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Stability of the Cauchy equation with variable bound

By JACEK TABOR

Abstract. We investigate the problem of stability of the Cauchy equation on R+.
As a result we obtain a positive answer to the problem of G. Maksa posed on 34 ISFE
concerning the Hyers-Ulam stability of the equation

f(xy) = xf(y) + yf(x)

on the unit interval.

On the 34-th International Symposium on Functional Equations
G. Maksa posed two problems ([3]).

Problem A. Let φ : ]0, 1] → R and 0 < ε ∈ R. Suppose that

(1) |φ(xy)− xφ(y)− yφ(x)| ≤ ε, x, y ∈ ]0, 1].

Does there exist a : ]0, 1] → R such that

a(xy)− xa(y)− ya(x) = 0, x, y ∈ ]0, 1]

and φ− a is bounded?

Problem B. Find all functions f, g : R+ := [0,∞[ → R satisfying the
functional inequality

|f(u + v)− f(u)− f(v)| ≤ g(u + v), u ≥ 0, v ≥ 0.

As the Problem B is very general, we propose to investigate a more
specific one:
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Problem 1. Let E be a Banach space, let G be a commutative semi-
group, and let g : G → R+ be a given function. Does there exist K > 0
such that for each f : G → E satisfying

‖f(x + y)− f(x)− f(y)‖ ≤ g(x + y) for x, y ∈ G

there exists an additive A : G → E satisfying the inequality

‖f(x)−A(x)‖ ≤ Kg(x) for x ∈ G ?

If G is a group then this problem has a positive solution for all func-
tions g in a large class of Banach spaces (cf. [2]). However, for G = R+ this
statement fails to hold – Z. Gajda presents in [1] an example of a function
f : R+ → R such that |f(x + y) − f(x) − f(y)| ≤ x + y for x, y ∈ R+,
but there exist no additive mapping A : R+ → R and K > 0 such that
|f(x)−A(x)| ≤ Kx for x ∈ R+.

In this paper we show that if G = R+ and the function g is, in some
sense, fast increasing, then the answer turns out to be positive. Thus we
give a partial answer to Problem B . This enables us to positively solve
Problem A.

Now we introduce some notations. In the whole paper we assume
that E is a sequentially complete topological vector space and that V is a
closed, convex, bounded subset of E symmetric with respect to zero. For
f : R+ → E we denote the Cauchy difference of f by

Cf(x, y) := f(x + y)− f(x)− f(y).

For h ∈ ]0,∞[ and x ∈ R we define

Eh[x] := max{n ∈ Z : nh < x}, Fh[x] := x− Eh[x]h.

Clearly Eh[x] ∈ Z, Fh[x] ∈]0, h]. To avoid distinguishing several cases and
to shorten some considerations we will use the following convention: if

m,n ∈ N, m > n then by
n∑

i=m

ai we mean zero.

In our investigations we will need the following proposition (some
connected results can be found in [5]).
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Proposition 1. Let h ∈ ]0,∞[ , and let f : [0, h] → E be a function

such that

(2) Cf(x, y) ∈ V for x, y, x + y ∈ [0, h].

Then there exists a unique additive function A : R+ → E such that A(h) =
f(h) and

f(x)−A(x) ∈ 2V for x ∈ [0, h].

Proof. We define f̃ : R+ → E by

f̃(x) := Eh[x]f(h) + f(Fh[x]) for x ∈ R+.(3)

Clearly

f̃ |]0,h] = f.(4)

We show that Cf̃(x, y) ∈ 2V for x, y ∈ R+. If Fh[x] + Fh[y] ∈ ]0, h] then
by (3),(4) and (2)

Cf̃(x, y) = Cf(Fh[x], Fh[y]) ∈ V.

Now suppose that Fh[x] + Fh[y] ∈ ]h, 2h[ . Since the Cauchy difference is
symmetric we may assume without loss of generality that Fh[x] ∈ ]0, h[ .
Then

Cf̃(x, y) = f(Fh[x] + Fh[y]− h) + f(h)− f(Fh[x])− f(Fh[y])

= Cf(Fh[x], h− Fh[x])− Cf(Fh[x] + Fh[y]− h, h− Fh[x])

∈ V − V = 2V.

If Fh[x] + Fh[y] = 2h, then Cf̃(x, y) = 0 ∈ 2V .
Now by the generalized Hyers Theorem (cf. Th. 4,5, [4]) we obtain

that there exists an additive function A : R+ → E such that

f̃(x)−A(x) ∈ 2V for x ∈ R+.

As f(0) = −Cf(0, 0) ∈ V , this and (4) imply that

f(x)−A(x) ∈ 2V for x ∈ [0, h].
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Moreover, as f̃(nh) = nf(h), we have

f̃(h)−A(h) =
f̃(nh)−A(nh)

n
∈ 2

n
V for n ∈ N,

so f(h) = f̃(h) = A(h).
We show that A is unique. Suppose that there exists an additive A′

with the same properties as A. Then

(A−A′)(h) = 0,

which means that A−A′ is periodic with period h. As A−A′ is bounded
on [0, h], this implies that it is globally bounded, so it is the zero function.

¤

The following theorem is a partial answer to Problem B.

Theorem 1. Let h ∈ ]0,∞[ , and let g : R+×R+ → R+ be an arbitrary

function such that sup
y,z,y+z∈[0,h]

g(y, z) < ∞. Let f : R+ → E satisfy the

condition

Cf(x, y) ∈ g(x, y)V for x, y ∈ R+.

Then there exists a unique additive function A : R+ → E such that A(h) =
f(h) and

f(x)−A(x) ∈
(
2 sup
y,z,y+z∈[0,h]

g(y, z) +
Eh[x]∑

i=1

g(x− ih, h)
)
V,(5)

f(x)−A(x)∈
(
2n(x)+1 sup

y,z,y+z∈[0,h]

g(y, z)+
n(x)∑

i=1

2i−1g
( x

2i
,

x

2i

))
V(6)

for x ∈ R+, where n(x) is the smallest nonnegative integer such that
x

2n(x) ∈ [0, h].

Proof. By Proposition 1 there exists a unique additive A : R+ → E

such that A(h) = f(h) and

(7) f(x)−A(x) ∈ 2 sup
y,z,y+z∈[0,h]

g(y, z)V for x ∈ [0, h].
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At first we prove that A satisfies (5). For x ∈ [0, h] this is trivial.
Suppose that x > h. Then

f(x)− f(Fh[x])− Eh[x]f(h) =
Eh[x]∑

i=1

(f(x− (i− 1)h)− f(x− ih)− f(h))

∈
Eh[x]∑

i=1

g(x− ih, h)V.

But Fh[x] ∈ [0, h], so by (7)

f(x)−A(x) = Eh[x](f(h)−A(h)) + (f(Fh[x])−A(Fh[x])
+ (f(x)− f(Fh[x]h)− Eh[x]f(h))

∈
{

2 sup
y,z,y+z

g(y, z) +
Eh[x]∑

i=1

g(x− ih, h)
}

V.

Now we show that A satisfies (6). For x ∈ [0, h] this is obvious.
Suppose that x > h. Then

f(x)− 2n(x)f(
x

2n(x)
) =

n(x)∑

i=1

(
2i−1f(

x

2i−1
)− 2if

( x

2i

))

=
n(x)∑

i=1

2i−1Cf
( x

2i
,

x

2i

)

∈
n(x)∑

i=1

2i−1g
( x

2i
,

x

2i

)
V.

However,
x

2n(x)
∈ [0, h], which yields by (7) that

f(x)−A(x) =
(
f(x)− 2n(x)f

( x

2n(x)

))

−
(
2n(x)A

( x

2n(x)

)
− 2n(x)f

( x

2n(x)

))

∈
(
2n(x)+1 sup

y,z,y+z∈[0,h]

g(y, z) +
n(x)∑

i=1

2i−1g
( x

2i
,

x

2i

))
V.

¤
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Definition 1. A function g : R+ → R+ will be called exponentially
increasing if it is increasing and there exist γ > 1 and h ∈ R+ such that

g(x + h) ≥ γg(x) for x ∈ R+.

Definition 2. A function g : R+ → R+ will be called powerly increas-
ing if it is increasing and there exists γ > 1 and h ∈ R+ such that

g(2x) ≥ 2γg(x) for x ≥ h.

Obviously every exponential increasing function is exponentially in-
creasing and every power function of degree greater than one is powerly
increasing.

Now we solve Problem 1 in the class of powerly increasing and in that
of exponentially increasing functions.

Theorem 2. (i) Suppose that g : R+ → R+ is exponentially increasing

with constants γ and h as in Definition 1, and that g(0) > 0.

Let K := 2 g(h)
g(0) + γ

γ−1 , and let f : R+ → E be an arbitrary function

such that

Cf(x, y) ∈ g(x + y)V for x, y ∈ R+.

Then there exists a unique additive function A : R+ → E such that A(h) =
f(h) and that

f(x)−A(x) ∈ Kg(x)V for x ∈ R+.

(ii) Suppose that g : R+ → R+ is powerly increasing with constants

γ and h as in Definition 2, and that g(0) > 0.

Let K := 4 g(h)
g(0) + γ

γ−1 , and let f : R+ → E be an arbitrary function

such that

Cf(x, y) ∈ g(x + y)V for x, y ∈ R+.

Then there exists a unique additive function A : R+ → E such that A(h) =
f(h) and that

f(x)−A(x) ∈ Kg(x)V for x ∈ R+.
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Proof. By Theorem 1 there exists a unique additive A : R+ → E
such that A(h) = f(h) and

f(x)−A(x) ∈
(
2 sup
y,z,y+z∈[0,h]

g(y + z) +
Eh[x]∑

i=1

g(x− ih + h)
)
V,(8)

f(x)−A(x) ∈
(
2n(x)+1 sup

y,z,y+z∈[0,h]

g(y + z) +
n(x)∑

i=1

2i−1g
( x

2i
+

x

2i

))
V(9)

for x ∈ R+, where n(x) is as in Theorem 1.
(i) Obviously

(10) 2 sup
y,z,y+z∈[0,h]

g(y + z) = 2g(h) ≤ 2
g(h)
g(0)

g(x) for x ∈ R+.

By the fact that g is exponentially increasing we also have

Eh[x]∑

i=1

g(x− ih + h) ≤
Eh[x]∑

i=1

g(x)
γi−1

≤ g(x)
γ

γ − 1
.

This, (8) and (10) imply that

f(x)−A(x) ∈
(

2
g(h)
g(0)

+
γ

γ − 1

)
g(x)V,

which proves the assertion of (i).
(ii) Let x ∈ R+. We prove that

(11) 2n(x)+1 ≤ 4
g(x)
g(0)

.

At first suppose that x ∈ ]0, h[ . Then n(x) = 0, so 2n(x)+1 = 2 ≤ 4 ≤
4 g(x)

g(0) , so (11) is trivial. Now let x ∈ [h,∞[ . As g is powerly increasing,

4g(x) ≥ 4 · 2n(x)−1g
( x

2n(x)−1

)
≥ 2n(x)+1g(0),

which yields (11). Moreover

n(x)∑

i=1

2i−1g
( x

2i
+

x

2i

)
≤

n∑

i=1

g(x)
γi−1

≤ γ

γ − 1
g(x).
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This, (9), and (11) impliy that

f(x)−A(x) ∈
(

4
g(h)
g(0)

+
γ

γ − 1

)
g(x)V,

which makes the proof of (ii) complete. ¤

Remark 1. One can check that every exponentially increasing function
is powerly increasing. Therefore one may ask whether it makes sense
in Theorem 2 to investigate both powerly increasing and exponentially
increasing functions. The only reason to consider exponential functions is
that it will allow us to obtain a better constant of approximation in the
solution of Problem A.

Now we solve the Problem A.

Corollary 1. Let f : ]0, 1] → E be a function such that

(12) f(xy)− xf(y)− yf(x) ∈ V for x, y ∈ ]0, 1],

and let z ∈ (0, 1) be arbitrarily fixed. Then there exists a unique function

Fz : ]0, 1] → E such that

Fz(z) = f(z),(13)

Fz(xy) = xFz(y) + yFz(x),(14)

and that

(15) f(x)− Fz(x) ∈ KzV for x ∈ ]0, 1],

where Kz := 2
z + 1

1−z (the minimal value of Kz is equal to 3 + 2
√

2 and is

obtained for z = 2−√2).

Proof. For K ⊂ R we denote by EK the vector space of all functions
from K → E. We define the linear operator A : E ]0,1] → ER+ by the
formula

A(f)(x) := exp(x)f(exp(−x)) for x ∈ R+.

The fact that f satisfies (12) is equivalent to

A(f)(u + v)−A(f)(u)−A(f)(v) ∈ exp(u + v)V for u, v ∈ R+.
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Obviously exp is exponentially increasing with h := − exp−1(z) = − ln(z),
γ := exp(h) = 1

z . Therefore by Theorem 2(i) there exists a unique Ah :
R+ → E such that

Ah(h) = A(f)(h),(16)

Ah(u + v) = Ah(u) + Ah(v) for u, v ∈ R+,(17)

A(f)(u)−Ah(u) ∈ Kz exp(u)V,(18)

where Kz = 2 exp(h)
exp(0) + γ

γ−1 = 2
z + 1

1−z .

Let Fz := A−1(Ah). Then one can easily check that (16), (17), (18)
mean that Fz satisfies (12), (13), (14).

We show that Fz is unique. Suppose that there exists F ′z satisfying
(16), (17), (18). Then A(F ′z) satisfies (12), (13), (14), so A(F ′z) = Ah =
A(Fz). As A is a bijection this implies that F ′z = Fz. ¤
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