition 2. A function $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$will be called powerly increasing if it is increasing and there exists $\gamma>1$ and $h \in \mathbb{R}_{+}$such that

$$
g(2 x) \geq 2 \gamma g(x) \quad \text { for } x \geq h .
$$

Obviously every exponential increasing function is exponentially increasing and every power function of degree greater than one is powerly increasing.

Now we solve Problem 1 in the class of powerly increasing and in that of exponentially increasing functions.

Theorem 2. (i) Suppose that $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is exponentially increasing with constants γ and h as in Definition 1, and that $g(0)>0$.

Let $K:=2 \frac{g(h)}{g(0)}+\frac{\gamma}{\gamma-1}$, and let $f: \mathbb{R}_{+} \rightarrow E$ be an arbitrary function such that

$$
\mathcal{C} f(x, y) \in g(x+y) V \quad \text { for } x, y \in \mathbb{R}_{+} .
$$

Then there exists a unique additive function $A: \mathbb{R}_{+} \rightarrow E$ such that $A(h)=$ $f(h)$ and that

$$
f(x)-A(x) \in K g(x) V \quad \text { for } x \in \mathbb{R}_{+} .
$$

(ii) Suppose that $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is powerly increasing with constants γ and h as in Definition 2, and that $g(0)>0$.

Let $K:=4 \frac{g(h)}{g(0)}+\frac{\gamma}{\gamma-1}$, and let $f: \mathbb{R}_{+} \rightarrow E$ be an arbitrary function such that

$$
\mathcal{C} f(x, y) \in g(x+y) V \quad \text { for } x, y \in \mathbb{R}_{+} .
$$

Then there exists a unique additive function $A: \mathbb{R}_{+} \rightarrow E$ such that $A(h)=$ $f(h)$ and that

$$
f(x)-A(x) \in K g(x) V \quad \text { for } x \in \mathbb{R}_{+} .
$$

Proof. By Theorem 1 there exists a unique additive $A: \mathbb{R}_{+} \rightarrow E$ such that $A(h)=f(h)$ and
(8) $f(x)-A(x) \in\left(2 \sup _{y, z, y+z \in[0, h]} g(y+z)+\sum_{i=1}^{E_{h}[x]} g(x-i h+h)\right) V$,
(9) $f(x)-A(x) \in\left(2^{n(x)+1} \sup _{y, z, y+z \in[0, h]} g(y+z)+\sum_{i=1}^{n(x)} 2^{i-1} g\left(\frac{x}{2^{i}}+\frac{x}{2^{i}}\right)\right) V$
for $x \in \mathbb{R}_{+}$, where $n(x)$ is as in Theorem 1 .
(i) Obviously

$$
\begin{equation*}
2 \sup _{y, z, y+z \in[0, h]} g(y+z)=2 g(h) \leq 2 \frac{g(h)}{g(0)} g(x) \quad \text { for } x \in \mathbb{R}_{+} . \tag{10}
\end{equation*}
$$

By the fact that g is exponentially increasing we also have

$$
\sum_{i=1}^{E_{h}[x]} g(x-i h+h) \leq \sum_{i=1}^{E_{h}[x]} \frac{g(x)}{\gamma^{i-1}} \leq g(x) \frac{\gamma}{\gamma-1} .
$$

This, (8) and (10) imply that

$$
f(x)-A(x) \in\left(2 \frac{g(h)}{g(0)}+\frac{\gamma}{\gamma-1}\right) g(x) V
$$

which proves the assertion of (i).
(ii) Let $x \in \mathbb{R}_{+}$. We prove that

$$
\begin{equation*}
2^{n(x)+1} \leq 4 \frac{g(x)}{g(0)} \tag{11}
\end{equation*}
$$

At first suppose that $x \in] 0, h\left[\right.$. Then $n(x)=0$, so $2^{n(x)+1}=2 \leq 4 \leq$ $4 \frac{g(x)}{g(0)}$, so (11) is trivial. Now let $x \in[h, \infty[$. As g is powerly increasing,

$$
4 g(x) \geq 4 \cdot 2^{n(x)-1} g\left(\frac{x}{2^{n(x)-1}}\right) \geq 2^{n(x)+1} g(0)
$$

which yields (11). Moreover

$$
\sum_{i=1}^{n(x)} 2^{i-1} g\left(\frac{x}{2^{i}}+\frac{x}{2^{i}}\right) \leq \sum_{i=1}^{n} \frac{g(x)}{\gamma^{i-1}} \leq \frac{\gamma}{\gamma-1} g(x) .
$$

This, (9), and (11) impliy that

$$
f(x)-A(x) \in\left(4 \frac{g(h)}{g(0)}+\frac{\gamma}{\gamma-1}\right) g(x) V,
$$

which makes the proof of (ii) complete.
Remark 1. One can check that every exponentially increasing function is powerly increasing. Therefore one may ask whether it makes sense in Theorem 2 to investigate both powerly increasing and exponentially increasing functions. The only reason to consider exponential functions is that it will allow us to obtain a better constant of approximation in the solution of Problem A.

Now we solve the Problem A.
Corollary 1. Let $f:] 0,1] \rightarrow E$ be a function such that

$$
\begin{equation*}
f(x y)-x f(y)-y f(x) \in V \quad \text { for } x, y \in] 0,1], \tag{12}
\end{equation*}
$$

and let $z \in(0,1)$ be arbitrarily fixed. Then there exists a unique function $\left.\left.F_{z}:\right] 0,1\right] \rightarrow E$ such that

$$
\begin{align*}
F_{z}(z) & =f(z) \tag{13}\\
F_{z}(x y) & =x F_{z}(y)+y F_{z}(x), \tag{14}
\end{align*}
$$

and that

$$
\begin{equation*}
\left.\left.f(x)-F_{z}(x) \in K_{z} V \quad \text { for } x \in\right] 0,1\right] \tag{15}
\end{equation*}
$$

where $K_{z}:=\frac{2}{z}+\frac{1}{1-z}$ (the minimal value of K_{z} is equal to $3+2 \sqrt{2}$ and is obtained for $z=2-\sqrt{2}$).

Proof. For $K \subset \mathbb{R}$ we denote by E^{K} the vector space of all functions from $K \rightarrow E$. We define the linear operator $\mathcal{A}: E^{[0,1]} \rightarrow E^{\mathbb{R}_{+}}$by the formula

$$
\mathcal{A}(f)(x):=\exp (x) f(\exp (-x)) \quad \text { for } x \in \mathbb{R}_{+} .
$$

The fact that f satisfies (12) is equivalent to

$$
\mathcal{A}(f)(u+v)-\mathcal{A}(f)(u)-A(f)(v) \in \exp (u+v) V \quad \text { for } u, v \in \mathbb{R}_{+} .
$$

Obviously exp is exponentially increasing with $h:=-\exp ^{-1}(z)=-\ln (z)$, $\gamma:=\exp (h)=\frac{1}{z}$. Therefore by Theorem 2(i) there exists a unique A_{h} : $\mathbb{R}_{+} \rightarrow E$ such that

$$
\begin{gather*}
A_{h}(h)=\mathcal{A}(f)(h), \tag{16}\\
A_{h}(u+v)=A_{h}(u)+A_{h}(v) \quad \text { for } u, v \in \mathbb{R}_{+}, \tag{17}\\
\mathcal{A}(f)(u)-A_{h}(u) \in K_{z} \exp (u) V, \tag{18}
\end{gather*}
$$

where $K_{z}=2 \frac{\exp (h)}{\exp (0)}+\frac{\gamma}{\gamma-1}=\frac{2}{z}+\frac{1}{1-z}$.
Let $F_{z}:=\mathcal{A}^{-1}\left(A_{h}\right)$. Then one can easily check that (16), (17), (18) mean that F_{z} satisfies (12), (13), (14).

We show that F_{z} is unique. Suppose that there exists F_{z}^{\prime} satisfying (16), (17), (18). Then $\mathcal{A}\left(F_{z}^{\prime}\right)$ satisfies (12), (13), (14), so $\mathcal{A}\left(F_{z}^{\prime}\right)=A_{h}=$ $\mathcal{A}\left(F_{z}\right)$. As \mathcal{A} is a bijection this implies that $F_{z}^{\prime}=F_{z}$.

References

[1] Z. Gajda, On the stability of additive mappins, Internat. J. Math. and Math. Sci. 14 (1991), 431-434.
[2] R. Ger, The singular case in the stability behaviour of linear mappings, Grazer Math. Ber. 316 (1992), 59-70.
[3] G. Maksat, 18 Problem, The Thirty-fourth International Symposium on Functional Equations, June 10-June 19, Wista - Jawornik, Poland, 1996; Aequationes Math. (to appear).
[4] J. RÄTz, On approximately additive mappings, General Inequalities 2, ISNM 47, Birkhäuser Verlag, Basel - Boston - Stuttgart, 1980, 233-251.
[5] F. Skof, Sull'approssimazione delle applicazioni localmente δ-additive, Atti Acad. Sc. Torino 17 (1983), 377-389.

JACEK TABOR

SLOMIANA 20/31 ST.
30-316 CRACOW
POLAND
E-mail: tabor@im.uj.edu.pl
(Received September 30, 1996)

