Resolutions and infinite-dimensionality

By IVAN LONCAR (Varazdin)

Abstract. In the present paper we give a partial answer to the question: Let p: X—=X=

={X,, /s, A} be a resolution such that the spaces X,, x£A4, are A-weakly (S-weakly) infinite
dimensional. Is it true that X and lim X are A-weakly (S-weakly) infinite-dimensional?

The main result of Section One is the characterisation of a base of X (1.4. Lemma). An impor-
tant property of a resolution gives Lemma 1.8.

Section Two is devoted to the mappings p,, X—X,. The closedness of p, is proved in Theo-
rem 2.1.

Section Three is the main section. Theorem 3.1. asserts that X and lim X are 4-weakly infinite-
dimensional if p: X—X is a resolution and X={X,, f.s, A} is o-directed inverse system of A-

weakly infinite-dimensional spaces X,. If the mappings satisfy the condition |Fr Sap' (X)) <R
then the converse of Theorem 3.1. holds (Theorem 3.5.). Theorems 3.2. and 3.2. are analogous
theorems for the dimension dim X and dim, X. If X is an iverse system of infinite-dimensional

Cantor-manifolds X,, then X and lim X are infinite-dimensional Cantor-manifolds.

0. Introduction

0.1. We use the notion of inverse systems in the sense of the book [6]. By
X={X,, f,3, A} is denoted an inverse system and its limit by lim X.

0.2. The notin of a resolution of a space was introduced by S. MARDESIC.
We use the exposition of this notion as in the book [22].

0.3. By CI(A) or Cl A4 we denote the closure of the set A.

04. If f: X—Y is a mapping, the for ASX we define f*(A)={ycY:
(A},

0.5. | 4| denotes the cardinality of the set 4. By ¢f(A4) is denoted the smallest
ordinal number which is cofinal in the well-ordered set A.

0.6. The symbol Fr 4 denotes the boundary of the set i.e. the set Cl A ClI(A\ A).

0.7. We say that X={X,, f,;, A} is o-directed if for each sequence {;:
i€ N, o6 A} there is an a€ 4 such that a>a; for each i€N.

0.8. By w(X) is denoted the weight of X. Similarly, by h/(X) is denoted the
hereditary Souslin number of X [6: 284].

0.9. We say that a well-ordered inverse system X={X,, f,;, 4} is continuous
if for every limit ordinal y, y€ A4, the space X is homeomorphlc with the limit of the
inverse system X’'={X,, fi5, a=p=y}.

Mathematics subject classification (1980): Primary 54B25; Secondary 14E15. Key words and
phrases: a morphism, a resolution, inverse system, category, dimension.
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1. Basic properties

Let X be a topological space. A resolution of X [22: 74] consists of an inverse
system X={X,, f,3. A} in pro-Top and a morphism p: X—X in pro-Top with the
following two properties:

(R1) Let Pbe an ANR, ¥ an open covering of Pand h: X—P a map. Then there
exists a €4 and a mapf: X,—~ P such that the maps fp, and h are ¥ -near (i.e.
every x€X admits a A such that both fp,(x) and h(X) belong to ¥;€¥").

(R2) Let Pbe an ANR and ¥ an open covering of P. Then there is an open covering
¥ of P with the following property: If 2€A4 and f,f’: X,—~ P are maps such that
the maps fp, and f’p, are ¥ "-near, then there exists a 2=« such that maps f/,,
and f’f,,r are ¥ -near.

1.1. Theorem. [22:74, Theorem 1.]. Let p: X—~X be a morphism in pro-Cpt.
Then p is a resolution of X iff p is an inverse limit of X.

1.2. Theorem. [22:87, Corollary 1.). Let X={X,. f,5, A} be an inverse systen:
of normal spaces X,, X a topological space and p: X—~X a morphism in pro-Top.
Then p is a resolution of X iff it has the following properties:

(Bl) Let uc A and let U be an open set in X, which contains Cl (p,(X)). Then there is
o'=a such that f,.(X,)=U.

(B2) For every normal covering U of X there exists an 2 A and a normal covering
U, of X, such that p;7'(¥,) refines U.

Let us recall that an open covering # is normal iff it admits a metric space M,
amap h: X—M and an open covering ¥~ of M such that h~'(¥") refines %. A T, -
space X is paracompact iff each open cover of X is normal [6:379]. A locally finite
open cover of a normal space is normal [6:379].

We say that A4S X is normally embedded (or Z-embedded) in the space X
[15: 188] provided every normal covering % of A admits a normal covering ¥ of X
such that ¥°/A refines #. A closed subsets of collectionwise normal spaces are nor-
mally embedded. In particular, closed subsets of paracompact spaces are normally
embedded.

1.3. Definition. An inverse system X={X,. f,5. A} is called an R-system if the
morphism f={f,}:lim X—X is a resolution (where f;: lim XX, a€ A4, are the
projections). The svstem X is a weak R-system for a class A (W R-system for %)
if there exist X¢# and a resolution p: XY—X such that the induced mapping
p: X=lim X is onto.

We start with the following lemma.

1.4. Lemma. Let p: X—+X be a resolution. If X is a completely regular space,
then the family #={p;*(U,): : U, openin X, a¢ A} is a base for the topology of X.

Proor. Let U be an open neighborhood of x£X. From the complete regularity
of X it follows that there is a function f: X—7I=[0,1] such that f(x)=0 and
f(»)=1 for yeX—U. Let % be the cover of I which consists of the sets: U,=
=H). 1/4), Uz—(l,r‘S 7/8), Us;=(3/4, 1]. Property (R1) implies that there is an a£4
and f,: X,—~1 such that f and f,p, are #-near. Now, consider the sets U,=
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=/,([0, 1/4)) and V'=p;1(U). The points f(x) and f,p,(x) are both contained in
U,c%, butnotin U,— U, orin U, since f(x)= 0 and f, f,p, are %-near. This means
that x€V. On the other hand for every x'¢V we have f,p,(x)€[0,1/4] i.e.
V(X—U) is empty (smce f(X=U)= {l}) Fma]ly, J is an open set about x of the
form p;7*(U), U, open in X,, contained in U. The proof is completed.

1.5. Corollary. Let p: X—+X be a resolution. If X is completely reguiar, then for
every open set U of X we have U= U {p;V(U,): ac A}, where U, is the maximal
open subset of X, with respect to the property p;*(U,)ZU

1.6. Corollary. Let p: X—~X be a resolution for a compiereh regular space X.
Then for every closed F=X and xcX—F there is a acA such that p,(x)cX,—

—Cl(pa(F)).

1.7. Lemma. Let p be as in Coroliary 1.6. For each closed FSX we have
F=N{p;'Clp,(F): 2€A}. Moreover, for each YZX the relation ClY=
=N {p; Clp,(Y): ac A} holds.

Each inverse system has the properties established in 1.4.—1.7. Now we describe
some properties of a resolution not possessed by each inverse system.

1.8. Lemma. Let p: X—-X={X,, f,;, A} be a resolution. If the spaces
X, X,, ac A, are normal, then for every pair of closed disjoint subsets F,, F,SX
there is a ac A such that Clp,(F,))NClp,(F.)=

Proor. Modify the proof of Lemma 1.4.

1.9. Lemma. Ler X ={X,, fap, A} be an inverse system of normal spaces X,.
If X is a WR-system for normal spaces, then lim X is normal.

Proor. From Definition 1.3. it follows that there is a normal space X and a
morphism p: Y—X which is a resolution. Now, let Fy, F, be disjoint closed subsets
of lim X. By virtue ¢ of Lemma 1.8. for the sets ‘*1(1‘1) and p~1(F,) contained in X’
there is a A4 such that Cl(p,p- ‘(F)]’WCI (p.p~(F.))=0, where p=limp,,
a€ A, is the induced mapping p: X—lim X. From the normality of X, it follows that
there exist some open disjoint sets U,, V,£X, such that ClI(p,p~*(F,))SU, and
Cl(p.p~(F))EV,. Since p,p~Y(F)=f,(F), i=1,2, we have Clf,(F)SU,,
Cl f,(F,)SV,. This means that ;Y (U)2F,, f;7'(V))2F,. The normality of
lim X is proved and the proof is completed.

1.10. Remark. 1t is well-known that the limit of an inverse system of normal
spaces need not be normal. The limit is normal if X is inverse system of compact (or
countably compact, f,,, closed and X a sequence) spaces.

1.11. Lemma. Let p: X—~X={X,, fums N} be a resolution such that p: X—~
—~lim X is onto. If the spaces X,. nEN, are perfectly normal and X is normal, then X
and lim X are perfectly normal.

Proor. From Lemma 1.9. it follows that lim X is normal. In order to complete
the proof it suffices to prove that each closed subset of X" (lim X) is a G;-set [6:68].
This is an immediate consequence of Lemma 1.7. and the perfect normality of
X,, neN. The proof is completed.
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2. Properties of mappings p,

The following question is natural: Is the mapping p,: X—X, a closed mapping
if the mappings f,z: X;—~X, are closed?

If X=Iim X, p=/, the answer is negative [28]. That the answer is afirmative in
the case of inverse sequence was proved by Zexor. In contrast to that situation for
the morphism f, we now prove

2.1. Theorem. Let p: X—X={X,, f.,5. A} be a resolution such that X,X,,
€A, are normal and p,. X—~X,, «€ A, are onto mappings. The mappings p,: XX,
wt A, are closed iff the mappings f,, are closed.

PRroor. Let us prove that p, are closed if /,, are closed. Let x, be a point of X,
and let U be an open set such that p;'(x,)SUZSX. By virtue of Lemma 1.8. it
follows that there exists a f<.A4 such that py(p;*(x,)) N Cl py(X—U)=0. Since A4 is
directed we can assume that f=u«. Then pyp;'(x)=/f3'(x). This means that
Jap' (x)Clppg(X—=U)=0 ie. Xp—Clp,(X—U)= P}_j,,l(x) and p,I(V)CU
Since £, is closed, we have an open set U, about x, such that 73" (x, )Cj;, (U)EV;.
Clearlv, « {(U)=ps*fe’ (U, )Cpgl(V,,)CU The closednes of P, is proved.

Converse]y, let all p,, x€ A, be the closed mappings. From the relation p,=
=fopPs» P=o it follows that p,py*(Fy)=f,5(F;) for each subset F, of X;. If F
is closed and p, closed, then f,,(F}) is closed. This means that f,; is closed. The proof
is completed.

2.2. Lemma. If p is as in Theorem 2.1. and the induced mapping p: X—-lim X
is onto, then p is closed.

Proor. Let x be a point of lim X and U an open neighborhood of the se p~1(x).
From 1.8. it follows that there is a €4 and an open U,=2p,p *(x) such that
PN U)ESU. Let V=f"Y(U,). We have p~'(V)SU. The proof is completed.

2.2.1. Corollary. Under the conditions of Lemma 2.2. the induced mapping
p: X-lim X is a homeomorphism.

Proor. From Lemma 1.8. it follows that p is 1—1. Apply Lemma 2.2. and
Proposition 1.4.18. from [6].

2.2.2. Remark. Let us note that p: X—lim X is a homeomorphism if the con-
ditions of Theorem 2.6. (Theorem 2.7.) are satisfied.

2.3. Theorem. Let X={X, s Japs A} be a WR-system for the class of normal
spaces such that the prajecnans j; lim X—~X,, a€A, are onto mappings. Then the
projections f,, a€ A, are closed iff the mappings f,z: Xs—~X, are closed.

Proor. Let x,6X, and U an open set about £, '(x,). The set p~*(U) is an
open neighborhood of p~1;~'(x,)=p;*(x). By virtue of 2.1. there is an open
U, x,€U,, such that p;*(U)Sp~*(U). Clearly, f,7*(U,)SU. This means that f,
is closed.

Conversely, for each closed F; and f=a we have the set F=f;'(F,) and the

relation f,,/3(F) —j;(F)—_ﬂ,(F,) Th1s means that f,,(F,) is closed since f, and
Jp are closed. The proof is completed.
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2.4. Theorem. Let X={X,, f,3. A} be a WR-system for the class of normal
spaces. If 1,5 are closed, f, onto mappings and X, normal, then lim X is normal.

Proor. Let F,, F, be closed disjoint subsets of lim X. If we apply 1.8. and 2.3.
on the sets p~1(F,) anf p~1(F,) we obtain a a€ A such f,(R,)Nf,(F.)=0. By virtue
of the normality of X, and closedness of f, (Theorem 2.3.) it follows that there exist
open disjoint sets U,, ¥, such that f,(F,)SU, and f,(F,)SV,. The set f,~'(U,)
and f;71(¥,) are open disjoint sets which contain F; and F,. The proof is completed.

2.5. Theorem. Let X={X,, f,5, A} be a WR-system for the class of normal
spaces. If 1, are hereditarily quotient and p, onto, then p,: X—~X, and f,: lim X~ X,,
€A, are hereditarily quotient.

Proor. Let us recall that from the definition of the morphism p it follows that
P.=JyPp and py'f3'=p;', P=o. In order to complete the proof it suffices to
prove that for each x,€X, and each open neighborhood U of p;'(x,) (f:'(x,)
we have x,Intp,(U) (x€Intf,(U)). By virtue of 1.8. and directedness of A it
follows that there is a f=« and an open set U;=2p,p; ' (X,)=/3"(x,) such that
Pi'(Up)SU. Clearly, U,SIntpy(U). Since f,; 1s hereditarily quotient, we have
x,€Int f,,(U)=Int p,(U). Thus, x,€Int p,(U). Similarly we prove that x,€Int £, (U).
The proof is completed.

By the same method of proof on can prove

2.6. Theorem. Let X={X,, f,5, A} be a resolution with onto mappings p,:
X—X,, acA. The mappings p, are open iff f,z are open.

2.7. Remark. Let X={X,, f,;, A} be an inverse system. If the mappings f;
are hereditarily quotient, then the projections f,:lim X—X,, a€A4, need not be
hereditarily quotient [6:161]. The projections are hereditarily quotient if X is an in-
verse sequence with hereditarily quotient bonding mappings [6:161].

We say that a mapping f: XY is fully closed [8] if for each point ycY and
each family {U,, ..., U,} of open sets of X such that f~1(y)S{U;: 1=i=k} the set
{MIU(U{f*U): 1=i=k)}) is open.

Let X={X,, foy, A}. If £, are fully closed, then the projections f,:lim X—X,
a€ A, need not be fully closed. If £,, are perfect fully closed, then f, are perfect fully
closed [8]. By virtue of theorems on the non-emptyness of the inverse limit from [17]
on can prove that if X={X,, f,., N} is an inverse sequence of countably compact
spaces X, and fully closed mappings f,.., then f,:lim X—X,, n€N, are fully closed.

In contrast to this, we now prove

2.8. Theorem. Let X={X,, f,5, A} be an inverse system of normal spaces and
p: X—X aresolution of a normal space X. Then the p,: X—~X,, o€ A, are fully closed
iff fop are fully closed.

PrOOF. Necessity. Se [8:113, Lemma 2.].

Sufficiency. Let #={U,, ..., U} be a family of open sets in X such that
pal(x)S U%. The cover ¥ ={U,,..., Uy, X—p:*(x,)} is a normal cover of X
since X is normal [6:379]. From (B2) it follows that there 1s a f€a and a normal
covering ¥ of X} such that pgz*(¥}) refines ¥". We can assume that f=a since A4 is
directed. Let U, be the union of all ¥;€¥; such that ¥;Nf5"(x,)=0 and ps' (VS



212 Ivan Loncar

‘_;_U,». The family {Us: ..., Uiy} covers f3'(x,). This means that the family
{Pﬂ (UL, - ,p, (U} covers _f;,‘(r) From the fact that £,; is fully closed it follows
that £, is closed and that each pi(U) is open (apply Theorem 1.4.13. of [6] and
Theorem 2.1.). This means that {x, }U)‘,, p, (U)U.. Jf,,p,(U,L) is open. Finally,

the set {x,}Upt(U)U...Upk(U,) is open since pi(U)—f5ps(U). The proof is
completed.

2.9. Lemma. Let p: X—~X={X,, f,;, A} be a resolution of a normal space X.
If |f31(x)|=k for each a, B and x,, rhen |pt(x )=k for each u and x,.

Proor. Suppose that for some x,cX, we have |p;l(x,)|=k+1. Let
PR Yl X s K Wik 290 ) FOX each palr (xi, x;), f#;. “c have (from 1.8.)
some o;;€A4 such that p,,(x,‘):épﬁ(xj), B=w;. Let a=oy;: i,j5{1,2,....k k+1.
Clearly, p,(x;)#p,(x;) for each pair (i,j). The proof is completed.

We close this Section with the following remark.

2.10. Remark. By a similar method of proof on can prove that if in 2.9,
|Fr f32(x,)| =k, then |Frp;(x,)|=k.

If X is o-directed, then |Fr /3 (x,)| <8, (|/ (x| <8,) implies |Fr f1(x,)|<
=N (|f; 1(x,)| < Ro)-

3. Resolutions and weak infinitedimensionality

We say that a space X is A-weakly infinite-dimensional [2] if for every sequence
{(4;, B)): i€ N} of a pairs of disjoint closed subsets of the exist a partition C; betwen
A; and B; such that N{C;: icN}=0. If C;N...NC,=0 for some k<N, then we
say that X is S-weakly infinite-dimensional.

A space X is said to be A-strongly (S-strongly) infinite-dimensional if X is not
A-weakly (S-weakly) infinite-dimensional.

A space X is called an infinite-dimensional Cantor-manifold [2] if X is compact
and if X—F is connected for each closed A-weakly infinite-dimensional subspace
FCX.

We start with the following theorem.

3.1. Theorem. Let p: X—~X={X,, f,5, A} be a resolution of a normal spaces
X,, v A, such that X is o- d:rec!ed X normal and p,: X~X,, acA, p: X-limX
are onto mapping. If the spaces X,, «c A, are A-weakly infinite-dimensional, then X
and lim X are A-weakly infinite-dimensional.

Proor. Let {(4;, B;): ic N} be any sequence of a pairs of disjoint closed sub-
sets of X, From Lemma 1.8. it follows that for each pair (4;, B;) there is an ;A4
such that Cl p, (4,)NCl p, (B;)=0. Since X is o-directed we have an a4 such
that «=«;, i€N. This means that Clp,(4;)NClp,(B)=0 for each i€N. From
A-weak infinite-dimensionality of X, it follows that there exist the partitions C;,
i€N, between Clp,(4;) and Cl p,(B;) such that ﬂ{C,-: i€ N}=0. Since p;(C)),
i€N, are partitions between A4; and B;, the proof is completed.

If ((4;, B):icN) is a sequence of a pairs of disjoint closed subsets of lim X,
then we repeat the preceding part of the proof for the sets p~1(4,) and p~(B;),icN.
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We say that the inverse system X={X,, f,;, A} is an S-system if for each pair
(F,, F,) of disjoint closed subsets of lim X there exists an a€ 4 such that Cl f,(F)N
NClf,(F,)=0. Thesystem X is factorizable (or f-system) [31] if for each real-valued
function f:lim X—I=[0, 1] there is an acA4 and a function g,: X—~I such that

/=84ta-

3.2. Remark. Each inverse system of compact spaces is a S-system. Each in-
verse sequence of countably compact spaces an S-system. If X is a o-directed inverse
system of compact spaces, then X is an f-system [31:28]. Each o-directed inverse
system X with Lindelof is an f-system.

3.3. Lemma. Let X be an f-system. If lim X is normal, then X is an S-system.
Proor. Trivial.

3.4. Lemma. If X={X,, f4> A} is a o-directed S-system of A-weak infinite-
dimensional spaces X,, then lim X is A-weak infinite-dimensional.

Proor is similar to the proof of Theorem 3.1.

3.5. Corollary. If X is a a-directed inverse system of compact weak infinite-dimen-
sional spaces, then lim X is weak infinite-dimensional.

3.6. Corollary. Let X={X,, f,;, A} be a o-directed inverse system with Lin-
delof limit. If X,,ac A, are A- weaz infinite-dimensional spaces, then lim X is A-
weak infinite-dimensional.

If the mappings f,; are fully closed, then we have

3.7. Theorem. Let a morphism p: X—~X={X,, f.5, A} be a resolution in the
category pro-Cpt such that the mappings f,, are fully closed and dim f;3'(x,)=k,
ke N. If the spaces X,, o€ A, are weakly infinite-dimensional, then X and lim X are
weakly infinite-dimensional.

Proor. First, note that X and lim X are homeomorphic [22:74]. Morecover,
from [6:482] it follows that f,:lim X—X,, a€ A, are weakly infinite-dimensional.
Since f,, a€ A, are fully (Theorem 2.8.) it follows from [8: Theorem 9,] that lim X
is weakly infinite-dimensional.

By the same method of proof we have
3.8. Theorem. Let p: X~X={X,, f,3, A} be a resolution such that X, X,,
a€ A, are normal and p,: X—X,, ac A, p: X~lim X are onto. If A is o-directed and

X,, a€ A, are S-weakly mﬁmre-dmren.sfonaf. then X and lim X are S-weakly infinite-
dimensional.

If dim X,=n for each a€A, then we have

3.9. Theorem. Let p: X—~X={X,, f.5, A} be a resolution of normal spaces X and
X,, a€A, such that p: X—lim X is onto. If dim X,=n, a€A, then dim X=n
and dim (lim X)=n.

Proor. A straightforward modification of the proof of Theorem 3.1. using
Theorem on partitions [6:488].

4
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3.10. Remark. Let us note that an alternate proof of the last Theorem can be
found from [18]. In this paper it is proved that Theorem 3.9. holds for dim, X i.e.
for a covering dimension defined using functionally open covers of a Tychonoff
space X [6:472].

Now we prove a partial converse of Theorem 3.1.

3.11. Theorem. Let p: X—+~X={X,, f,3, A} be aresolution in the category pro-Cpt
of a compact spaces and a continuous onto mappings such that A is o-directed and
|Fr f,3' (x,)| <R, for each o, fcA and x,£X,. A space X and lim X are weakly
infinite-dimensional iff’ the spaces X,, o€ A, are weakly infinite-dimensional.

ProoF. Let us recall that X and lim X are homeomorphic spaces [22:74]. By
2.10. ve have that |Fr f;7*(x,)|<8,. Suppose that lim X is weakly infinite-dimensio-
nal. In order to prove Theorem it suffices to prove that X,, «€ A, are weakly infinite-
dimensional. If we suppose that X,, for some a€ A, is strongly infinite-dimensional,
then from Skljarenko’s theorem [I: 23] it follows that there exists a point x,€X,
such that |Frf~'(x,)=8,. This is in a contradiction with |Frf,~1(x,)|<&,. The
proof is completed.

3.12. Remark. Theorem 3.11. holds for inverse systems of compact spaces since
such systems are a resolutions [22:74].

3.13. Remark. If f,:1im XX, in Theorem 3.11. is not onto mapping, then we
infer that £ (lim X) is weakly infinite-dimensional.

Now we consider the inverse systems of infinite-dimensional Cantor-manifolds.

3.14. Theorem. Let p: X—X be as in Theorem 3.11. If the spaces X,, o€ A, are
infinite-dimensional Cantor-manifolds and if the mappings f,, are monotone, then X
and lim X are infinite-dimensional Cantor-manifolds.

Proor. Let F be a weakly infinite-dimensional subspace of lim X~ X. By 3.13.
it follows that f,(F) is weakly infinite-dimensional for each a€ 4. This means that
Y,=X,—/f.(F) is connected since X, is infinite-dimensional Cantor-manifold. Since
1., @€ A, are monotone [6:436] we infer that each f,7*(Y,) is connected. Clearly,
lim X—F=U{/f;1(Y,): a€ A}. Since the set U{f,"'(Y,): a€ A} is connected [6: 435]
we infer that lim X' — F is connected. The proof is completed.

3.15. Remark. The assumption that X is o-directed in the above Theorem (and
in Theorem 3.11.) can be omitted if |Fr/f;'(x,)|=k for some fixed integer k and
each «, f and x,.

3.15. Theorem. Let p: X—+X be as in Theorem 3.11. If the spaces X,, a€A,
are infinite-dimensional Cantor-manifolds and if the mappings f, are open onto map-
pings, then X and lim X are infinite-dimensional Cantor-manifolds.

Proor. Let F be a weakly infinite-dimensional subspace of lim X. For each
a€ A asubspace f,(F)S X, is weakly infinite-dimensional [27: Theorem 1.]. This
means that ¥,=X,—f,(F) is connected. A subspace f;3'(/,(F))SX,, a=p, is also
weakly inxnite-dimensional since f,//;3'(/.(F)) is open [27: Theorem 1.]. Thus
Y,s=X;—/3'(f,(F)) is connected for each f=«. The inverse system Y,={Y,;, f3,/
Y,, «=f=y} hasopenand closed bonding mappings [6: 95]. From the next Lemma
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it follows that lim ¥,=/,"*(Y,) is connected. From [6: 434] it follows that U {/,~*(Y,):
a€ A} is connected. The proof is completed.

3.15. Lemma. Let X={X,, f,3, A} be an inverse system with open and closed
mappings f,:lim X=X, a€A. If the spaces X,, ac A, are connected, then lim X is
connected.

PRroOF. Suppose that lim X is not connected. This means that there is a nonempty
open and closed subset F of lim X such that lim X— F is also non-empty. For each
a€ A aset Y,=f,(F) is open and closed. From the connectedness of X, it follows
that f,(F)=X,. Since F=lim {f,(F), f,4//3(F), A} [6:137] we have F=lim X.
This is in contradictin with lim X— F#0. The proof is completed.

If f,; are open mappings with finite fibers, then we have

3.16. Theorem. Let p: X—+X={X,, f,5, A} be a o-directed resolution such that
X, X,, a€A, are paracompact and the mappings f,; open onto mappings with the
property |Fr f3'(x,)|<8y. The spaces X and lim X are A-weakly infinite-dimensional
iff the spaces X,, o€ A, are A-weakly infinite-dimensional.

Proor. If the spaces X,, o€ A, are A-weakly infinite-dimensional, then X and
lim X are A-weakly infinite-dimensional (Theorem 3.1.). In order to complete the
proof suppose that lim X is A-weakly infinite-dimensional. From [22: 83] it follows
that X is 4-weakly infinite-dimensional since X=:lim X. Moreover, the projections
f,:im X=X, acA, are onto since 1=|Fr/f'(x,)]<8&, (Remark 2.10.). This
means that f,; are open mappings (Theorem 2.6.). By [27: Theorem 1.] we complete
the proof.

By the same method of proof, we have

3.17. Theorem. Let p: X—~X={X,, f,5. A} be a resolution such that X, X,,
a€ A, are paracompact spaces and f,; are open mappings with 1=\ f,3'(x)| =k, kEN.
The spaces X and im X are A-weakly infinite-dimensional iff the spaces X,, o€A,
are A-weakly infinite-dimensional.

We close this Section with the following corollary.

3.18. Corollary. Let X={X,, /.5, A} be an inverse system of paracompact
spaces X,, a€ A, and open perfect mappings f,, with the property 1=|f3"(x,)|=k,
kéN. The spaces lim X is A-weakly ( A-strongly) infinite-dimensional iff the spaces
X,, acA, are A-weakly (A-strongly) infinite-dimensional.

Acknowledgement. The author is grateful to the referee for his help and valuable
suggestions.
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