On certain properties of centralizers hereditary to the factor group

By KERESZTÉLY CORRÁDI (Budapest)

The structure of minimal non-p-nilpotent groups was decribed by Ito [1] in the following way:

Theorem 1. Let G be a finite group, p prime. Let us suppose that every proper subgroup of G is p-nilpotent but G is not. Then

1. Every proper subgroup of G is nilpotent

2. $|G| = p^a q^b$, where q is a prime different from p 3. If $P \in \text{Syl}_p(G)$ then $P \triangleleft G$ and if p > 2 then $\exp(P) = p$, if p = 2 then $\exp(P) \le 4$

4. If $Q \in Syl_a(G)$ then Q is cyclic.

In the following we shall call such a group a (p, q)-group. The fact that G contains a (p,q)-subgroup we shall denote by $G \ge (p,q)$ (otherwise we shall write $G \ne (p,q)$). The aim of this paper is to prove the following results:

Theorem A. Let G be a finite group, $p\neq q$ primes. If $G \not\equiv (p,q)$ then this property is inherited to every homomorphic image of G.

Theorem B. Let G be a finite group $r, p \neq q$ primes. If for every r-element $x \in G^{\sharp}$, $C_G(x) \not\equiv (p, q)$ then this property is inherited to every homomorphic image of G.

Theorem C. Let G be a finite group, let $\pi(G) = \{p, q\}$ be the set of prime divisors of G. If for every r-element $x \in G^{\sharp}$, $r \in \pi(G)$, $C_G(x)$ is supersolvable then this property is inherited to every homomorphic image of G.

The proof of the following lemmas can be easily obtained from Theorem 1:

Lemma 1. Let G be a finite group, then G is p-nilpotent if and only if $G \not\equiv (p,q)$ for every prime q different from p.

Lemma 2. Let G be a finite solvable group, $\pi \leq \pi(G)$. Then G has a normal π -complement if and only if $G \not\equiv (p,q)$ for every $p \in \pi$, $q \in \pi'$.

PROOF OF THEOREM A. Let G be a counterexample of minimal order. So $G \not \triangleq (p, q)$ but $G/H \ge (p, q)$ for a suitable $H \triangleleft G$.

1. By the inductive hypothesis we may suppose that H is a minimal normal subgroup of G and G/H is a (p, q)-group.

2. Applying the Frattini-argument to $R \in Syl_r(H)$ we have $G/H \cong N_G(R)/H \cap N_G(R)$ so by the minimality of G, $N_G(R)=G$. As H is a minimal normal subgroup we have that H is an elementary abelian r-group.

3. We can distinguish two cases: a) $r \in \{p, q\}$, b) r = p or r = q. In the case a)

(|H|, |G:H|)=1 so by the theorem of Zassenhaus there exists a $K \leq G$ with HK=G and $H \cap K=1$. But then $G \geq K \cong G/H \geq (p,q)$, which is a contradiction. In the case b) $\pi(G)=\{p,q\}$ so by Lemma 1 $Q \in \operatorname{Syl}_q(G)$ is normal in G so G/H is nilpotent, which is also a contradiction.

PROOF OF THEOREM B: Let G be a couterexample of minimal order, $H \triangleleft G$ such that $C_{\overline{G}}(\overline{x}) \ge (p, q)$ for some r-element $\overline{x} \in \overline{G}^{\sharp}$, where $\overline{G} = G/H$.

- 1. By induction we may suppose that $H \le \Phi(G)$, H is a minimal normal subgroup of G and $\bar{x} \in Z(G/H)$.
- 2. We may also suppose that $|\bar{x}|=r$ and we may choose an r-element x in the inverse image of \bar{x} .
- 3. As in step 2, in the proof of Theorem A we may suppose that H is elementary abelian t-group for some prime t.
- 4. We may suppose that $(|x|, |H|) \neq 1$: Otherwise $\langle x \rangle \in \operatorname{Syl}_{\mathbf{r}}(H\langle x \rangle)$. By the Frattini argument $G = HN_G(\langle x \rangle) = N_G(\langle x \rangle)$ as $H \leq \Phi(G)$. Let $n \in N_G(\langle x \rangle)$ then $n \in C_G(x)$. So $G = C_G(x)$ and by applying Theorem A to $G/H = C_G(\bar{x})$ we have that $C_G(x) \geq (p, q)$, contradiction.
- 5. Let $B=H\langle x\rangle$. Then B is an elementary abelian r-group: If $B'\neq 1$ then as $|B/B'| \ge r^2$ and $1 \ne B' \le H$ we have that B' < H, which contradicts to the minimality of H. So B'=1. As $\mho_1(B) \le H$, by the minimality of H we have that $\mho_1(B)=1$ or $\mho_1(B)=H$. In the second case $|B:\Phi(B)|=r$ that is B is cyclic so $|B| \le r^2$. If $|B|=r^2$ then $|x|=r^2$ and $H=\langle x^r\rangle$. As $[x,G] \le H=\langle x^r\rangle$ $1=[x,y]^r=[x^r,y]$ for every $y \in G$ so $x^r \in Z(G)$. Applying Theorem A we have that $C_G(x^r) \ge (p,q)$, contradiction.
- 6. We can distinguish three cases: a) $r \notin \{p, q\}$, b) r = p, c) r = q. In the case a) by induction we may suppose that $G/H = \langle \overline{x}, \overline{U} \rangle = \langle \overline{x} \rangle \times \overline{U}$, where \overline{U} is a (p, q)-group. In particular G is solvable. Let U be the inverse image of \overline{U} in G, and let $T \in Hall_r$, (U) so $T \in Hall_r$, (G) as well. By the Frattini argument $G = UN_G(T)$. Obviously $N_G(T) > T$. On the other hand G = BT so $N_G(T) = (B \cap N_G(T))$. Tand $B \cap N_G(T) \neq 1$. But $C_G(B \cap N_G(T)) \geq BT = G$ and again by Theorem A we cannot have $G/H \geq (p, q)$.

In the case b) B is elementary abelian p-group. Let $B leq P \in \operatorname{Syl}_p(G)$ $Q \in \operatorname{Syl}_q(G)$. As in case a) we may suppose that $G/H = \langle \overline{x}, \overline{U} \rangle$, where \overline{U} is a (p,q)-group. Then $\overline{P} \in \operatorname{Syl}_p(\overline{G})$ is normal so $P \triangleleft G$ and $H \cap Z(P) \neq 1$ which by the minimality of H yields $H \leq Z(P)$. By the theorem of Maschke $B = H \times T$ where T is a Q-invariant complement to H. Then $C_G(T) \geq BQ$. As $\pi(G) = \{p,q\}$ and $C_G(T) \not\equiv (p,q)$, by Lemma 1 we have that $Q \triangleleft C_G(T)$ and so $H \leq Z(G)$, which by Theorem A yields contradiction.

In the case c) B is an elementary abelian q-subgroup. Let $P \in \operatorname{Syl}_p(G)$, $B \subseteq Q \in \operatorname{Syl}_q(G)$ and we may suppose that $\overline{G} = \langle \overline{x}, \overline{U} \rangle$, where \overline{U} is a (p, q)-group. Then $G/H \triangleright \overline{P} \in \operatorname{Syl}_p(\overline{G})$ so $G \triangleright HP$ and as $H \subseteq \Phi(G)$ the Frattini argument yields $P \triangleleft G$. But $1 \neq Z(Q) \cap H$ and $C_G(Z(Q) \cap H) \supseteq QP = G$ so by Theorem A we have a contradiction.

Corollary 1. If G is a finite group, r prime and for every r-element $x \in G^*$ $C_G(x)$ has a Sylow-tower corresponding to a fixed ordering of primes then this property is inherited to every homomorphic image of G.

PROOF. Let $\pi(G) = \{p_1 > p_2 > ... > p_n\}$ be the ordered set of prime divisors of G. Then the existence of a Sylow-tower in G corresponding to this ordering is equivalent to the fact that $G \not\equiv (p_k, p_m)$ for every $k, m \leq n$ where k > m.

Corollary 2. Let G be a finite solvable group, π a set of primes. Let us suppose that for every π -element $x \in G^{\sharp}$ $C_G(x)$ has a normal π -complement N and $C_G(x)/N$ is nilpotent. Then every irreducible π -character of G is monomial.

PROOF. Let G be a counterexample of minimal order and $\chi \in \operatorname{Irr}(G)$ is a π -character which is not monomial. We may assume that $\chi(1) > 1$ and χ is primitive. By Theorem B and Lemma 2 the hypotheses are inherited to every homomorphic image of G. So we may assume that $\operatorname{Ker} \chi = 1$. As $F(G) \neq 1$ so $1 \neq Z(F(G)) \leq Z(G)$ so G has a normal π -complement, namely O_{π} , (G), provied F(G) is not a π' -group. But the solvability of G gives $C_G(F(G)) \leq F(G)$. So $F(G) \leq O_{\pi'}(G)$ leads to $F(G) \leq Z(G)$, — a contradiction — as the next argument shows. As the constituents of $\chi | O_{\pi'}(G)$ are linear, $O_{\pi'}(G)' \leq \operatorname{Ker} \chi = 1$ so $O_{\pi'}(G) \leq Z(G)$. But then $G/O_{\pi'}(G)$ is nilpotent so G is nilpotent, contradiction.

PROOF OF THEOREM C. Let G be a counterexample of minimal order, $H \triangleleft G$ such that $C_G(\bar{x})$ is not supersolvable, where $\bar{G} = G/H$.

- 1. As in steps 1—5 in the proof of Theorem B we may assume that H is a minimal normal subgroup of G, $H \le \Phi(G)$, $\bar{x} \in Z(G/H)$, $|\bar{x}| = p$, x is a p-element in the inverse image of \bar{x} , H and B are elementary abelian p-groups.
- 2. We can distinguish two cases: a) p < q, b) p > q. In the case a) let $B \le P \in \operatorname{Syl}_p(G)$, $Q \in \operatorname{Syl}_q(G)$. From Corollary 1 we have that there exists a Sylow-tower in $C_G(\bar{x})$ so that $C_G(\bar{x}) \rhd \bar{Q} \in \operatorname{Syl}_q(\bar{G})$. By the Frattini argument we have that $Q \lhd G$ so $C_G(Z(P) \cap H) \ge PQ = G$ and G is supersolvable, contradiction. In the case b) similarly we have that $P \lhd G$ so $H \le Z(P)$. By the theorem of Maschke $B = H \times T$, where T is a Q-invariant complement to H in B. We may suppose that $B \ne Z(P)$, otherwise $C_G(T) \ge PQ = G$ and G would be supersolvable, which is not the case. In the following we shall construct two supersolvable subgroups of G of index P and Q respectively. By a result of ASAAD [2] if a group possesses two supersolvable subgroups of index of the maximal and minimal prime divisor of its order respectively then the group is supersolvable. So in our case this would yield a contradiction.

Let us consider the subgroup $1 \neq [T, P] \leq H$. As $C_G(Q) \geq T$ we have that [T, P] = [T, G] and it is easy to see that this subgroup is normal in G so [T, G] = H. Hence $H \leq P'$. There exists a subgroup L of index q in G. We shall show that L is supersolvable. If |Q| = q then it is trivially true. So we may assume that $P \neq L$. As $H \leq P' \leq \Phi(P) \leq \Phi(L)$ and by induction L/H is supersolvable so L is also supersolvable. Now let us consider the supersolvable subgroup $C_G(x)$. We may suppose that $T = \langle x \rangle$ so $Q \leq C_G(x)$. Using the fact that $H \leq Z(P)$ we have that every minimal normal subgroup $H_1 \leq H$ of $C_G(x)$ is normal in G. So |H| = p and $|B| = p^2$, which yields $|P: C_P(x)| = p = |G: C_G(x)|$. So by the theorem of Asaad we are done.

Corollary 3. Let G be a finite group, $|\pi(G)|=2$, r prime. Let us suppose that for every r-element $x \in G^*$ $C_G(x)$ is supersolvable then G is an M-group.

PROOF. Let G be a counterexample of minimal order, $\chi \in Irr(G)$ is not mono-

mial. Then we may assume that $\chi(1)>1$ and χ is primitive. As by Theorem C our hypothesis is inherited to $G/\text{Ker }\chi$, we may suppose that $\text{Ker }\chi=1$. As G is solvable $1\neq Z(F(G))\leq Z(G)$ so G is supersolvable, contradiction.

References

[1] N. Itô, Note on (*LM*)-groups of finite order. *Kodai Math. Seminar Report* 1951, 1—6. [2] M. Asaad, Investigations in the theory of finite groups. *Ph. D. Thesis*, 1976. Budapest.

DEPARTMENT OF COMPUTER TECHNOLOGY INSTITUTE OF MATHEMATICS LORÁND EÖTVÖS UNIVERSITY BUDAPEST, MUZEUM KRT. 6—8. 1088, HUNGARY

(Received February 13, 1987)