Resolutions and infinite-dimensionality

By IVAN LONČAR (Varaždin)

Abstract. In the present paper we give a partial answer to the question: Let $p: X \rightarrow X =$ = $\{X_{\alpha}, f_{\alpha\beta}, A\}$ be a resolution such that the spaces X_{α} , $\alpha \in A$, are A-weakly (S-weakly) infinite dimensional. Is it true that X and $\lim X$ are A-weakly (S-weakly) infinite-dimensional?

The main result of Section One is the characterisation of a base of X (1.4. Lemma). An important property of a resolution gives Lemma 1.8.

Section Two is devoted to the mappings p_x , $X \rightarrow X_x$. The closedness of p_x is proved in Theo-

rem 2.1.

Section Three is the main section. Theorem 3.1. asserts that X and $\lim X$ are A-weakly infinite-dimensional if $p: X \to X$ is a resolution and $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is σ -directed inverse system of Aweakly infinite-dimensional spaces X_{α} . If the mappings satisfy the condition $|\operatorname{Fr} f_{\alpha\beta}^{-1}(x_{\alpha})| < \aleph_0$ then the converse of Theorem 3.1. holds (Theorem 3.5.). Theorems 3.2. and 3.3. are analogous theorems for the dimension dim X and dim, X. If X is an iverse system of infinite-dimensional Cantor-manifolds X_{α} , then X and $\lim X$ are infinite-dimensional Cantor-manifolds.

0. Introduction

0.1. We use the notion of inverse systems in the sense of the book [6]. By $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is denoted an inverse system and its limit by $\lim \underline{X}$. 0.2. The notin of a resolution of a space was introduced by S. MARDEŠIĆ.

We use the exposition of this notion as in the book [22].

0.3. By Cl(A) or Cl(A) we denote the closure of the set A.

 $f^{-1}(y) \subseteq A$.

0.5. |A| denotes the cardinality of the set A. By cf(A) is denoted the smallest ordinal number which is cofinal in the well-ordered set A.

0.6. The symbol Fr A denotes the boundary of the set i.e. the set $Cl(X \setminus A)$.

0.7. We say that $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is σ -directed if for each sequence $\{\alpha_i : i \in \mathbb{N}, \alpha_i \in A\}$ there is an $\alpha \in A$ such that $\alpha > \alpha_i$ for each $i \in \mathbb{N}$.

0.8. By w(X) is denoted the weight of X. Similarly, by h(X) is denoted the

hereditary Souslin number of X [6: 284].

0.9. We say that a well-ordered inverse system $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is continuous if for every limit ordinal γ , $\gamma \in A$, the space X_{γ} is homeomorphic with the limit of the inverse system $X' = \{X_{\alpha}, f_{\alpha\beta}, \alpha \leq \beta \leq \gamma\}$.

Mathematics subject classification (1980): Primary 54B25; Secondary 14E15. Key words and phrases: a morphism, a resolution, inverse system, category, dimension.

1. Basic properties

Let X be a topological space. A resolution of X [22: 74] consists of an inverse system $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ in pro-Top and a morphism $p: X \to X$ in pro-Top with the following two properties:

- (R1) Let P be an ANR, $\mathscr V$ an open covering of P and $h: X \to P$ a map. Then there exists a $\alpha \in A$ and a map $f: X_{\alpha} \to P$ such that the maps fp_{α} and h are $\mathscr V$ -near (i.e. every $x \in X$ admits a λ such that both $fp_{\alpha}(x)$ and h(X) belong to $V_{\lambda} \in \mathscr V$).
- (R2) Let P be an ANR and $\mathscr V$ an open covering of P. Then there is an open covering $\mathscr V'$ of P with the following property: If $\alpha \in A$ and $f, f' \colon X_{\alpha} \to P$ are maps such that the maps fp_{α} and $f'p_{\alpha}$ are $\mathscr V'$ -near, then there exists a $\alpha' > \alpha$ such that maps $ff_{\alpha\alpha'}$ and $f'f_{\alpha\alpha'}$ are $\mathscr V$ -near.
- **1.1. Theorem.** [22:74, Theorem 1.]. Let $p: X \rightarrow \underline{X}$ be a morphism in pro-Cpt. Then p is a resolution of X iff p is an inverse limit of \underline{X} .
- **1.2. Theorem.** [22:87, Corollary 1.]. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of normal spaces X_{α} , X a topological space and $p: X \to \underline{X}$ a morphism in pro-Top. Then p is a resolution of X iff it has the following properties:

(B1) Let $\alpha \in A$ and let U be an open set in X_{α} which contains $C1(p_{\alpha}(X))$. Then there is

 $\alpha' \geq \alpha$ such that $f_{\alpha\alpha'}(X_{\alpha'}) \subseteq U$.

(B2) For every normal covering \mathcal{U} of X there exists an $\alpha \in A$ and a normal covering \mathcal{U}_{α} of X_{α} such that $p_{\alpha}^{-1}(\mathcal{U}_{\alpha})$ refines \mathcal{U} .

Let us recall that an open covering \mathcal{U} is normal iff it admits a metric space M, a map $h: X \to M$ and an open covering \mathcal{V} of M such that $h^{-1}(\mathcal{V})$ refines \mathcal{U} . A T_1 -space X is paracompact iff each open cover of X is normal [6:379]. A locally finite open cover of a normal space is normal [6:379].

We say that $A \subseteq X$ is normally embedded (or \mathscr{P} -embedded) in the space X [15: 188] provided every normal covering \mathscr{U} of A admits a normal covering \mathscr{V} of X such that \mathscr{V}/A refines \mathscr{U} . A closed subsets of collectionwise normal spaces are normally embedded. In particular, closed subsets of paracompact spaces are normally embedded.

1.3. Definition. An inverse system $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is called an R-system if the morphism $f = \{f_{\alpha}\}$: $\lim X \to X$ is a resolution (where f_{α} : $\lim X \to X$, $\alpha \in A$, are the projections). The system X is a weak R-system for a class \mathscr{K} (WR-system for \mathscr{K}) if there exist $X \in \mathscr{K}$ and a resolution $p: X \to \underline{X}$ such that the induced mapping $p: X \to \lim X$ is onto.

We start with the following lemma.

1.4. Lemma. Let $p: X \to \underline{X}$ be a resolution. If X is a completely regular space, then the family $\mathcal{B} = \{p_{\alpha}^{-1}(U_{\alpha}): U_{\alpha} \text{ open in } X, \alpha \in A\}$ is a base for the topology of X.

PROOF. Let U be an open neighborhood of $x \in X$. From the complete regularity of X it follows that there is a function $f: X \to I = [0, 1]$ such that f(x) = 0 and f(y) = 1 for $y \in X - U$. Let \mathscr{U} be the cover of I which consists of the sets: $U_1 = [0, 1/4)$, $U_2 = (1/8, 7/8)$, $U_3 = (3/4, 1]$. Property (R1) implies that there is an $\alpha \in A$ and $f_\alpha: X_\alpha \to I$ such that f and $f_\alpha p_\alpha$ are \mathscr{U} -near. Now, consider the sets $U_\alpha = [0, 1/4]$ and $f_\alpha: X_\alpha \to I$ such that f and f

- $=f_{\alpha}^{-1}([0, 1/4))$ and $V=p_{\alpha}^{-1}(U)$. The points f(x) and $f_{\alpha}p_{\alpha}(x)$ are both contained in $U_1 \in \mathcal{U}$, but not in $U_2 U_1$ or in U_3 since f(x) = 0 and $f, f_{\alpha}p_{\alpha}$ are \mathcal{U} -near. This means that $x \in V$. On the other hand for every $x' \in V$ we have $f_{\alpha}p_{\alpha}(x) \in [0, 1/4]$ i.e. $V \cap (X-U)$ is empty (since $f(X-U) = \{1\}$). Finally, V is an open set about x of the form $p_{\alpha}^{-1}(U)$, U_{α} open in X_{α} , contained in U. The proof is completed.
- **1.5. Corollary.** Let $p: X \to X$ be a resolution. If X is completely regular, then for every open set U of X we have $U = \bigcup \{p_{\alpha}^{-1}(U_{\alpha}): \alpha \in A\}$, where U_{α} is the maximal open subset of X_{α} with respect to the property $p_{\alpha}^{-1}(U_{\alpha}) \subseteq U$.
- **1.6.** Corollary. Let $p: X \to \underline{X}$ be a resolution for a completely regular space X. Then for every closed $F \subseteq X$ and $x \in X F$ there is a $\alpha \in A$ such that $p_{\alpha}(x) \in X_{\alpha} \text{Cl}(p_{\alpha}(F))$.
- **1.7. Lemma.** Let p be as in Corollary 1.6. For each closed $F \subseteq X$ we have $F = \bigcap \{p_{\alpha}^{-1} \operatorname{Cl} p_{\alpha}(F) : \alpha \in A\}$. Moreover, for each $Y \subseteq X$ the relation $\operatorname{Cl} Y = \bigcap \{p_{\alpha}^{-1} \operatorname{Cl} p_{\alpha}(Y) : \alpha \in A\}$ holds.

Each inverse system has the properties established in 1.4.—1.7. Now we describe some properties of a resolution not possessed by each inverse system.

1.8. Lemma. Let $p: X \rightarrow \underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a resolution. If the spaces $X, X_{\alpha}, \alpha \in A$, are normal, then for every pair of closed disjoint subsets $F_1, F_2 \subseteq X$ there is a $\alpha \in A$ such that $Clp_{\alpha}(F_1) \cap Clp_{\alpha}(F_2) = \emptyset$.

PROOF. Modify the proof of Lemma 1.4.

1.9. Lemma. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of normal spaces X_{α} . If X is a WR-system for normal spaces, then $\lim X$ is normal.

PROOF. From Definition 1.3. it follows that there is a normal space X and a morphism $p: X \to X$ which is a resolution. Now, let F_1 , F_2 be disjoint closed subsets of $\lim X$. By virtue of Lemma 1.8. for the sets $p^{-1}(F_1)$ and $p^{-1}(F_2)$ contained in X there is a $\alpha \in A$ such that $\operatorname{Cl}(p_{\alpha}p^{-1}(F_1)) \cap \operatorname{Cl}(p_{\alpha}p^{-1}(F_2)) = \emptyset$, where $p = \lim p_{\alpha}$, $\alpha \in A$, is the induced mapping $p: X \to \lim X$. From the normality of X_{α} it follows that there exist some open disjoint sets $U_{\alpha}, V_{\alpha} \subseteq X_{\alpha}$ such that $\operatorname{Cl}(p_{\alpha}p^{-1}(F_1)) \subseteq U_{\alpha}$ and $\operatorname{Cl}(p_{\alpha}p^{-1}(F_2)) \subseteq V_{\alpha}$. Since $p_{\alpha}p^{-1}(F_1) = f_{\alpha}(F_1)$, i = 1, 2, we have $\operatorname{Cl}(f_{\alpha}(F_1) \subseteq U_{\alpha})$, $\operatorname{Cl}(f_{\alpha}(F_2) \subseteq V_{\alpha})$. This means that $f_{\alpha}^{-1}(U_{\alpha}) \supseteq F_1$, $f_{\alpha}^{-1}(V_{\alpha}) \supseteq F_2$. The normality of $\lim X$ is proved and the proof is completed.

- 1.10. Remark. It is well-known that the limit of an inverse system of normal spaces need not be normal. The limit is normal if \underline{X} is inverse system of compact (or countably compact, f_{nm} closed and X a sequence) spaces.
- **1.11.** Lemma. Let $p: X \to \underline{X} = \{X_n, f_{nm}, N\}$ be a resolution such that $p: X \to \lim \underline{X}$ is onto. If the spaces X_n , $n \in \mathbb{N}$, are perfectly normal and X is normal, then X and $\lim \underline{X}$ are perfectly normal.

PROOF. From Lemma 1.9. it follows that $\lim X$ is normal. In order to complete the proof it suffices to prove that each closed subset of X ($\lim \underline{X}$) is a G_{δ} -set [6:68]. This is an immediate consequence of Lemma 1.7. and the perfect normality of X_n , $n \in \mathbb{N}$. The proof is completed.

2. Properties of mappings p_{α}

The following question is natural: Is the mapping p_{α} : $X \to X_{\alpha}$ a closed mapping if the mappings $f_{\alpha\beta}$: $X_{\beta} \to X_{\alpha}$ are closed?

If $X = \lim_{x \to \infty} X$, p = f, the answer is negative [28]. That the answer is afirmative in the case of inverse sequence was proved by ZENOR. In contrast to that situation for the morphism f, we now prove

2.1. Theorem. Let $p: X \rightarrow X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a resolution such that $X, X_{\alpha}, \alpha \in A$, are normal and $p_{\alpha}: X \rightarrow X_{\alpha}, \alpha \in A$, are onto mappings. The mappings $p_{\alpha}: X \rightarrow X$, $\alpha \in A$, are closed iff the mappings $f_{\alpha\beta}$ are closed.

PROOF. Let us prove that p_{α} are closed if $f_{\alpha\beta}$ are closed. Let x_{α} be a point of X_{α} and let U be an open set such that $p_{\alpha}^{-1}(x_{\alpha}) \subseteq U \subseteq X$. By virtue of Lemma 1.8, it follows that there exists a $\beta \in A$ such that $p_{\beta}(p_{\alpha}^{-1}(x_{\alpha})) \cap \operatorname{Cl} p_{\beta}(X-U) = \emptyset$. Since A is directed we can assume that $\beta \supseteq \alpha$. Then $p_{\beta}p_{\alpha}^{-1}(x) = f_{\alpha\beta}^{-1}(x)$. This means that $f_{\alpha\beta}^{-1}(x_{\alpha}) \cap \operatorname{Cl} p_{\beta}(X-U) = \emptyset$ i.e. $X_{\beta} - \operatorname{Cl} p_{\beta}(X-U) = V_{\beta} \supseteq f_{\alpha\beta}^{-1}(x_{\alpha})$ and $p_{\beta}^{-1}(V_{\beta}) \subseteq U$. Since $f_{\alpha\beta}$ is closed, we have an open set U_{α} about x_{α} such that $f_{\alpha\beta}^{-1}(x_{\alpha}) \subseteq f_{\alpha\beta}^{-1}(U_{\alpha}) \subseteq V_{\beta}$. Clearly, $p_{\alpha}^{-1}(U_{\alpha}) = p_{\beta}^{-1}f_{\alpha\beta}^{-1}(U_{\alpha}) \subseteq p_{\beta}^{-1}(V_{\beta}) \subseteq U$. The closednes of p_{α} is proved.

Conversely, let all p_{α} , $\alpha \in A$, be the closed mappings. From the relation $p_{\alpha} = f_{\alpha\beta}p_{\beta}$, $\beta \ge \alpha$ it follows that $p_{\alpha}p_{\beta}^{-1}(F_{\beta}) = f_{\alpha\beta}(F_{\beta})$ for each subset F_{β} of X_{β} . If F_{β} is closed and p_{α} closed, then $f_{\alpha\beta}(F_{\beta})$ is closed. This means that $f_{\alpha\beta}$ is closed. The proof is completed.

2.2. Lemma. If p is as in Theorem 2.1. and the induced mapping $p: X \rightarrow \lim X$ is onto, then p is closed.

PROOF. Let x be a point of $\lim X$ and U an open neighborhood of the se $p^{-1}(x)$. From 1.8. it follows that there is a $\alpha \in A$ and an open $U_{\alpha} \supseteq p_{\alpha} p^{-1}(x)$ such that $p_{\alpha}^{-1}(U_{\alpha}) \subseteq U$. Let $V = f_{\alpha}^{-1}(U_{\alpha})$. We have $p^{-1}(V) \subseteq U$. The proof is completed.

2.2.1. Corollary. Under the conditions of Lemma 2.2. the induced mapping $p: X \rightarrow \lim X$ is a homeomorphism.

PROOF. From Lemma 1.8. it follows that p is 1—1. Apply Lemma 2.2. and Proposition 1.4.18. from [6].

- **2.2.2. Remark.** Let us note that $p: X \rightarrow \lim X$ is a homeomorphism if the conditions of Theorem 2.6. (Theorem 2.7.) are satisfied.
- **2.3. Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a WR-system for the class of normal spaces such that the projections $f_{\alpha} : \lim X \to X_{\alpha}$, $\alpha \in A$, are onto mappings. Then the projections f_{α} , $\alpha \in A$, are closed iff the mappings $f_{\alpha\beta} : X_{\beta} \to X_{\alpha}$ are closed.

PROOF. Let $x_{\alpha} \in X_{\alpha}$ and U an open set about $f_{\alpha}^{-1}(x_{\alpha})$. The set $p^{-1}(U)$ is an open neighborhood of $p^{-1}f_{\alpha}^{-1}(x_{\alpha}) = p_{\alpha}^{-1}(x)$. By virtue of 2.1. there is an open $U_{\alpha'}x_{\alpha} \in U_{\alpha}$, such that $p_{\alpha}^{-1}(U_{\alpha}) \subseteq p^{-1}(U)$. Clearly, $f_{\alpha}^{-1}(U_{\alpha}) \subseteq U$. This means that f_{α} is closed.

Conversely, for each closed F_{β} and $\beta \ge \alpha$ we have the set $F = f_{\beta}^{-1}(F_{\beta})$ and the relation $f_{\alpha\beta}f_{\beta}(F) = f_{\alpha}(F) = f_{\alpha\beta}(F_{\beta})$. This means that $f_{\alpha\beta}(F_{\alpha})$ is closed since f_{α} and f_{β} are closed. The proof is completed.

2.4. Theorem. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a WR-system for the class of normal spaces. If $f_{\alpha\beta}$ are closed, $\overline{f_{\alpha}}$ onto mappings and X_{α} normal, then $\lim \underline{X}$ is normal.

PROOF. Let F_1 , F_2 be closed disjoint subsets of $\lim X$. If we apply 1.8. and 2.3. on the sets $p^{-1}(F_1)$ and $p^{-1}(F_2)$ we obtain a $\alpha \in A$ such $f_{\alpha}(R_1) \cap f_{\alpha}(F_2) = \emptyset$. By virtue of the normality of X_{α} and closedness of f_{α} (Theorem 2.3.) it follows that there exist open disjoint sets U_{α} , V_{α} such that $f_{\alpha}(F_1) \subseteq U_{\alpha}$ and $f_{\alpha}(F_1) \subseteq V_{\alpha}$. The set $f_{\alpha}^{-1}(U_{\alpha})$ and $f_{\alpha}^{-1}(V_{\alpha})$ are open disjoint sets which contain F_1 and F_2 . The proof is completed.

2.5. Theorem. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a WR-system for the class of normal spaces. If $f_{\alpha\beta}$ are hereditarily quotient and p_{α} onto, then $p_{\alpha} : X \to X_{\alpha}$ and $f_{\alpha} : \lim \underline{X} \to X_{\alpha}$, $\alpha \in A$, are hereditarily quotient.

PROOF. Let us recall that from the definition of the morphism p it follows that $p_{\alpha} = f_{\alpha\beta}p_{\beta}$ and $p_{\beta}^{-1}f_{\alpha\beta}^{-1} = p_{\alpha}^{-1}$, $\beta \ge \alpha$. In order to complete the proof it suffices to prove that for each $x_{\alpha} \in X_{\alpha}$ and each open neighborhood U of $p_{\alpha}^{-1}(x_{\alpha})$ ($f_{\alpha}^{-1}(x_{\alpha})$) we have $x_{\alpha} \in \text{Int } p_{\alpha}(U)$ ($x \in \text{Int } f_{\alpha}(U)$). By virtue of 1.8. and directedness of A it follows that there is a $\beta \ge \alpha$ and an open set $U_{\beta} \supseteq p_{\beta}p_{\alpha}^{-1}(x_{\alpha}) = f_{\alpha\beta}^{-1}(x_{\alpha})$ such that $p_{\beta}^{-1}(U_{\beta}) \subseteq U$. Clearly, $U_{\beta} \subseteq \text{Int } p_{\beta}(U)$. Since $f_{\alpha\beta}$ is hereditarily quotient, we have $x_{\alpha} \in \text{Int } f_{\alpha\beta}(U) = \text{Int } p_{\alpha}(U)$. Thus, $x_{\alpha} \in \text{Int } p_{\alpha}(U)$. Similarly we prove that $x_{\alpha} \in \text{Int } f_{\alpha}(U)$. The proof is completed.

By the same method of proof on can prove

- **2.6. Theorem.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a resolution with onto mappings p_{α} : $X \to X_{\alpha}$, $\alpha \in A$. The mappings p_{α} are open iff $f_{\alpha\beta}$ are open.
- 2.7. Remark. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system. If the mappings $f_{\alpha\beta}$ are hereditarily quotient, then the projections f_{α} : $\lim X \to X_{\alpha}$, $\alpha \in A$, need not be hereditarily quotient [6:161]. The projections are hereditarily quotient if \underline{X} is an inverse sequence with hereditarily quotient bonding mappings [6:161].

We say that a mapping $f: X \to Y$ is fully closed [8] if for each point $y \in Y$ and each family $\{U_1, ..., U_k\}$ of open sets of X such that $f^{-1}(y) \subseteq \{U_i: 1 \le i \le k\}$ the set

 $\{y\} \cup (\bigcup \{f^{\#}(U_i): 1 \leq i \leq k\})$ is open.

Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$. If $f_{\alpha\beta}$ are fully closed, then the projections f_{α} : $\lim X \to X$, $\alpha \in A$, need not be fully closed. If $f_{\alpha\beta}$ are perfect fully closed, then f_{α} are perfect fully closed [8]. By virtue of theorems on the non-emptyness of the inverse limit from [17] on can prove that if $\underline{X} = \{X_n, f_{nm}, N\}$ is an inverse sequence of countably compact spaces X_n and fully closed mappings f_{nm} , then f_n : $\lim X \to X_n$, $n \in N$, are fully closed.

In contrast to this, we now prove

2.8. Theorem. Let $X = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of normal spaces and $p: X \to X$ a resolution of a normal space X. Then the $p_{\alpha}: X \to X_{\alpha}$, $\alpha \in A$, are fully closed iff $f_{\alpha\beta}$ are fully closed.

Proof. Necessity. Se [8:113, Lemma 2.].

Sufficiency. Let $\mathscr{U} = \{U_1, ..., U_k\}$ be a family of open sets in X such that $p_{\alpha}^{-1}(x_{\alpha}) \subseteq \bigcup \mathscr{U}$. The cover $\mathscr{V} = \{U_1, ..., U_k, X - p_{\alpha}^{-1}(x_{\alpha})\}$ is a normal cover of X since X is normal [6:379]. From (B2) it follows that there is a $\beta \in \alpha$ and a normal covering \mathscr{V}_{β} of X_{β} such that $p_{\beta}^{-1}(\mathscr{V}_{\beta})$ refines \mathscr{V} . We can assume that $\beta \supseteq \alpha$ since A is directed. Let $U_{i\alpha}$ be the union of all $V_{\beta} \in \mathscr{V}_{\beta}$ such that $V_{\beta} \cap f_{\alpha\beta}^{-1}(x_{\alpha}) \neq \emptyset$ and $p_{\beta}^{-1}(V_{\beta}) \subseteq Y_{\beta}$

 $\subseteq U_i$. The family $\{U_{1\alpha}, ..., U_{k\alpha}\}$ covers $f_{\alpha\beta}^{-1}(x_{\alpha})$. This means that the family $\{p_{\beta}^{\sharp}(U_1), ..., p_{\beta}^{\sharp}(U_k)\}$ covers $f_{\alpha\beta}^{-1}(x_{\alpha})$. From the fact that $f_{\alpha\beta}$ is fully closed it follows that $f_{\alpha\beta}$ is closed and that each $p_{\beta}^{\sharp}(U_i)$ is open (apply Theorem 1.4.13. of [6] and Theorem 2.1.). This means that $\{x_{\alpha}\} \cup f_{\alpha\beta}^{\sharp} p_{\beta}^{\sharp}(U_1) \cup ... \cup f_{\alpha\beta}^{\sharp} p_{\beta}^{\sharp}(U_k)$ is open. Finally, the set $\{x_{\alpha}\} \cup p_{\alpha}^{\sharp}(U_1) \cup ... \cup p_{\alpha}^{\sharp}(U_k)$ is open since $p_{\alpha}^{\sharp}(U) - f_{\alpha\beta}^{\sharp} p_{\beta}^{\sharp}(U)$. The proof is completed.

2.9. Lemma. Let $p: X \to \underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a resolution of a normal space X. If $|f_{\alpha b}^{-1}(x_{\alpha})| \le k$ for each α , β and x_{α} , then $|p_{\alpha}^{-1}(x_{\alpha})| \le k$ for each α and x_{α} .

PROOF. Suppose that for some $x_{\alpha} \in X_{\alpha}$ we have $|p_{\alpha}^{-1}(x_{\alpha})| \ge k+1$. Let $p_{\alpha}^{-1}(x_{\alpha}) = \{x_1, x_2, ..., x_k, x_{k+1}, ...\}$. For each pair (x_i, x_j) , $i \ne j$, we have (from 1.8.) some $\alpha_{ij} \in A$ such that $p_{\beta}(x_i) \ne p_{\beta}(x_j)$, $\beta \ge \alpha_{ij}$. Let $\alpha \ge \alpha_{ij}$: $i, j \in \{1, 2, ..., k, k+1\}$. Clearly, $p_{\alpha}(x_i) \ne p_{\alpha}(x_j)$ for each pair (i, j). The proof is completed.

We close this Section with the following remark.

2.10. Remark. By a similar method of proof on can prove that if in 2.9. $|\operatorname{Fr} f_{\alpha\beta}^{-1}(x_{\alpha})| \leq k$, then $|\operatorname{Fr} p_{\alpha}^{-1}(x_{\alpha})| \leq k$.

If X is σ -directed, then $|\operatorname{Fr} f_{\alpha\beta}^{-1}(x_{\alpha})| < \aleph_0$ $(|f_{\alpha\beta}^{-1}(x_{\alpha})| < \aleph_0)$ implies $|\operatorname{Fr} f_{\alpha}^{-1}(x_{\alpha})| < \aleph_0$

 $< \aleph_0 \left(|f_\alpha^{-1}(x_\alpha)| < \aleph_0 \right).$

3. Resolutions and weak infinitedimensionality

We say that a space X is A-weakly infinite-dimensional [2] if for every sequence $\{(A_i, B_i): i \in N\}$ of a pairs of disjoint closed subsets of the exist a partition C_i between A_i and B_i such that $\bigcap \{C_i: i \in N\} = \emptyset$. If $C_1 \cap ... \cap C_k \neq \emptyset$ for some $k \in N$, then we say that X is S-weakly infinite-dimensional.

A space X is said to be A-strongly (S-strongly) infinite-dimensional if X is not

A-weakly (S-weakly) infinite-dimensional.

A space X is called an infinite-dimensional Cantor-manifold [2] if X is compact and if X-F is connected for each closed A-weakly infinite-dimensional subspace $F \subseteq X$.

We start with the following theorem.

3.1. Theorem. Let $p: X \to \underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a resolution of a normal spaces X_{α} , $\alpha \in A$, such that \underline{X} is σ -directed, X normal and $p_{\alpha}: X \to X_{\alpha}$, $\alpha \in A$, $p: X \to \lim \underline{X}$ are onto mapping. If the spaces X_{α} , $\alpha \in A$, are A-weakly infinite-dimensional, then X and $\lim \underline{X}$ are A-weakly infinite-dimensional.

PROOF. Let $\{(A_i, B_i): i \in N\}$ be any sequence of a pairs of disjoint closed subsets of X. From Lemma 1.8. it follows that for each pair (A_i, B_i) there is an $\alpha_i \in A$ such that $\operatorname{Cl} p_{\alpha_i}(A_i) \cap \operatorname{Cl} p_{\alpha_i}(B_i) = \emptyset$. Since X is σ -directed we have an $\alpha \in A$ such that $\alpha \geq \alpha_i$, $i \in N$. This means that $\operatorname{Cl} p_{\alpha}(A_i) \cap \operatorname{Cl} p_{\alpha}(B_i) = \emptyset$ for each $i \in N$. From A-weak infinite-dimensionality of X_α it follows that there exist the partitions C_i , $i \in N$, between $\operatorname{Cl} p_{\alpha}(A_i)$ and $\operatorname{Cl} p_{\alpha}(B_i)$ such that $\bigcap \{C_i: i \in N\} = \emptyset$. Since $p_{\alpha}^{-1}(C_i)$, $i \in N$, are partitions between A_i and B_i , the proof is completed.

If $((A_i, B_i): i \in N)$ is a sequence of a pairs of disjoint closed subsets of $\lim X$, then we repeat the preceding part of the proof for the sets $p^{-1}(A_i)$ and $p^{-1}(B_i)$, $i \in N$.

We say that the inverse system $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is an S-system if for each pair (F_1, F_2) of disjoint closed subsets of $\lim \underline{X}$ there exists an $\alpha \in A$ such that $\operatorname{Cl} f_{\alpha}(F_1) \cap \operatorname{Cl} f_{\alpha}(F_2) = \emptyset$. The system \underline{X} is factorizable (or f-system) [31] if for each real-valued function $f: \lim X \to I = [0, 1]$ there is an $\alpha \in A$ and a function $g_{\alpha}: X \to I$ such that $f = g_{\alpha} f_{\alpha}$.

- 3.2. Remark. Each inverse system of compact spaces is a S-system. Each inverse sequence of countably compact spaces an S-system. If \underline{X} is a σ -directed inverse system of compact spaces, then \underline{X} is an f-system [31:28]. Each σ -directed inverse system \underline{X} with Lindelöf is an f-system.
 - **3.3.** Lemma. Let \underline{X} be an f-system. If $\lim \underline{X}$ is normal, then \underline{X} is an S-system. Proof. Trivial.
- **3.4. Lemma.** If $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ is a σ -directed S-system of A-weak infinite-dimensional spaces X_{α} , then $\lim X$ is A-weak infinite-dimensional.

PROOF is similar to the proof of Theorem 3.1.

- 3.5. Corollary. If \underline{X} is a σ -directed inverse system of compact weak infinite-dimensional spaces, then $\lim_{X \to \infty} \underline{X}$ is weak infinite-dimensional.
- **3.6. Corollary.** Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a σ -directed inverse system with Lindelöf limit. If $X_{\alpha}, \alpha \in A$, are A-weak infinite-dimensional spaces, then $\lim X$ is A-weak infinite-dimensional.

If the mappings $f_{\alpha\beta}$ are fully closed, then we have

3.7. Theorem. Let a morphism $p: X \to \underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a resolution in the category pro-Cpt such that the mappings $f_{\alpha\beta}$ are fully closed and $\dim f_{\alpha\beta}^{-1}(x_{\alpha}) \leq k$, $k \in \mathbb{N}$. If the spaces X_{α} , $\alpha \in A$, are weakly infinite-dimensional, then X and $\lim X$ are weakly infinite-dimensional.

PROOF. First, note that X and $\lim \underline{X}$ are homeomorphic [22:74]. Moreover, from [6:482] it follows that f_{α} : $\lim X \to \overline{X}_{\alpha}$, $\alpha \in A$, are weakly infinite-dimensional. Since f_{α} , $\alpha \in A$, are fully (Theorem 2.8.) it follows from [8: Theorem 9₀] that $\lim X$ is weakly infinite-dimensional.

By the same method of proof we have

3.8. Theorem. Let $p: X \rightarrow \underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a resolution such that $X, X_{\alpha}, \alpha \in A$, are normal and $p_{\alpha}: X \rightarrow X_{\alpha}, \alpha \in A$, $p: X \rightarrow \lim \underline{X}$ are onto. If A is σ -directed and X_{α} , $\alpha \in A$, are S-weakly infinite-dimensional, then X and $\lim \underline{X}$ are S-weakly infinite-dimensional.

If dim $X_{\alpha} \leq n$ for each $\alpha \in A$, then we have

3.9. Theorem. Let $p: X \to \underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a resolution of normal spaces X and X_{α} , $\alpha \in A$, such that $p: X \to \lim \underline{X}$ is onto. If $\dim X_{\alpha} \leq n$, $\alpha \in A$, then $\dim X \leq n$ and $\dim (\lim \underline{X}) \leq n$.

PROOF. A straightforward modification of the proof of Theorem 3.1. using Theorem on partitions [6:488].

214 Ivan Lončar

3.10. Remark. Let us note that an alternate proof of the last Theorem can be found from [18]. In this paper it is proved that Theorem 3.9. holds for $\dim_f X$ i.e. for a covering dimension defined using functionally open covers of a Tychonoff space X [6:472].

Now we prove a partial converse of Theorem 3.1.

3.11. Theorem. Let $p: X \to \underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a resolution in the category pro-Cpt of a compact spaces and a continuous onto mappings such that A is σ -directed and $|\operatorname{Fr} f_{\alpha\beta}^{-1}(x_{\alpha})| < \aleph_0$ for each α , $\beta \in A$ and $x_{\alpha} \in X_{\alpha}$. A space X and $\lim \underline{X}$ are weakly infinite-dimensional iff the spaces X_{α} , $\alpha \in A$, are weakly infinite-dimensional.

PROOF. Let us recall that X and $\lim \underline{X}$ are homeomorphic spaces [22:74]. By 2.10. ve have that $|\operatorname{Fr} f_{\alpha}^{-1}(x_{\alpha})| < \aleph_0$. Suppose that $\lim \underline{X}$ is weakly infinite-dimensional. In order to prove Theorem it suffices to prove that X_{α} , $\alpha \in A$, are weakly infinite-dimensional. If we suppose that X_{α} , for some $\alpha \in A$, is strongly infinite-dimensional, then from Skljarenko's theorem [1:23] it follows that there exists a point $x_{\alpha} \in X_{\alpha}$ such that $|\operatorname{Fr} f_{\alpha}^{-1}(x_{\alpha})| \ge \aleph_0$. This is in a contradiction with $|\operatorname{Fr} f_{\alpha}^{-1}(x_{\alpha})| < \aleph_0$. The proof is completed.

- 3.12. Remark. Theorem 3.11. holds for inverse systems of compact spaces since such systems are a resolutions [22:74].
- 3.13. Remark. If f_{α} : $\lim \underline{X} \to X_{\alpha}$ in Theorem 3.11. is not onto mapping, then we infer that $f_{\alpha}(\lim X)$ is weakly infinite-dimensional.

Now we consider the inverse systems of infinite-dimensional Cantor-manifolds.

- **3.14. Theorem.** Let $p: X \to \underline{X}$ be as in Theorem 3.11. If the spaces X_{α} , $\alpha \in A$, are infinite-dimensional Cantor-manifolds and if the mappings $f_{\alpha\beta}$ are monotone, then X and $\lim \underline{X}$ are infinite-dimensional Cantor-manifolds.
- PROOF. Let F be a weakly infinite-dimensional subspace of $\lim \underline{X} \approx X$. By 3.13. it follows that $f_{\alpha}(F)$ is weakly infinite-dimensional for each $\alpha \in A$. This means that $Y_{\alpha} = X_{\alpha} f_{\alpha}(F)$ is connected since X_{α} is infinite-dimensional Cantor-manifold. Since f_{α} , $\alpha \in A$, are monotone [6:436] we infer that each $f_{\alpha}^{-1}(Y_{\alpha})$ is connected. Clearly, $\lim X F = \bigcup \{f_{\alpha}^{-1}(Y_{\alpha}) : \alpha \in A\}$. Since the set $\bigcup \{f_{\alpha}^{-1}(Y_{\alpha}) : \alpha \in A\}$ is connected [6:435] we infer that $\lim X F$ is connected. The proof is completed.
- 3.15. Remark. The assumption that \underline{X} is σ -directed in the above Theorem (and in Theorem 3.11.) can be omitted if $|\operatorname{Fr} f_{\alpha\beta}^{-1}(x_{\alpha})| \leq k$ for some fixed integer k and each α , β and x_{α} .
- **3.15. Theorem.** Let $p: X \rightarrow \underline{X}$ be as in Theorem 3.11. If the spaces X_{α} , $\alpha \in A$, are infinite-dimensional Cantor-manifolds and if the mappings f_{α} are open onto mappings, then X and $\lim X$ are infinite-dimensional Cantor-manifolds.

PROOF. Let F be a weakly infinite-dimensional subspace of $\lim X$. For each $\alpha \in A$ a subspace $f_{\alpha}(F) \subseteq X_{\alpha}$ is weakly infinite-dimensional [27: Theorem 1.]. This means that $Y_{\alpha} = X_{\alpha} - f_{\alpha}(F)$ is connected. A subspace $f_{\alpha\beta}^{-1}(f_{\alpha}(F)) \subseteq X_{\beta}$, $\alpha \leq \beta$, is also weakly inxnite-dimensional since $f_{\alpha\beta}/f_{\alpha\beta}^{-1}(f_{\alpha}(F))$ is open [27: Theorem 1.]. Thus $Y_{\alpha\beta} = X_{\beta} - f_{\alpha\beta}^{-1}(f_{\alpha}(F))$ is connected for each $\beta \geq \alpha$. The inverse system $Y_{\alpha} = \{Y_{\alpha\beta}, f_{\beta\gamma}/Y_{\beta\gamma}, \alpha \leq \beta \leq \gamma\}$ has open and closed bonding mappings [6: 95]. From the next Lemma

it follows that $\lim Y_{\alpha} = f_{\alpha}^{-1}(Y_{\alpha})$ is connected. From [6: 434] it follows that $\bigcup \{f_{\alpha}^{-1}(Y_{\alpha}): \alpha \in A\}$ is connected. The proof is completed.

3.15. Lemma. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system with open and closed mappings f_{α} : $\lim \underline{X} \to X$, $\alpha \in A$. If the spaces X_{α} , $\alpha \in A$, are connected, then $\lim \underline{X}$ is connected.

PROOF. Suppose that $\lim \underline{X}$ is not connected. This means that there is a nonempty open and closed subset F of $\lim \underline{X}$ such that $\lim X - F$ is also non-empty. For each $\alpha \in A$ a set $Y_{\alpha} = f_{\alpha}(F)$ is open and closed. From the connectedness of X_{α} it follows that $f_{\alpha}(F) = X_{\alpha}$. Since $F = \lim \{f_{\alpha}(F), f_{\alpha\beta}/f_{\beta}(F), A\}$ [6:137] we have $F = \lim X$. This is in contradictin with $\lim X - F \neq \emptyset$. The proof is completed.

If $f_{\alpha\beta}$ are open mappings with finite fibers, then we have

3.16. Theorem. Let $p: X \to \underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a σ -directed resolution such that $X, X_{\alpha}, \alpha \in A$, are paracompact and the mappings $f_{\alpha\beta}$ open onto mappings with the property $|\operatorname{Fr} f_{\alpha\beta}^{-1}(x_{\alpha})| < \aleph_0$. The spaces X and $\lim \underline{X}$ are A-weakly infinite-dimensional iff the spaces X_{α} , $\alpha \in A$, are A-weakly infinite-dimensional.

PROOF. If the spaces X_{α} , $\alpha \in A$, are A-weakly infinite-dimensional, then X and $\lim \underline{X}$ are A-weakly infinite-dimensional (Theorem 3.1.). In order to complete the proof suppose that $\lim X$ is A-weakly infinite-dimensional. From [22:83] it follows that X is A-weakly infinite-dimensional since $X \approx \lim X$. Moreover, the projections f_{α} : $\lim X \to X$, $\alpha \in A$, are onto since $1 \le |\operatorname{Fr} f_{\alpha}^{-1}(x_{\alpha})| < \aleph_0$ (Remark 2.10.). This means that $f_{\alpha\beta}$ are open mappings (Theorem 2.6.). By [27: Theorem 1.] we complete the proof.

By the same method of proof, we have

3.17. Theorem. Let $p: X \to \underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be a resolution such that $X, X_{\alpha}, \alpha \in A$, are paracompact spaces and $f_{\alpha\beta}$ are open mappings with $1 \le |f_{\alpha\beta}^{-1}(x_{\alpha})| \le k$, $k \in N$. The spaces X and $\lim \underline{X}$ are A-weakly infinite-dimensional iff the spaces X_{α} , $\alpha \in A$, are A-weakly infinite-dimensional.

We close this Section with the following corollary.

3.18. Corollary. Let $\underline{X} = \{X_{\alpha}, f_{\alpha\beta}, A\}$ be an inverse system of paracompact spaces X_{α} , $\alpha \in A$, and open perfect mappings $f_{\alpha\beta}$ with the property $1 \le |f_{\alpha\beta}^{-1}(x_{\alpha})| \le k$, $k \in \mathbb{N}$. The spaces $\lim \underline{X}$ is A-weakly (A-strongly) infinite-dimensional iff the spaces X_{α} , $\alpha \in A$, are A-weakly (A-strongly) infinite-dimensional.

Acknowledgement. The author is grateful to the referee for his help and valuable suggestions.

References

- P. S. Aleksandrov, O nekotoryh osnovnyh napravljenijah v obščej topologii, UMN 19 (1964), 3—46.
- [2] P. S. ALEKSANDROV, V. A. PASYNKOV, Vvedenije v teoriju razmernosti, Nauka, Moskva, 1973.
 [3] A. V. ARHANGEL'SKIJ, Otobraženija otkritye i bliskie k otkritym. Svjazi meždu prostranstvami. Trudy Mosk. mat. obšč. 15 (1966), 181—223.
- [4] A. V. ARHANGEL'SKIJ, V. I. PONOMAREV, Osnovy obščej topologii v zadačah i upražnenijah, Nauka, Moskva, 1974.

- [5] V. H. BALADZE, O funkcijah razmernostnogo tipa, Trudy Tbilis. mat. univ. 68 (1982), 5-41.
- [6] R. ENGELKING, General Topology, PWN, Warszawa, 1977.[7] R. ENGELKING, Dimension Theory, PWN, Warszawa, 1978.
- [8] V. V. Fedorčuk, Beskonečnomernye bikompakti, Izv. AN SSR. Ser. mat. 42 (1978), 1162—1178.
- [9] V. V. Fedorčuk, Metod razvertivaemyh spektrov i vpol'ne zamknutyh otobraženij, UMN 35 (1980), 112-121.
- [10] G. R. GORDH and S. MARDEŠIĆ, Characterizing local connectedness in inverse limits, Pacific 1. Math. 58 (1975), 411-417.
- [11] HISAO KATO, A note on infinite-dimension under refinable maps, Proc. Amer. Math. Soc. 88 (1983), 177-180.
- [12] J. E. JAYNE, C. A. ROGERS, Functions fermeés en partie, C. r. Acad. Sci. 13 (1980), 667-670.
- [13] J. E. KEESLING, Open and closed mappings and compactification, Fund. math. 65 (1969), 73-81.
- [14] KOYAMA AKIRA, Refinable maps in dimension theory, Topol. and Appl. 17 (1984), 247-255.
- [15] I. LONČAR, A note on resolutions of spaces, (to appear).
- [16] I. LONČAR, Lindelöfov broj i inverzni sistemi, Zbornik radova Fakulteta organizacije i informatike Varaždin 7 (1983), 115-123.
- [17] I. Lončar, Inverse limits for spaces which generalize compact spaces, Glasnik mat. 17 (37) (1982), 155-173.
- [18] I. Lončar, Resolutions and dimension (to appear).
- [19] S. MARDEŠIČ, Lokalno povezani, uredjeni i lančasti kontinuumi, Radovi JAZU, Zagreb, 1960, 147-166.
- [20] S. MARDEČIČ, Approximate polyhedra, resolutions of maps and shape fibrations, Fund. Math. 114 (1981), 53-78.
- [21] S. MARDEČIČ, On resolutions for pairs of spaces, Tsukuba J. Math. 8 (1984), 81—93.
- [22] S. MARDEŠIČ, J. SEGAL, Shape theory (the inverse system approach), North-Holland Publ. Co. 1981.
- [23] K. NAGAMI, Countable paracompactness of inverse limits and products, Fund. math. 73 (1972). 261-270.
- [24] K. NAGAMI, Mappings of finite order and dimension theory, Japan J. math., 30 (1950), 25-64.
- [25] J. NAGATA, Modern dimension theory, Amsterdam, 1965.
 [26] V. A. PASYNKOV, Faktorizacionnye teoremy v teoriji razmernosti, UMN 36 (1981), 147—175.
- [27] L. T. Polkovski, Open and closed mappings and infinite dimension, Gen. Topol. and Relat. Mod. Anal. and Algebra 5, Berlin 1983, 561-564.
- [28] E. Pot, Limiting mappings and projections of inverse systems Fund. Math. 80 (1973), 81—97.
- [29] R. Pol, A weakly infinite-dimensional compactum which is not countable-dimensional, Proc. Amer. Math. Soc. 82 (1981), 634-636.
- [30] I. S. Rubanov, Harakterizacija šejpov bikompaktov s pomoščju podobnyh spektrov, DAN SSSR 4 (1983), 584-588.
- [31] E. V. ŠČEPIN, Funktory i nesčetnye stepeni kompaktov, UMN 36 (1981), 3-62.
- [32] M. G. TKAČENKO, Cepi i kardinaly, DAN SSSR 239 (1978), 546-549.
- [33] Väisälä Jussi, Local topological properties of countable mappings, Duke Math. J. 41 (1974), 541 - 546.
- [34] YAJIMA YUKINOBU, On the dimension of limits of inverse systems, Proc. Amer. Math. Soc. 91 (1984), 461-466.

(Received February 17, 1987)