Radicals of r-near-rings

By G. L. BOOTH

Abstract. I™near-rings were defined by Satyanarayana, and the left and right operator
near-rings, L and R, respectively, of a I'-near-ring M were proposed by the present author. In this
paper, we discuss the prime radical (M) of M and show that, if M has a strong left and a right
unity, then P(L)+=2P(M), where Z(L) is the prime radical of the near ring L. (M) is a Hoehnke
radical in the variety of I'-near-rings. We also define the Levitzki and nil radicals, (M) and A (M),
respectively. Both are Kurosh—Amitsur radicals. If M has a strong left unity, then Z(L)*= 2 (M),
where £ (L) is the Levitzki radical of the near-ring L. A similar result holds for the nil radical. s-prime
ideals of M are defined, and A/ (M) is the intersection of the s-prime ideals of M.
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1. Preliminaries

A I'-near-ring is a triple (M, +, I') where
(i) (M, +) is a (not necessarily abelian) group;
(ii) I' is a nonempty set of binary operators on M such that for each y€r,
(M, +,y) is a right near-ring;

(iii) xy(yuz) = (xyy)uz for all x,y, zeéM,y, p€r.

If, in addition, the following condition is satisfied:

(iv) If y, uelI' and xyy=xpuy for all x, ye M, then y=pu then M is called a
strong I'-near ring. We remark that every I'-near ring M is a strong I'"-near ring for
some choice of I”. For y, u€l’, we define y~u if xyy=xuy for all x, yé M.
Clearly, this is an equivalence relation on I'. Let [y] denote the equivalence class con-
taining 7, and let I'"={[y]: y€I'}. Clearly, M is a strong I"’-ring with the operation
x[yly=xyy(x, ye M, yeI').

Let M and M’ be I'near rings (for the same I') and let /: M—-M’ be a group
homomorphism. Then, if f(xyy)=/(x)y/(y) for all x, y¢ M and y€rI, fis called
a I'-near-ring homomorphism. A subset I of M is called an ideal of M (denoted by
I<aM) ifitis the kernel of some I'-near-ring homomorphism. It is easily verified that
I is an ideal of M if and only if:

(i) (I, +) is a normal divisor of (M, +);

(ii) For all acl, x,yeM and y€rI', ayxcl and xy(a+y)—xyy€el.

If I<aM, the factor group M/I'is a I'-near-ring with the normal addition opera-
tion, and (x+1)y(y+I)=xyy+I(x, ye M, yeI'). If xé M, the ideal generated by x
is the smallest ideal of M containing x (i.e. the intersection of all ideals of M contain-
ing x), and will be denoted (x). Similar notation will be used in the variety of near-
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rings. In both varieties, the notation I<M will mean “I is an ideal of M™. If
UVEM and @®SI', we denote UPV ={uyv: ucU, yc @, veV'}.

I'-near rings constitute a generalization of I'-rings in the sense of Barnes [1],
and also of near-rings, in the sense that every near ring (N, +, -) is a I'-near-ring
with I'={.}. They also form a variety of Q-groups, and the ideals and homomor-
phisms as defined above coincide with the corresponding definitions given in [9].
Subdirect sums of I'-near-rings are defined in the natural way. The usual isomorphism
theorems for rings are valid for I'-near-rings ([9] Theorems 3A—3D).

Kurosh—Amitsur radical classes for Q-groups have been defined by RIABUHIN,
A class Z of I'-near rings is a radical class in this context if:

R1: Z is closed under homomorphisms.
R2: If M is a I'near ring, and &/ is a class of Z-ideals of M which is linearly ordered
by inclusion, then
U 4€A.
Ao
R3: If M is a I'-near ring and A<M, then A€R, M/AcR implies McR.
If, in addition, the following axiom is satisfied:
R4: McR, A<M implies ACR

then 2 is called a hereditary radical class.

2. The operator near-rings

Let M be a I'near-ring. In [3], the left and right operator near-rings of M were
defined. Let Zbe the set of all mappings of M into itself which act on the left. Then &
is a right near-ring with the operations pointwise addition and composition of map-
pings. Let xé M, yeI'. Define [x,y]: M—M by [x,y]ly=xyy for all ye M. The
sub-near-ring L of % generated by the set {[x, y]: x€ M, yeI'} is called the left ope-
rator near-ring of M.

If ICL, then I*={xcM:[x,y]el for all yer}.

If JEM, J+'={leL:IxeJ for all xeM}. It is shown in [3], Proposition 5,
that /<L implies I*<aM and that J<aM implies J*'<sL. Furthermore, it is
easily seen that these mappings preserve intersections of sets.

If IeL, xeM and y€rl, then it can be shown that /[x, y]=[Ix, y]. This iden-
tity, which is a consequence of the right distributivity of M, will be of use later.

A right operator near-ring R of M is defined analogously to the definition of L.
Let 2 be the left-near-ring of all mappings of M into itself which act on the right. If
yeI', yeM, we define [y, y]: M—-M by x[y, y]=xyy for all xé M. R is the sub-
near-ring of # generated by the set {[y, y]: yeI', ye M}.

Example 2.1. (SATYANARAYANA [10])

Let (G, +) be a (not necessarily abelian) group and let X be a nonempty set. Let
M be the set of all mappings of X into M, and I the set of all mappings of M into X,
mappings being taken to act on the left. It is easily seen that M is a I'-near-ring with
the operations pointwise addition and composition of mappings. Such a I'-near-ring
will be referred to as a I'-near-ring of mappings.
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Let M be a I''near-ring, and let M’ be a I"-near-ring. We say that M is em-
beddable in M’, if there exist a group monomorphism f: M—~M’ and an injective
mapping ¢:I'—=I" satisfying, for all x, yeM, yer:

Sxpp) = () e f(»).

Proposition 2.2. Every strong I'-near-ring M is embeddable in a gamma-near-
ring of mappings.

Proor. Let R,={[y, x]: yéI', xé M} and let R,=R,U{e}, where = denotes
any element which is distinct from the elements of R,. Let M’ and I’ denote, respecti-
vely the sets of all mappings of R, into M and of M into R,. We show that the I'-
near-ring M is embeddable in the I-near-ring M"’.

Suppose that xé M. We define £: R,—~M by

£(r) = xr (r€Ry)
2(e0) = x.
Note that, if x, y,zé M and y€rI, then

i
x+y([y, 2]) = (x+y)yz
= Xyz+yyz
= (2+5)([», 2))
~
X+y(e) = x+y
5 = (#+5)(=).
Hence x+y=x%+7, i.e. the mapping x—£ is a group homomorphism. Moreover,
suppose that X¥=jp. Then X(«)=j() i.e. x=y. Thus x—-*% defines a group
monomorphism.

Now suppose that yeI'. Define $: M—=R, by $(x)=[y,x] for all xeM.
Then if y, uéI' and 9$=f, it follows that [y, y]=[u, y] for all ye M, whence
xyy=xpuy forall x, y¢ M. Since M is a strong I'-near-ring, y=u. Hence the mapping
y—$ is injective.

Finally, suppose that x,y,zEM and 1y, u€rI'. Then

£09([u, 2]) = £9(yuz)
= ([, yuz])
= Xyyuz
e
= xyy ([ 2]).
£99 (=) = £9(»)
£([y, »1)

Hence x/);}=.f 9 », and the proof is complete.
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3. Prime ideals and the prime radical

In this section, let M be a I'-near-ring, and let L be its left operator near-ring.
If P<M, and A, B<M, ATBS P implies ASP or BES P, then P is called a
prime ideal of M. The following characterization of prime ideals of M is proved in
exactly the same way as its counterpart for near-rings ([11], Lemma 2).

Proposition 3.1, Let P<aM. Then the following are equivalent:
(a) P is a prime ideal of M.
(b) If x, yeM, x, y¢ P, then there exist X' €(x), y'€(y) and yeI' such that x'yy’¢ P.

If Z [d;, 6;Je L(d;ic M, y;,cI') has the property that Z’d;é,x x for all
XEM, then Z' [d;5;] is called a left unity for M. A strong left umty for M is an ele-

ment [d, 9] of L such that déox=x for all xéM. Right unities and strong right
unities are defined analogously. It may be verified that if / is a left unity for M, then /
is the unity of the near-ring L.

Proposition 3.2. Suppose M has a right unity Z [6;, d)). Then, if P is a prime
ideal of M, P*’ is a prime ideal of L.

PROOF. Suppose that I,/’¢ L—P*’. Then there exist x, yé M such that Ix,
Iy¢ P. Since P is a prime ideal of M, there exist ué€ (/x), ve€(ly) and €I such that
uyve[P We claim that [uyv, 6;]¢ P** for at least some j. For if [uyv, §;,]J€ P** for
all /, it follows that 2 uyvd; d,(—_ P, i.e. uyve P, contradicting our choice of u, vand y.

Let j be such that [u}lv, 0;]¢ P*’, i.e. [u,y][v, 5;]J¢ P*’. Now let T<aL be such that
leI. Then,if pel, then [Ix, u]=I[x, p)Jel. Hence, IxeI*. It follows that {(Ix)STI*,
and hence that u€I*. Consequently, [u, y]€l. This implies that [w, y]€({/). Simi-
larly, [v,8;]€{/"). This completes the proof that P*’is a prime ideal of L.

Proposition 3.3. Let M be a I'-near-ring with a strong left unity [d, é]. If Qisa
prime ideal of L, then Q% is a prime ideal of M.

Proor. Suppose x, y§ Q*. Then there exist y, u¢I' such that [x, y], [y, u]¢O.
Since Q is a prime ideal of L, there exist /€ ([x, y]) and e[y, u]) such that /,/,§ Q.
Now 4L1,=1[d, §]l[d, 8]1=[(l,d)d(l,d), 3]. It follows that (/,d)é(l,d)4Q*. Now
let zé M. Then xyz€({x), whence [x,7y]e(x)*’. Hence ([x,y])S{(x)*". It follows
that /,€(x)*’, whence /,dc(x). Similarly, /,d¢(y). This completes the proof that
Q™ is a prime ideal of M.

Proposition 3.4. Let M be a I'-near-ring with left operator near-ring L. If M has a
strong left unity [d, 8] and a right unity D (&, €;], then
i

P(L)r=P(M).

Proor. Let Pbe a prime ideal of L. Then, by Proposition 3.2, P* is a prime ideal
of M. Moreover, (P*)*"=P by [3], Proposition 5. Suppose Q is a prime ideal of M.
Then by Proposition 3.3, Q*’is a prime ideal of L, and (Q*")* =0, by [3], Proposi-
tion 5. Thus the mapping P—P™* defines a one-to-one correspondence between the
sets of prime ideal of L and M. Hence
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P(L)* = (NP)* (as Pruns through the prime ideals of L)
= P+
= P(M).

Remarks

1. The above result was shown by CorpAGE and LuH ([8], Theorem 4.1) to hold for
arbitrary I'-rings. It is an open question whether the assumption of the existence of
unities can be dropped for I'-near-rings.

2. The above definition for primeness in I'-near-rings coincides with that given for
Q-groups by Buys and GErBER [6). It is well known that the prime radical is
not a Kurosh—Amitsur radical in the variety of near-rings. Since I'-near-rings are
a generalization of near-rings, the same will be true in this variety.

3. A Hoehnke radical in a variety G of Q-groups is a mapping P which assigns to
each G€% an ideal P(G) of G such that:

(i) If f:G—~G’ is a surjective Q-homomorphism, then f(P(G))<S P(G');
(i) p(G/P(G))=(0) for all Ge%.

In view of the definition in [5] and [6], Corollary 2.5 and Theorems 3.3 and 3.5, the

prime radical is a Hoehnke radical in the variety of I'-near-rings.

4. The Levitzki radical

The Levitzki radical for near-rings has been defined by BHANDARI and SEXANA
[2]. If N is a near-ring, and A<aN, then A is locally nilpotent, if for every finite
subset F of A4, F"={0} for some positive integer n. The Levitzki radical of N, £Z(N),
is the sum of the locally nilpotent ideals of N. Buys and GERBER [7] extended the
notion of local nilpotence to arbitrary varieties of Q-groups, in a way that generalizes
the definition of Bhardari and Sexana.

Following CopPAGE and LuH [8], we define an ideal A of a I'-near-ring M to be
locally nilpotent if for all finite subsets F and @ of A and TI', respectively, (F®)"F=
=F®F...®F={0}, for some positive integer n. The Levitzki radical, £ (M), is the
sum of the locally nilpotent ideals of M.

Another notion of local nilpotence for I'-near-rings is available using the defini-
tion of Buys and GEeRrBER. In terms of this definition, A<M is locally nilpotent if
for any finite subset F of A4, there exist yy, yq, ..., 9,€I" such that Fy, Fy,...y, F={0}.
It is clear that local nilpotence in the sense of CoPPAGE and LUH implies local nil-
potence in this sense. The coverse is not, however true. Let M=Zg=TI. Clearly,
M is a I'-near-ring with the addition and multiplication operations on Zg. The set
A={0, 3} is an ideal of M. Moreover, A is locally nilpotent in the sense of Buys and
Gerber, for if FE A, then F{2} F={0}. It is not, however, locally nilpotent in the
sense of CoPPAGE and LuH, since if F=®={3}, then (F®)"F{0} for any positive
integer n. Throughout this section, the term locally nilpotent will mean locally nil-
potent in the sense of Coppage and Luh. The next two results can be proved by easy
modifications of the corresponding results in [7].

Proposition 4.1. Let A be an ideal of the I'-near-ring M. Then M is locally nil-
potent if and only if the I'-near-rings A and M|A are locally nilpotent.

Proposition 4.2. Let M be an arbitrary I'-near-ring. Then ¥(M)=N{P: P is
a prime ideal of M and ¥ (M/P)={(0)}.
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Remarks

1. The Levitzki radical is a hereditary Kurosh—Amitsur radical in the variety of I'-
near-rings. The fact that the Levitzki radical class & satisfies axioms R1, R2 and
R4 is easily verified, while the fact that it satisfies R3 is a consequence of Proposi-
tion 4.1.

2. It follows immediately from Proposition 4.2 that for an arbitrary I'-near-ring M,
PM)SZL(M).

Proposition 4.3. Let M be a I'-near-ring with left operator near-ring L. Then:
(@) L(L)"SZL(M);
(b) If M has a strong left unity, then £ (L)t =%(M).

PROOF.

(a) Since Zis a Kurosh—Amitsur radical in the variety of near-rings ([7], Theorem
3.8), Z(L) is a locally nilpotent ideal of L. Let F, ¢ be finite subsets of Z(L)*
and I, respectively. Then, if G={[x,7]: x¢F, y¢®}, G is a finite subset of
Z(L). Hence, G*"={0} for some positive integer ». It follows that (F®)" F={0},
ie. Z(L)* is a locally nilpotent ideal of M. Since % is a Kurosh—Amitsur radical
in the variety of I'-near-rings, Z(L)*S¥(M).

(b) Clearly, we need only prove ZL(M)S.2(L)*. Let lc.Z(M)*’". Then I=I[d, 5]=
=|[/d, é]. Hence, every element of Z(M)*’ can be written in the form [x, d] for
some x€L(M). Let F={[x,, 4], ..., [x,, 5]} be a finite subset of L(M)"’,
where x;€ (M) (1=i=n). Since £ is a Kurosh—Amitsur radical in the variety
of I'-near-rings Z(M) is locally nilpotent. Let G={x,, ..., x,} and @={d}.
Then there exists a positive integer n such that (F®)"F={0}. It follows that
F"*1={0}, and hence that &(M)*’ is a locally nilpotent ideal of L. Hence,
LM)VSL(L). Thus L(M)S(L(M)*')*SZ(L)*, and the proof is complete.

Remark. Proposition 4.3 (b) was shown by CoppaGE and LuUH ([8], Theorem 7.2)
to hold for arbitrary varieties of I'-rings (i.e. without making any assumptions about
unities). Whether this result holds for arbitrary varieties of I'-near-rings is an open
question.

5. The nil radical

The nil radical of a I'-ring was defined by CoppAGE and LuH [8]. Let M be a
I'-near-ring, and let yeI'. Then x€M is said to be y-nilpotent if there exists a posi-
tive integer n such that (xy)"x=xypx...yx=0. If A<M, then A is called a y-nil
ideal of M if A consists entirely of y-nilpotent elements. The y-nil radical of M, A, (M),
is the sum of the y-nil ideals of M.

Proposition 5.1. The class A, of y-nil I'-near-rings is a hereditary radical class.

The proof of this proposition is straightforward, and will be omitted.

A subset S of a I'-near-ring M is called a y-system if, for all x, y€S, xyyeS.
An ideal P of M is called s—y-prime if M — P contains a y-system § such that I<M,
IZ P implies that SNI#0. M is called an s—y-prime I'-near-ring if (0) is an s—7-
prime ideal of M.
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Lemma 5.2. Let M be a I'-near-ring, and let P<aM. Then P is an s—y-prime
ideal of M if and only if M/P is an s—y-prime I'-ring.

PrROOF. Let P be an s—y-prime ideal of M. Suppose that S'is a y-system in M — P
such that INS#=0 for every ideal I of M which is not contained in P. Then let
So={x+P: x€S}. Clearly S, is a y-system in M/P and P¢S,. Suppose that Iis a
nonzero ideal of M/P. Then by [9], Theorem 3B (applied to the natural homo-
morphism of M onto M/P), I=J/P for some ideal J of M which properly contains P.
Hence JNS#0, from which IMNS,#0. Hence M/P is an s—y-prime I'-near-ring.

Conversely, suppose that M/P is an s—y-prime I'-near-ring. Then M/P—{P}
contains a y-system S such that SNI#=P for every nonzero ideal I of M/P. Let
S;={x€M: x+ PcS}. Suppose that J<M and JEP. Then J+P<M ([9],
Theorem 3D) and (J+ P)/P is a nonzero ideal of M/P. Hence (J+ P)/PNS#0, ie.
there exist j€J and p€ P such that j+p+ PcS, whence j+ P¢S. Hence j€JNS;.
Clearly, S, is a y-system in M which is contained in M — P. Thus, P is an s—y-prime
ideal of M, as required.

Lemma 5.3. Let M be an s—y-prime I'-near-ring. Then N ,(M)=/{0).

ProOOF. Let S be a y-system of M which does not contain 0, such that SMNI=9
for all Os¢I<aM. Then if O0=I<aM, let x€SMI. It follows that (xy)"x€S for all
positive integers n. Since 04 S, x is not y-nilpotent, and hence I is not a y-nil ideal
of M. Siuce I is arbitrary, it follows that A, (M)=(0).

Proposition 5.4, Let M be an arbitrary I'-near-ring. Then
N,(M) =NP
where the intersection runs over the s—y-prime ideals of M.

ProOF. Let P be an s—y-prime ideal of M. Then M/P is an s—y-prime I'-near-
ring by Lemma 5.2, whence A, (M/P)=(0) by Lemma 5.3. It follows from the fact
that 4] is a radical class that o y(M)S P. Hence, #,(M)SP.

Now suppose that x¢ M oy ,(M). Then (x)is not a y-nil ideal of M. Hence,
there exists y€(x) such that ( yy)"y;ﬁO for all positive integers n. Let S={y, yyy, ...
-ees (P)"y, ...} Itis easily seen that §'is a y-system of M which does not meet A, (M).
The family 7 of all ideals of M which contain A4, (M), but do not meet S is nonempty,
since N, (M)€I. By Zorn’s Lemma, I has a " maximal element P. Now let So=
—-{z+P z€S}. Clearly, S, is a y-system of M/P, which does not contain 0. Let
0#U<aM/P. Then U=V/P for some ideal V of M which properly contains P.
Since VNS#0, V/PNS,#0. Hence, M/Pis an s—y-prime I'-near-ring. By Lemma
5.2, P is an s—y-prime ideal of M. But x¢ P, for this would imply that (x)S P,
whence y€ P, which contradicts the definition of P. Hence, NPSA, (M), and the
proof is complete.

Corollary 5.5. Let M be an arbitrary I'-near-ring. Then N,(M)={0) if and
only if M is isomorphic to a subdirect sum of s—y-prime I'-near-rings.

An ideal A4 of a I'near-ring M is called nil if 4 is y-nil for each y€I'. The nil
radical of M, #°(M), is the sum of the nil ideals of M. It is easily shown that 4" is a
hereditary radical class in the variety of I'-near-rings. The next result is proved exactly
as for I'-rings ([4], Proposition 2.1).

5
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Proposition 5.6. Let M be an arbitrary I'-near-ring. Then
N (M) = () H;(M).
yeEr

Remark. The nil radical 4 (A4) of a near-ring 4 has been defined by VAN DER
WaLT [11]. If we define an ideal 4 of a I'-near-ring to be s-prime if A4 is s—y-prime for
some y€I’, then the next result generalises [11], Theorem 10.

Proposition 5.7. Let M be an arbitrary I'-near-ring. Then N (M)=(0) if and
only if M is isomorphic to a subdirect sum of s-prime I'-near-rings.

Proposition 5.8. Let M be a I'-near-ring with left operator near-ring L. Then
(@) /(L) SH (M).
(b) If M has a strong left unity [d, 8] then

H(L)r =N (M).
PROOF.

(a) Let xeA(L)* and y€r. Then [x, y]JéA (L), from which [x, y]"=0 for some
positive integer n. It follows that (xy)"x=0, and hence that A"(L)* is a nil
ideal in M. Since A" is a radical class in the variety of I'-near-rings, A (L)* S
SN (M), as required.

(b) Let le A/ (M)*’. As in the proof of Proposition 4.3 (b), /=[x, 4] for some
x€N(M). Let n be a positive integer such that (x4)"x=0. Clearly, [x, §]"*1=0,
so /" (M)*” is a nil ideal of L.

By [11], Theorem 9, #(M)*'SA(L). Hence, A/ (M)S(N/(M)*)*SAH(L)*, and
the proof is complete.
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