Characterization of pairs of additive functions with some regularity property ## By Z. DARÓCZY and I. KÁTAI Dedicated to Prof. Béla Gyires on his 80th birthday 1. For a group G let \mathcal{A}_G^* denote the set of completely additive functions f: $N \rightarrow G$, i.e. those functions for which f(mn) = f(m) + f(n), $\forall m, n \in \mathbb{N}$. Let \mathcal{K} be the set of all infinite monotonically increasing sequences of positive integers. For typical elements $N = \{n_1 < n_2 < ...\}$, $M = \{m_1 < m_2 < ...\}$ of \mathcal{K} let $N \oplus M = \{n_1 + m_1 < n_2 + m_2 < ...\}$, $N * M = \{n_1 m_1 < n_2 m_2 ...\}$. Let furthermore for $k \in \mathbb{Z}$, $k \oplus N$ denote the sequence of the positive elements of $k + n_j$ (j = 1, 2, ...), and let $kN = \{kn_1 < kn_2 < ...\}$ for $k \in \mathbb{N}$. In what follows under a topological group we always mean a T_0 -group, that guarantees that the metric can be chosen to be translation invariant (see [4]). Let G_1 , G_2 be metrically compact Abelian groups, $\varphi \in \mathscr{A}_{G_1}^*$, $\psi \in \mathscr{A}_{G_2}^*$. Let \mathscr{K}_{φ} (resp. \mathscr{K}_{ψ}) be the set of those $N \in \mathscr{K}$ for which the limit $a_{\varphi}(N) := \lim_{j} \varphi(n_j)$ (resp. $a_{\psi}(N) := \lim_{j} \psi(n_j)$) exists. We should like to determine all those pairs of functions (φ, ψ) for which $N \in \mathcal{K}_{\varphi}$ implies that $-1 \oplus N \in \mathcal{K}_{\psi}$. The case $G_1 = G_2$, $\varphi = \psi$ under the similar condition $N \in \mathcal{K}_{\varphi} \Rightarrow 1 \oplus N \in \mathcal{K}_{\varphi}$ has been considered in our earlier papers [1], [2]. It was proved **Lemma 1.** If G is a metrically compact Abelian group, $\varphi \in \mathcal{A}_G^*$, with the property $N \in \mathcal{K}_{\varphi} \Rightarrow 1 \oplus N \in \mathcal{K}_{\varphi}$, then there exists a continuous homomorphism $F \colon \mathbb{R}_x \to G$, \mathbb{R}_x denotes the multiplicative group of the positive reals, such that φ is a restriction of F on the set \mathbb{N} . Conversely, if $F \colon \mathbb{R}_x \to G$ is a continuous homomorphism, then $\varphi(n) := F(n)$ ($\forall n \in \mathbb{N}$) is such a function, for which $\mathbb{Z} \in \mathcal{A}_G^*$ and $\mathbb{N} \in \mathcal{K}_{\varphi}$ implies $1 \oplus \mathbb{N} \in \mathcal{K}_{\varphi}$. In the proof we used the next theorem due to Wirsing [3] which will be formulated now as **Lemma 2.** Let T denote the one-dimensional torus, $\varphi \in \mathcal{A}_T^*$, $\Delta \varphi(n) := \varphi(n+1) - \varphi(n) \to 0$ $(n \to \infty)$. Then there exists a $\tau \in \mathbb{R}$ such that $$\varphi(n) \equiv \tau \log n \pmod{1}$$. The following assertions can be proved easily, arguing as it was done in [1],[2]. **Lemma 3.** Let K_{φ} , resp. K_{ψ} denote the set of all accumulation points of $\{\varphi(n)|n\in\mathbb{N}\}$, resp. $\{\psi(n)|n\in\mathbb{N}\}$. Then $K_{\varphi}\subseteq G_1$, $K_{\psi}\subseteq G_2$, and $\varphi(n)\in K_{\varphi}$, $\psi(n)\in K_{\psi}$ $(\forall\in\mathbb{N})$. **Lemma 4.** Let $\varphi \in \mathcal{A}_{G_1}^*$, $\psi \in \mathcal{A}_{G_2}^*$ and assume that $N \in \mathcal{K}_{\varphi}$ implies that $k \oplus N \in \mathcal{K}_{\psi}$, with a given $k \in \mathbb{Z}$. Then there exists a function $H: K_{\varphi} \to K_{\psi}$ with the following property: If $N \in \mathcal{K}_{\varphi}$ and $a_{\varphi}(N) = g$, then $a_{\psi}(k \oplus N) = H(g)$. Furthermore $H[K_{\varphi}] = K_{\psi}$, H is a continuous function. **Lemma 5.** Assume that the conditions of Lemma 4 hold with k=-1. Then they hold with k=1, as well. PROOF. From Lemma 4 we have that for $N \in \mathcal{K}_{\varphi}$, $a_{\varphi}(N) = g$, $a_{\psi}(-1 \oplus N) = L(g)$, where $L: K_{\varphi} \to K_{\psi}$ is a continuous function. By using the additivity of φ and ψ , and the identity $n^2 - 1 = (n-1)(n+1)$, we deduce that $\varphi(n_{\nu}) \to g$, $\varphi(n_{\nu}^2) \to 2g$, $\psi(n_{\nu}-1) \to L(g)$, $\psi(n_{\nu}^2-1) \to L(2g)$, whence $\psi(n_{\nu}+1) = \psi(n_{\nu}^2-1) - \psi(n_{\nu}-1)$, $\psi(n_{\nu}+1) \to L(2g) - L(g) =: S(g)$. \square Now and in the sequel we assume that $\varphi(n_v) \to g \Rightarrow \varphi(n_v - 1) \to L(g)$. Then, by Lemma 5, $\varphi(n_v + 1) \to S(g)$, S(g) = L(2g) - L(g). From Lemma 4 we have that L, S are continuous, $L[K_{\varphi}] = S[K_{\varphi}] = K_{\psi}$. Let the translation invariant metrics defined in G_1 , G_2 be ϱ , σ , respectively. For $A, B \subseteq G_1$, $C, D \subseteq G_2$, let $$\varrho(A,B) = \inf_{x \in A, y \in B} \varrho(x,y); \ \varrho(C,D) = \inf_{u \in C, v \in D} \sigma(u,v).$$ Let furthermore $$F_h := \{g | g \in K_\varphi, L(g) = h\},\$$ $$E_h := \{g | g \in K_{\varphi}, S(g) = h\}.$$ **Lemma 6.** The sets F_h , E_h are closed for each $h \in K_{\psi}$. PROOF. It is clear, since L, S are continuous. **Lemma 7.** The condition $\psi(n_v) + h$ holds for some $h \in K_{\psi}$ if and only if $\varrho(\varphi(n_v-1), E_h) + 0$ $(v \to \infty)$. PROOF. Assume that $\psi(n_v) \to h$ and $\varrho(\varphi(n_v-1), E_h) \to 0$. Then $$\varrho(\varphi(n_{\nu}-1), E_h) > \delta(>0)$$ for a suitable infinite subsequence $n_{v'}$ of n_v . Then for a suitable rarefied subsequence $n_{v''}$ of $n_{v'}$, $\varphi(n_{v''}-1) \to \tau$ ($\in K_{\varphi}$). Then $\varrho(\tau, E_h) > \delta/2$, consequently $\tau \in E_h$, $\psi(n_{v''}) \to S(\tau) \neq h$, which is a contradiction. Assume now that $\varrho(\varphi(n_v-1), E_h) \to 0$ and $\psi(n_v) \to h$. Then there exists such a rarefied subsequence $n_{v'}$ for which $\psi(n_{v'}) \to \tau(\neq h)$. After a further rarefaction we have $\varphi(n_{v''}-1) \to \eta$, $\psi(n_{v''}) \to \tau$. From the continuity of $\varrho(\cdot, E_h)$ we have $\varrho(\eta, E_h) = 0$, which implies that $\eta \in E_h$, since E_h is closed. \square **Lemma 8.** The condition $\psi(n_v) \to h$ holds for some $h \in K_{\psi}$ if and only if $\varrho(\varphi(n_v+1), E_h) \to 0 \ (v \to \infty)$. Proof. The same as the proof of Lemma 7. Lemma 9. If $N \in K_{\varphi}$, $a_{\varphi}(N) = 0$, then $a_{\psi}(N) = 0$. PROOF. Assume that $\varphi(n_v) \to 0$. Then $\varphi(n_v^3) = 3\varphi(n_v) \to 0$, $\psi(n_v + 1) \to S(0) = L(2 \cdot 0) - L(0) = 0$, $\psi(n_v^3 + 1) \to 0$. Consequently $$\psi\left(\frac{n_{\nu}^{3}+1}{n_{\nu}+1}\right)=\psi\left(n_{\nu}^{2}-n_{\nu}+1\right)=\psi\left(n_{\nu}(n_{\nu}-1)+1\right)\to 0.$$ From Lemma 7 we have $$\varrho(\varphi(n_{\nu}(n_{\nu}-1)), E_0) \to 0,$$ and by $\varphi(n_v) \to 0$, $\varrho(\varphi(n_v-1), E_0) \to 0$. Applying Lemma 7 again, we get $\varphi(n_v) \to 0$. \square **Lemma 10.** There exists a continuous homomorphism $H: K_{\varphi} \to K_{\psi}$, such that $N \in \mathcal{K}_{\varphi}$ implies that $a_{\psi}(N) = H(a_{\varphi}(N))$. PROOF. Let $g \in K_{\varphi}$. From Lemma 3 it follows that there exists an $M \in K_{\varphi}$, such that $a_{\varphi}(M) = -g$. After a suitable rarefaction, if it is needed, we can assume that $a_{\psi}(M)$ exists as well. Let us assume that M is so chosen. Let now N be an arbitrary sequence $N \in \mathcal{K}_{\varphi}$, such that $a_{\varphi}(N) = g$. Then $\varphi(n_{\nu}m_{\nu}) = \varphi(n_{\nu}) + \varphi(m_{\nu}) \rightarrow g - g = 0$, and so by Lemma 9, $\psi(n_{\nu}m_{\nu}) \rightarrow 0$. Since $a_{\psi}(M)$ exists, therefore $N \in \mathcal{K}_{\psi}$ and $a_{\psi}(N) = -a_{\psi}(M)$. This means that $N \in \mathcal{K}_{\varphi} \Rightarrow N \in \mathcal{K}_{\psi}$ and that the value $a_{\psi}(N)$ depends only on g. If $a_{\varphi}(N)=g_1$, $a_{\varphi}(M)=g_2$, then $\varphi(n_{\psi}m_{\psi})-g_1+g_2$, and by the additivity of φ and ψ we deduce immediately that $H(g_1+g_2)=H(g_1)+H(g_2)$. Hence (or from Lemma 9) we have H(0)=0. Finally, the continuity of H is straightforward, so we omit the proof. \Box **Lemma 11.** Let $U = \{g | g \in K_{\varphi}, H(g) = 0\}$. Then U is a compact subgroup of K_{φ} . Proof. Clear. 3. Let $M \in \mathcal{K}_{\omega}$ be a fixed sequence such that $a_{\omega}(M) = 0$. Let (3.1) $$r_1(m,k) := \sup_{n \ge k} \sigma(\psi(nm-1), \psi(n-1)),$$ (3.2) $$r_2(m,k) := \sup_{n \ge k} \sigma(\psi(nm+1), \psi(n+1)).$$ **Lemma 12.** For an arbitrary sequence k_v / ∞ , we have, $r_1(m_v, k_v) \to 0$, $r_2(m_v, k_v) \to 0$ $(v \to \infty)$. PROOF. Assume that $r_1(m_v, k_v) \to 0$. Let $\{v'\}$ be a suitable rarefaction of $\{v\}$, such that $\psi(n_{v'}, m_{v'} - 1) - \psi(n_{v'} - 1) \to \tau \neq 0$. After a further rarefaction $\{v''\}$ of $\{v'\}$ we can assume that $\lim \varphi(n_{v''}) = \eta$ exists. But then $\varphi(n_{v''}, m_{v''}) \to \eta$, consequently $\psi(n_{v''} - 1) \to L(\eta)$, $\psi(n_{v''}, m_{v''} - 1) \to L(\eta)$, that contradicts to $\tau \neq 0$. So the first assertion is true. The proof of the second assertion is the saeme, therefore we omit is. Lemma 13. We have, $\psi(n+1)-\psi(n)\to 0$ as $n\to\infty$. PROOF. In $\sigma(\psi(nm-1), \psi(n-1))$ write first n=k+1, then we get $\sigma(\psi(km+1), \psi(km))$, substituting now k=(m-1)s, and applying the translation invariant property of σ , this is the same as $\sigma(\psi(ms+1), \psi(s))$. So we have $r_3(m_v, k_v) \rightarrow$ (3.3) $$r_3(m,k) := \sup_{n \ge k} \sigma(\psi(mn+1), \psi(n)).$$ From (3.2), (3.3) it follows immediately, $\psi(n+1)-\psi(n)\to 0$. \square The condition $\psi(n+1)-\psi(n)\to 0$ is equivalent with $H(\varphi(n+1)-\varphi(n))\to 0$ $(n\to\infty)$. Let us consider now the factor-group $K_{\lambda} := K_{\varphi}|U$, with the natural metric r defined as follows. If $U_g = g_i + U(\in K_{\lambda})$, then $r(U_{g_1}, U_{g_2}) = \varrho(g_1 - g_2, U)$. It is clear that K_{λ} is compact. Let $\lambda \in \mathcal{A}_{K_{\lambda}}^*$ defined by $\lambda(n) := \varphi(n) + U$. This induces a mapping $B: K_{\lambda} \to K_{\psi}$, which is a topological isomorphism. Indeed, let $B(\varphi(n) + U) = \psi(n) = H(\varphi(n))$, and in general $B(U_g) = H(g)$. Since $U_{g_1+g_2} = U_{g_1} + U_{g_2}$, and $H(g_1+g_2) = H(g_1) + H(g_2)$, therefore $$B(U_{g_1}+U_{g_2})=B(U_{g_1})+B(U_{g_2}).$$ It is clear that $U_{g_v} \to U_h$ if and only if $H(g_v) \to H(h)$, which guarantees that B and the inverse mapping B^{-1} are continuous. From now on we may assume that $\psi = \lambda$. Let us assume now that for $\varphi = \varphi_1$, $\varphi_2 \in \mathscr{A}_{G_1}^*$ the conditions $N \in \mathscr{K}_{\varphi_i} \Rightarrow -1 \oplus \mathbb{N} \in \mathscr{K}_{\lambda}$ hold for i=1,2, and that $K_{\varphi_1} = K_{\varphi_2}$. Then the function $H: K_{\varphi_i} \to K_{\lambda}$ is well defined, $H(\varphi_i(n)) = \lambda(n)$, consequently $H(\varphi_1(n) - \varphi_2(n)) = 0 \quad \forall n \in \mathbb{N}$, i.e. $\varphi_1(n) - \varphi_2(n) \in U$, $\varphi_1(n) = \varphi_2(n) + u(n)$, $u \in \mathscr{A}_U^*$. Let φ , λ be such a pair for which $N \in \mathcal{K}_{\varphi} \Rightarrow -1 \oplus N \in \mathcal{K}_{\lambda}$. Then the same condition holds for each pair (φ_1, λ) as well, where $\varphi_1(n) = \varphi(n) + u(n)$, $u \in \mathcal{A}_{U}^*$, U is defined in Lemma 11. Since $K_{\varphi} = K$ is defined as the set of all limit points of sequences $\{\varphi(n_{\nu})|n_1 < n_2 < ...\}$, therefore its cardinality is not greater than the continuum. Since G_1 is a T_0 group, therefore G_1 and so K is connected. Since $\lambda \in \mathscr{A}_{K/U}^*$ satisfies the condition $\lambda(n+1) - \lambda(n) \to 0$, therefore there exists a continuous homomorphism $\Lambda: \mathbb{R}_x \to K/U$ such that $\Lambda(n) := \lambda(n)$ $n \in \mathbb{N}$. Conversely, let $U \subseteq K \subseteq G_1$ be metrically compact Abelian group, G_1 is a T_0 -group. Let $\Lambda \colon \mathbb{R}_x \to K/U$ be a continuous homomorphism. Let $\lambda(n) := \Lambda(n)$, $n \in \mathbb{N}$. Then $\lambda \in \mathscr{A}_{K/U}^*$, and the condition $\Delta \lambda(n) = \lambda(n+1) - \lambda(n) \to 0$ holds. Let $\mathscr{P} = \{p\}$ be the set of primes. We define the value $\varphi_1(p)$ by choosing an arbitrary element $h \in U_g$ where U_g is the coset that corresponds to $\lambda(p)$. Then we shall define $\varphi_1(n)$ for composite integers to be a completely additive function in K. Let $H: K \to K/U$ be the natural homomorphism, $H(g) = U_g$. Then we have $H(\varphi_1(n)) = \lambda(n)$, and the condition $N \in \mathscr{K}_{\varphi_1} \Rightarrow -1 \oplus N \in \mathscr{K}_{\lambda}$ obviously holds. Collecting our results we get the following **Theorem.** Let G_1 , G_2 be metrically compact Abelian groups, G_1 be a T_0 group. Let $\varphi \in \mathcal{A}_{G_1}^*$, $\psi \in \mathcal{A}_{G_2}^*$ be such functions for which $N \in \mathcal{K}_{\varphi}$ implies that $-1 \oplus N \in \mathcal{K}_{\psi}$. Then $\psi(n+1)-\psi(n)\to 0$ $(n\to\infty)$. Let U be the same as in Lemma 11. Let $\lambda(n):=$ $:=\varphi(n)+U$. Then $\lambda \in \mathcal{A}_{K_{\varphi}/U}^*$, furthermore K_{φ}/U and K_{ψ} are topologically isomorphic, $\lambda(n)$ corresponds to $\psi(n) \ \forall n \in \mathbb{N}$, There exists a continuous homomorphism $\Lambda: \mathbb{R}_x \to K_{\varphi}/U$ such that $\lambda(n)=\Lambda(n)$ $(\forall n \in \mathbb{N})$. Furthermore for the natural homomorphism $H: K_{\varphi} \to K_{\varphi}/U$ we have $H(\varphi(n+1)-\varphi(n))=\lambda(n+1)-\lambda(n)\to 0$. Conversely, let $U \subseteq K \subseteq G_1$ be compact subgroups of G_1 . Let $\Lambda : \mathbf{R}_x \to K/U$ be a continuous homomorphism; $\lambda(n) := \Lambda(n)$. Let $\varphi(p)$ be any element of the coset $g + U = \lambda(p)$, for each prime p. Extend the domain of φ to the set n such that $\varphi \in \mathscr{A}_K^*$. Then $H(\varphi(n+1) - \varphi(n)) = \lambda(n+1) - \lambda(n) \to 0$. Consequently, $N \in \mathcal{K}_{\psi} \Rightarrow -1 \oplus N \in \mathcal{K}_{\lambda}$. The special case $G_1 = T$ is formulated as **Corollary.** Let T denote the one-dimensional torus, and G_2 be an arbitrary metrically compact Abelian group. Let $\varphi \in \mathcal{A}_T^*$, $\psi \in \mathcal{A}_{G_2}^*$. Assume that $N \in \mathcal{K}_{\varphi} \Rightarrow -1 + N \in \mathcal{K}_{\psi}$. Assume furthermore that $\psi(n)$ is not identically zero. Then there exist $\tau \in \mathbb{R}$, $M \in \mathbb{N}$, $u \in \mathscr{A}_{\mathbb{Z}_M}^*$ such that $\varphi(n) = \frac{\tau}{M} \log n + u(n) \pmod{1}$. Let $\lambda(n) = M\varphi(n)$. Then the correspondence $\lambda(n) \leftrightarrow \psi(n)$ ($\forall n \in \mathbb{N}$) generate a topological isomorphism between K_{λ} and K_{ψ} . The converse assertion is true as well. ## References - Z. Daróczy—I. Kátai, On additive number-theoretical functions with values in a compact Abelian group, Aequationes Mathematicae 28 (1985), 288—292. - [2] Z. DARÓCZY—I. KATAI, On additive arithmetical functions with values in topological groups, Publ. Math. Debrecen 33 (1985), 287—291. - [3] E. Wirsing, The proof is given in a letter to I. Katai (9. 3. 1984). - [4] E. HEWITT-K. A. Ross, Abstract harmonic analysis, Berlin 1963, Springer. Z. DARÓCZY DEPARTMENT OF MATHEMATICS L. KOSSUTH UNIVERSITY DEBRECEN DEBRECEN 10, HUNGARY I. KÁTAI EÖTVÖS LORÁND UNIVERSITY COMPUTER CENTER BUDAPEST, BOGDÁNFY U. 10/b. H—1117 (Received February 27, 1987)