On certain properties of centralizers hereditary to the factor group

By KERESZTELY CORRADI (Budapest)

The structure of minimal non-p-nilpotent groups was decribed by Ito [1] in
the following way:

Theorem 1. Let G be a finite group, p prime. Let us suppose that every proper
subgroup of G is p-nilpotent but G is not. Then
1. Every proper subgroup of G is nilpotent
2. |G|=p°q®, where q is a prime different from p
3. If PeSyl,(G) then P<G andif p>2 then exp (P)=p, if p=2 then exp (P)=4
4. If QcSyl,(G) then Q is cyclic.

In the following we shall call such a group a (p, g)-group. The fact that G contains a
(p. g)-subgroup we shall denote by G =(p, q) (otherwise we shall write G#(p, q)).
The aim of this paper is to prove the following results:

Theorem A. Let G be a finite group, ps%q primes. If G#(p,q) then this
property is inherited to every homomorphic image of G.

Theorem B. Let G be a finite group r, p#g primes. If for every r-element
xeG%, Cg(x)Z(p, q) then this property is inherited to every homomorphic image
of G.

Theorem C. Let G be a finite group, let n(G)={p, g} be the set of prime divi-
sors of G. If for every r-element x€G#, rén(G), Cg(x) is supersolvable then this
property is inherited to every homomorphic image of G.

The proof of the following lemmas can be easily obtained from Theorem 1:

Lemma 1. Let G be a finite group, then G is p-nilpotent if and only if GZ(p, q)
for every prime q different from p.

Lemma 2. Let G be a finite solvable group, n=n(G). Then G has a normal
n-complement if and only if GZ(p,q) for every pcm, g<m'.

PrOOF OF THEOREM A. Let G be a counterexample of minimal order. So G #(p, q)
but G/H=(p,q) for a suitable H<G.

1. By the inductive hypothesis we may suppose that H is a minimal normal sub-
group of G and G/H is a (p, g)-group.

2. Applying the Frattini-argument to R<Syl,(H) we have G/H=Ng(R)/HNNg(R)
so by the minimality of G, Ng(R)=G. As H is a minimal normal subgroup we
have that H is an elementary abelian r-group.

3. We can distinguish two cases: a) ri{p,q}, b) r=p or r=gq. In the case a)
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(|1H|, |G: H|)=1 so by the theorem of Zassenhaus there exists a K=G with
HK=G and H(K=1. Butthen G=K=G/H=(p, q), which is a contradiction.
In the case b) n(G)={p,q} so by Lemma 1 Q¢Syl, (G) is normal in G so
G/H is nilpotent, which is also a contradiction.

ProoF oF THEOREM B: Let G be a couterexample of minimal order, H<G such

that Cz(X)=(p, q) for some r-element x€G¥, where G=G/H.

1.

2.

3.

By induction we may suppose that H=®(G), H is a minimal normal subgroup
of G and X€Z(G/H).

We may also suppose that |X|=r and we may choose an r-element x in the inverse
image of X.

As in step 2. in the proof of Theorem A we may suppose that H is elementary
abelian 7-group for some prime 1.

We may suppose that (|x|, |H|)#1:

Otherwise (x)€Syl, (H(x)). By the Frattini argument G=HNg({x))=Ng((x))
as H=®(G). Let neNg((x)) then n€Cg(x). So G=Cg4(x) and by applying
Theorem A to G/H=Cgz(X) we have that C;(x)=(p, q), contradiction.

Let B=H(x). Then B is an elementary abelian r-group: If B’#1 then as
|B/B’|=r* and 1#B’=H we have that B’<H, which contradicts to the mini-
mality of H. So B’=1. As U,(B)=H, by the minimality of H we have that
U,(B)=1 or U,(B)=H. In the second case |B: ®(B)|=r thatis B is cyclic so
|B|=r2 If |B|=r® then |x|=r% and H=(X"). As [x,G]=H=(X") 1=[x, )] =
=[x", y] forevery y€G so x"¢Z(G). Applying Theorem A we have that C;(x")=
=(p, q), contradiction.

. We can distinguish three cases: a) ré{p, ¢}, b) r=p, ¢) r=q. In the case a)

by induction we may suppose that G/H=(xX, U)=(X)xU, where U is a (p, q)-
group. In particular G is solvable. Let U be the inverse image of U in G, and let
TeHall,, (U) so T€<Hall,, (G) as well. By the Frattini argument G=UN4x(T).
Obviously Ng(T)=T7. On the other hand G=BT so Ng(T)=(BNNg(T)). Tand
BNNg(T)#1. But C4(BNNG(T))=BT=G and again by Theorem A we can-
not have G/H=(p, q).

In the case b) B is elementary abelian p-group. Let B= PcSyl, (G) Q¢Syl, (G).
As in case a) we may suppose that G/H=(x,U), where U is a (p, g)-group.
Then PecSyl, (G) is normal so P<aG and HNZ(P)#1 which by the minima-
lity of H yields H=Z(P). By the theorem of Maschke B=H XT where T is a
Q-invariant complement to H. Then C4(T)=BQ. As =n(G)={p,q} and
Cs(T)#(p, q), by Lemma 1 we have that Q<Cs(T) and so H=Z(G), which
by Theorem A yields contradiction.

In the case ¢) B is an elementary abelian g-subgroup. Let PeSyl, (G), B=0Q¢<
€Syl, (G) and we may suppose that G= (%, U), where U is a (p, g)-group. Then
G/He>PeSyl, (G) so GHP and as H=®(G) the Frattini argument yields
P<G. But 1#Z(Q)NH and C4(Z(Q)NH)=QP=G so by Theorem A we
have a contradiction.

Corollary 1. If G is a finite group, r prime and for every r-element x€G* Cg(x)

has a Sylow-tower corresponding to a fixed ordering of primes then this property is
inherited to every homomorphic image of G.



On certain properties of centralizers hereditary to the factor group 205

Proor. Let n(G)={p,>>p.>...>=p,} be the ordered set of prime divisors of G.
Then the existence of a Sylow-tower in G corresponding to this ordering is equivalent
to the fact that G=(p,, p.) for every k, m=n where k=>m.

Corollary 2. Let G be a finite solvable group, © a set of primes. Let us suppose
that for every m-element xcG* Cg(x) has a normal n-complement N and Cg(x)/N
is nilpotent. Then every irreducible n-character of G is monomial.

Proor. Let G be a counterexample of minimal order and y€Irr (G) is a =n-
character which is not monomial. We may assume that y(1)>1 and y is primitive,.
By Theorem B and Lemma 2 the hypotheses are inherited to every homomorphic
image of G. So we may assume that Ker y=1. As F(G)=1 so 1#Z(F(G))=Z(G)
so G has a normal n-complement, namely O, (G), provied F(G) is not a n’-group.
But the solvability of G gives Cg(F(G))=F(G). So F(G)=0,(G) leads to F(G)=
=Z(G), — a contradiction — as the next argument shows. As the constituents of
x|0.(G) are linear, O..(G)=Ker y=1 so 0,(G)=Z(G). But then G/0,.(G) is
nilpotent so G is nilpotent, contradiction.

ProOF OF THEOREM C. Let G be a counterexample of minimal order, H<G
such that Cg(X) is not supersolvable, where G=G/H.

1. As in steps 1—35 in the proof of Theorem B we may assume that H is a minimal
normal subgroup of G, H=®(G), XcZ(G/H), |X|=p, x is a p-element in the
inverse image of X, H and B are elementary abelian p-groups.

. We can distinguish two cases: a) p=g¢, b) p=>q.

In the case a) let B= P¢ Sy] (G), Q€Syl, (G). From Corollary 1 we have that
there exists a Sylow-tower in C'G(t) so that C;(X)=>Q¢€Syl, (G). By the Frattini
argument we have that Q<G so Cg(Z(P)(NH)=PQ=G and G is supersol-
\able, contradiction. In the case b) similarly we have that P<G so H=Z(P).
By the theorem of Maschke B=H X T, where T is a Q-invariant complement to
H in B. We may suppose that B£Z(P), otherwise C43(T)=PO=G and G
would be supersolvable, which is not the case. In the following we shall construct
two supersolvable subgroups of G of index p and ¢ respectively. By a result of
ASAAD [2] if a group possesses two supersolvable subgroups of index of the maxi-
mal and minimal prime divisor of its order respectively then the group is super-
solvable. So in our case this would yield a contradiction.

Let us consider the subgroup 1#(T, P]=H. As C3(Q)=T we have that [T, P]=
=[T, G] and it is easy to see that this subgroup is normal in G so [T, G]=H.
Hence H=P’. There exists a subgroup L of index ¢ in G. We shall show that L
is supersolvable. If |Q|=¢ then it is trivially true. So we may assume that P=L.
As H=P' =®(P)=®(L) and by induction L/H is supersolvable so L is also
supersolvable. Now let us consider the supersolvable subgroup C;(x). We may
suppose that T=(x) so Q=Cg;(x). Using the fact that H=Z(P) we have
that every minimal normal subgroup H,=H of Cg(x) is normal in G. So
|H|=p and |B|=p? which yields |P: Cp(x)|=p=|G: Cs(x)|. So by the theo-
rem of Asaad we are done.

]

Corollary 3. Let G be a finite group, |n(G)|=2, r prime. Let us suppose that for
every r-element xcG* Cg(x) is supersolvable then G is an M-group.

Proor. Let G be a counterexample of minimal order, y€Irr (G) is not mono-
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mial. Then we may assume that y(1)>1 and y is primitive. As by Theorem C our
hypothesis is inherited to G/Ker y, we may suppose that Ker y=1. As G is sol-
vable 1#Z(F(G))=Z(G) so G is supersolvable, contradiction.
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