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1. For a group G let &/& denote the set of completely additive functions f:
N-G, i.e. those functions for which f(mn)=f(m)+f(n), Ym, n€N.

Let ¢ be the set of all infinite monotonically increasing sequences of positive
integers. For typical elements N={m<m<...}, M={m<my<...} of A let
NoM={n+m<n+my=<...}, NxM= {nymy<nymy .. .}.  Let furthermore for
k€Z, k@ N denote the sequence of the positive elements of k+n; (j=1, 2, ...), and
let kN={kn,<kny<...} for keN.

In what follows under a topological group we always mean a 7;-group, that
guarantees that the metric can be chosen to be translation invariant (see [4]).

Let G,,G, be metrically compact Abelian groups, @€s/;,, Y€s;,. Let
A, (resp. A,) be the set of those NeJ for which the limit a,(N) —hm @(ny)
(resp a,(N) -Ilm ¥ (nj)) exists.

We should 11ke to determine all those pairs of functions (¢, ) for which N€J,
implies that —1@® Nc#,. The case G,=G,, ¢=y under the similar condition
Ne,= 1@ NeX, has been considered in our earlier papers [1], [2]. It was proved

Lemma 1. If G is a metrically compact Abelian group, @€ sf¢, with the property
NeA,=1® Nc K, then there exists a continuous homamorph:sm F:R,-G,
R deno!es the mulr:phca!we group of the positive reals, such that ¢ is a restriction of
F on the set N. Conversely, if F: R,—~G is a continuous homomorphism, then ¢(n):=
= F(n) (YneN) issuch afuncn'on,for which Zeslg and NeX, implies 1@ NEX,.

In the proof we used the next thcorem due to WIRSING [3] which will be for-
mulated now as

Lemma 2. Let T denote the one-dimensional torus, o€f, Ap(n)=@(n+1)—
—@(n)—~0 (n—+). Then there exists a 1€R such that
@(n) = tlog n(mod 1).
2. The following assertions can be proved easily, arguing as it was done in [1],
[2].

Lemma 3. Let K,, resp. K, denote the set of all accumulation points of
{@(n)|nEN}, resp. {l,b(n)InEN} Then €Gy, KyEG,, and on)EK,, Y(n)EK,
(VEN).
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Lemma 4. Let o€t , Yeod;, and assume that NeX,, implies that k@ Ne X,
with a given k€Z. Then there exists a function H: K,~K, with the following pro-

perty:
If Nex, and a,(N)=g, then a,(k®N)=H(g). Furthermore H[K,]=K,,
H is a continuous function.

Lemma 5. Assume that the conditions of Lemma 4 hold with k= —1. Then they
hold with k=1, as well.

Proor. From Lemma 4 we have that for Ne.x’ a,(N)=g, a,(—1®N)=L(g),
where L: K,—~K, is a continuous function. By usmg the additivity of ¢ and ¢, and
the identity n’—l—(n—])(n+l), we deduce that ¢@(n,)—~g, ©(n)-2g, Y(n,—1)—
~L(g), Y(ny—1)—~L(2g), whence ¥ (n,+)=y(;—1)=y(n,~1), Y(n,+1)—~
~L(2g)-L(g)=:5(g)- O

Now and in the sequel we assume that ¢(n,)—-g=¢(n,—1)—~L(g). Then, by
Lemma 5, ¢o(n,+1)—~S(g), S(g)=L(2g)—L(g). From Lemma 4 we have that L, §
are continuous, L[K,]=S[K,]=K,.

Let the translation invariant metrics defined in G,, G, be g, o, respectively. For
A,BSG,, C,DS<G,, let

0(4,B) = xe};}fu e(x,»); e(C,D) = ‘eg}{wa(u, v).
Let furthermore
Fy:= {glg€K,, L(g) = h},
E,:= {g|g€K,, S(g) = h}.
Lemma 6. The sets F,, E, are closed for each hEK,.
Proor. It is clear, since L,S are continuous.

Lemma 7. The condition y(n,)—~h holds for some hcK, if and only if
o(@(n,—1), E})~0 (v—=o).

Proor. Assume that y(n,)~h and ¢(@(n,—1), E,)+0. Then
e(e(n,—1), E,) > 3(=0)

for a suitable infinite subsequence n, of n,. Then for a suitable rarefied subse-
quence n,~ of n,, @(n, »—l)—-r (EK) Then o(t, E;)=9d/2, consequently tdE,,
Y (n, )—-S(r);éh which is a contradiction. Assume now that g(¢(n,—1), E,)—~0
and y(n,)+h. Then there exists such a rarefied subsequence n, for which
Y (n,)—~t(#h). After a further rarefaction we have qo(n,,.—l)—-n, ¥ (n)—~r.
From the continuity of ¢(-, E,) we have ¢(n, E,)=0, which implies that n¢E,,
since E, is closed. 0O

Lemma 8. The condition (n,)—~h holds for some heK, if and only if
e(e(n,+1), E})~0 (v—eo).

Proor. The same as the proof of Lemma 7.
Lemma 9. I N¢K,, a,(N)=0, then a,(N)=0.
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Proor. Assume that ¢(n,)—=0. Then ¢@#%)=3¢(n,)-0, ¥(n,+1)-S0)=
=L(2-0)—L(0)=0, y(n3+1)—~0. Consequently

3
¥ [ 2:: ] = Y (n2—n,+1) = ¥ (n,(n,—1)+1) - 0.

From Lemma 7 we have
Q((P ("v("v e 1))9 Eﬂ) -0,

and by ¢(n,)=0, ¢(¢(n,—1), E,)~0. Applying Lemma 7 again, we get ¢(n,)—=0. O

Lemma 10. There exists a continuous homomorphism H: K,~K,, such that
NeX, implies that a,(N)=H/(a,(N)).

Proor. Let g€K,. From Lemma 3 it follows that there exists an M¢cK,,
such that a,(M)=—g.

After a suitable rarefaction, if it is needed, we can assume that a, (M) exists as
well. Let us assume that M is so chosen. Let now N be an arbitrary sequence N¢JX,,
such that a,(N)=g. Then ¢(n,m,)=¢(n,)+¢(m,)~g—g=0, and so by Lemma 9,
Y (n,m,)—~0. Since a,(M) exists, therefore NeX, and a,(N)=—a,(M). This
means that NeX,=Nec.X, and that the value a,(N) depends only on g.

If a,(N)=g,, a,(M)=g,, then ¢(n,m,)—~g,+g,, and by the additivity of ¢
and Y we deduce immediately that H(g,+g,)=H(g,)+H(g,). Hence (or from
Lemma 9) we have H(0)=0.

Finally, the continuity of H is straightforward, so we omit the proof. [

Lemma 11. Let U={g|gcK,, H(g)=0}. Then U is a compact subgroup of K.

Proor. Clear.
3. Let McX, be a fixed sequence such that a,(M)=0. Let
@3.1) ra(m, K):= sup oy (nm—1), ¥ (n—1),
(3.2 ro(m, k):= sup o (Y (nm+1), Y (n+1)).
n=k

Lemma 12. For an arbitrary sequence k,/ <=, we have, r,(m,,k,)—0,
r&(’"\n kv)_'o (v—pao)_

ProOOF. Assume that ry(m,, k,)+0. Let {v'} be a suitable rarefaction of {v},
such that ¢ (n, m,—1)—y(n,—1)—-1#0. After a further rarefaction {v"} of {v’}
we can assume that lim ¢@(n,.)=n exists. But then ¢(n,.m,.)—-n, consequently
v(n,-—1)=~L(n), Y (n,-m,.—1)—~L(n), that contradicts to t0. So the first asser-
tion is true. The proof of the second assertion is the saeme, therefore we omit is.

Lemma 13. We have, Yy(n+1)—y(n)=0 as n-rco.

ProoF. In o(y(nm—1), Y (n—1)) write first n=k+1, then we get o (Y (km+
+n—1), Yy (km)), substituting now k=(m—1)s, and applying the translation in-
variant property of , this is the same as o (Y (ms+1), ¥(s)). So we have ry(m,, k,)—~
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-0, where
(3.3) rs(m, k):= sg;z o (Y (mn+1), §(n)).

From (3.2), (3.3) it follows immediately, Y (n+1)—y(n)—=0. O

The condition ¥(n+1)—y(n)—~0 is equivalent with H(g(n+1)—¢@(n))—~0
(n—>e2).

Let us consider now the factor-group K;:=K,|U, with the natural metric r
defined as follows. If U, =g;+U(€K;), then r(U,,U,)=0(8,—8& U). It is
clear that K, is compact. Let A€y, defined by A(n):=¢(n)+ U. This induces a
mapping B: K,—+K,, which 1satopolog1cal isomorphism. Indeed, let B(p(n)+U)=
=y(n)=H(p(n)), and in general B(U,)=H(g). Since U, .,=U,+U,, and
H(g,+8.)=H(g)+H(gy), therefore

B(U,+U,) = B(U,)+B(U,).

It is clear that U, —U, if and only if H(g,)—H(h), which guarantees that B
and the inverse mapping B~* are continuous. From now on we may assume that
y=A

Let us assume now that for ¢=¢,, @,€5/;, the conditions NeX, =>—1&
GBNEJ{’} hold for i=1,2, and that K, =K,,. Then the function H K -K,
is well defined, H(o; (n)) A(n), conscquently H(p,(n)—@,(n))=0 VnEN, i
@1 (n)—@a(MEU, @y(n)=qy(n)+u(n), ucsly.

Let ¢, 4 be such a pair for which NeX¥,=—1@® NecX;. Then the same condi-
tion holds for each pair (¢,, 4) as well, where @ (n)=@(n)+u(n), ucdy, Uis
defined in Lemma 11.

Since K,=K is defined as the set of all limit points of sequences {¢(n,)|n,<
<my<...}, therefore its cardmallty is not greater than the continuum. Since G, is a
T, group, therefore G, and so K is connected.

Since A€sfg,y satisfies the condition A(n+1)—A(n)—0, therefore there exists a
continuous homomorphism A: R,—~K/U such that A(n):=A(n) neN.

Conversely, let USKCSG, be metrically compact Abelian group, G, is a T,-
group. Let A: R,—~K/U be a continuous homomorphism. Let A(n):=A(n), nEN.
Then A€s/¢,y, and the condition 4A(n)=A(n+1)—A(n)—~0 holds. Let 2={p}
be the set of primes. We define the value ¢,(p) by choosing an arbitrary element
he U, where U, is the coset that corresponds to A(p). Then we shall define ¢,(n) for
composite integers to be a complctcly additive function in K. Let H: K—~K/U be
the natural homomorphism, H(g)= Then we have H(g,(n))=A2A(n), and the
condition NEX, =—1BNeX, obvlously holds.

Collecting our results we get the following

Theorem. Let G,, G, be metrically compact Abelian groups, G, be a T, group.
Let pcdl(,, YeAg, be such functions for which NeX, implies that —1®NeX,.
Then Y(n+1)—y(n)=0 (n—<). Let U be the same as in Lemma 11. Let ).(n):=
=@(n)+U. Then €l 1y, Sfurthermore K,/U and K,, are topologically isomorphic,
A(n) corresponds to \(n) VMEN There exists a continuous homomorphism A: R —~
-K,/U such that A(n)=A(n) (YnEN). Furthermore for the natural homomor-
phi.rm H:K,~K,/U we have H(p(n+1)—q(n))=Ai(n+1)—Ai(n)—0.
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Conversely, let USK(SG,) be compact subgroups of G,. Let A:R.—~K/U
be a continuous homomorphism; 7(n):=A(n). Let ¢(p) be any element of the coset
g+U=A(p), for each prime p. Extend the domain of ¢ to the set n such that @€l .
Then H(@(n+1)—¢(n))=Ai(n+1)—i(n)—~0.

Consequently, N€X,=—1@NEX;.
The special case G,=T is formulated as

Corollary. Let T denote the one-dimensional torus, and G, be an arbitrary metri-
cally compact Abelian group. Let @€sly, WELs,.

Assume that NeA,=>—1+NcX,. Assume furthermore that y(n) is not identi-
cally zero.

Then there exist T€ R, MEN, ue.ﬁ’fu such that <p(n):%log n+u(n) (mod 1).

Let )(n)=Mo(n).
Then the correspondence .(n)~-(n) (VneN) generate a topological isomorphism
between K; and K, . The converse assertion is true as well.
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