The period length of Voronoi’s algorithm for certain cubic orders

By H. C. WILLIAMS (Winnipeg)

1. Introduction. Let D be a positive integer which is not a perfect square. Also,

let ®=(P+}D)/Q, where P, Q¢Z (the rational integers) and Q|D—P%. It is
well known (see, for example PERRON [6] or CHRYSTAL [1]), that the Regular Conti-
nued Fraction expansion of &=, is given by

P = (qM G1s 925 «+os Gn-1> tpll)’

where ¢m=(Pm+VE)/Qm=]/(¢m—1_q:n—1)$ Qm=[¢m1 (‘m:Ov 19 20 3* -")' We
also know that this continued fraction must ultimately become periodic; that is,
for some k€Z* we will get

(1.1) Dpsx = Py

for all m=0. The least positive value of k for which (1.1) occurs is called the period
length of the continued fraction expansion of .
If weE pllt A_==0, A_1=], B_2=1, B"l=0 and deﬁ.ﬂe

Am = QMAm-l'{'Am-is Bm = QMBH!-I-I.BM—S (m e Ov ls 29 -")
then

Am/Bn = (9’0’ Gis Gos +ees q:n)'
Also, (see, for example, WiLLiAMS and WUNDERLICH [12]), if we define

03 = An—s_aBn-S!
we get

(1.2) N0, = (= 1)"710u-1/Qo.

Here, as usual, we use N(a) to denote the norm of «; in this case N(x)=o&, where &
is the conjugate of a. Note that

6 = (Qu-1 1T @)/00 = TT 05
where =

0 = (P,+VD)[Qi-y =—($)
When P=0, O=1, we have
(1.3) Ap_s—DBi ;= (-1)""1Q,,
from (1.2). We also have
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Theorem 1.1. If ged(x,y)=1, x,y=>0, and
(1.4) x:—Dy?* = N,
where |N|<VD, then x=A, and y=B,, for some m=0. 0O

Because of (1.3) we see that the continued fraction expansion of VD provides us
with the vaules of |[N|<} D for which (1.4) has solutions. In view of this it is of
some interest to be able to determine the continued fraction expansion of J D. For

most values of 1/5 however, this is rather difficult to do because k tends to be large;
but for certain, simple values of D we have small values for k and the continued
fractions expansion of D is easy to find. In our presentation of some of these below
we use o=} D.
(i) For D=M%*+1, we have k=1, q,=M, P,=M, 0,=1, q,=2M,
0,=M+34.

(i) For D=M?-1, we have k=2, g,=M-1, P=M-1, Q,=2M-2,
qi=1, Po,=M-1, Q,=1, g,=2M -2, 0,=M—-1+6, O0;=M+29.

(iii) For D=M?*+2, we have k=2, g,=M, P,=M, 0,=2, ¢;=M, P,=M,
0.=1, g,=2M, 0,=M+9, O0,=M?2*+1+4+M5}.

(iv) For D=M?*-2 (M=2), we have k=4, g,=M-1, P,=M-1, O,=
=2M-3, q=1, P,=M-2, 0,=2, q.=M-2, P;=M-2, Q=
=2M -3, qs=1, P,=M-1, Q,=1, q,=2M-2, 0,=M-—1+9, 0;=
=M+0d, O,=M*—-M-—-1+(M-1)d, O;=M?*—1+M0}.

(v) For D=M?*+M, we have k=2, qo=M, P,=M, O,=M, q,=2, B=M,
0:.=1, g.=2M, 0,=M+6, 0;,=2M+1+20.

(vi) For D=M?*-M, we have k=2, g,=M-1, P,b=M-1, O,=M-1,
@1=2, P,=M—1, Q,=1, q,=2(M—-1), 0,=M—1+6, 0,=2M—1+25,

Let 4, denote the discriminant of an order @ of # =2(d), the quadratic field

formed by adjoining  to the rationals 2. Now @ has a unitary basis {1, #} where
®c0 and do=(P—P)*=1%4, where I€Z and 4 is the discriminant of the maximal
order Oy 20. Also, if D=E2D’, where D’ is square-free, we have 4=4D" when
D'=2,3(mod4)and A=D" when D=1 (mod 4). The following result is a genera-
lization of Theorem 1.1.

Theorem 2.2. Let O be any order of H =2(5) with basis {1, ®}. If a=x+y®
(x,y€Z) with a>1 and ged(x,y)=1 and

(1.5) IN@)| < V4e/2,
then
a = A,—PB,

for some m=1. Here the values of A, and B, are computed from the regular conti-
nued fraction expansion of ®.

Proor. Similar to the proof of Theorem 1.3 of WiLL1AMS and Dueck [11]. [

Of particular interest is the maximal order 0, . Note that for (i1), (iii), (iv), (v),
(vi) above we already have the continued fraction expansion for the maximal order
when D is square-free. However, for case (i) when 2|M and D is square-free, we have
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D=1 (mod 4) and 0y has basis {1, &} with &=(1 +}/5)/2. In this case we find
that the continued fraction expansion of (1+}yD)/2 has k=3, q,=M/2, P,=
=M-1, O,=M, ¢,=1, P,=1, Qy,=M, ¢;=1, P,=M—1, Q3=2, gy=M-1, 0,=
=(M—-1+yD)/2, 0,=(M+1+)YD)/2, 6,=M+YD.

Another problem of some interest is the determination of those square-free
values of D such that the regular continued fraction for the maximal order of 2(J)
has k=1. For this case it is a simple matter to show that k=1 only for D=M?2+1
(2{M) and for D=M*+4 2{M).

All of these results are very easy to obtain in the case of a quadratic field. If,
however, we wish to examine the analogous problems in 2(d), where é*=D, mat-
ters become rather more difficult. The purpose of this paper is to provide results

L —
analogous to (i)—(vi) in 2() D). We shall also partially solve the problem of when the

@
period length of Voronoi’s continued fraction for the maximal order of R(}D) is 1.
In order to do this we must first describe Voronoi’s extension of the regular continued
fraction algorithm to cubic fields with negative discriminant.

2. Voronoi’s algorithm. In this section we will give a brief description of Voro-
noi’s algorithm. For more details the reader is referred to DELONE and FADDEEV [2],
WiLLiams, CORMACK, SEAH [10] or WiLLIAMS and DUECK [11]. Here and in the sequel
we will use the symbol " to denote a cubic field of negative discriminant. If «€ X",
denote its conjugates by o’ and «” and we denote the norm of & by N(a)=ax'a”.
We also define the point 4€2* corresponding to o by

A= (G!, Has Cz)s

where n,=(a'—a")/2i, {,=(a"+a")/2, #+1=0.
If A, u,véxX" and A, u,v are rationally independent, we define the lattice
ZL(ER%) of A with basis {4, u, v} by

% = {aA+bM+cN|a, b, c€Z).

If ac X and A€ for the sake of brevity we will often use the notation a€.% to
denote that it is really the corresponding point A that is in 2. We also use a.Z to
denote the lattice with basis {«/, au, av}. If A4 (or ) is any point of &, we define
the normed body A (A) of A to be

N (A) =H (@) = {(x, y, 2Ix, ¥, 2ER; |x]| < &; y*+2° = |o']?)

Here if |o/|=|p’|, we must have a=+p. ([2], p. 274). We say that &(=0) is a
(relative) minimum of £ if 4 (®)NZL={(0, 0, 0)}. Ify and @ are minima of £ and
Y =>®, we say that y and @ are adjacent minima of L when there does not exist a
non-zero 0€¥ such that &<0<y and |0'|<|®’|. If

@ G ey D

is a sequence of minima in #such that 6;,,>0; and 6,,,, 0; are adjacent (i=1,
2,3, ...), we say that (2.1) is a chain of minima of Z. By Minkowski’s theorem (see
[2]) we can prove that there always exist such chains in 2. Further, if 0 is any minimum
of Zand 0=0,, then 0=0, for some m (€Z)>1.

6*
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If 1€ 2 (ie. (1,0,1)¢.%) and 1 is also a minimum of %, we say that % is a
reduced lattice of X . Voronoi’s continued fraction algorithm determines a chain of
minima in such a lattice. If % is any reduced lattice of ", let 0, be the minimum ad-
jacentto | in &. Since (1/0,) % is also a reduced lattice of Z. (See, for example,
[11] p. 686), we can easily show how a chain like (2.1) can be determined. We let
Z,=% and 0" be the minimum adjacent to 1 in 4. Define %,,,=(1/0{")%,,
where 6" is the minimum adjacent to 1 in %,. Clearly

n—1
(2.2) 0,= T 0.
i=1

Thus, to determine a chain (2.1), we must show how to solve the problem of finding
the minimum adjacent to 1 in a reduced lattice # of 2. We simply mention here
that one solution of this problem has been given in [10]; many other solutions have
also been given (see [2]).

Let a¢% and define its puncture P(x) to be the point (&,, n,)€ %%, where
¢, =Qu—ao"—a”")/2. Note that a=¢,+{, and that &, n, {, considered as functions of
a, are additive. Thus, the set of all punctures {P(x)x€.#} forms a lattice. Also,
P(x)=P(f) if and only if a—p€Z. In [10] it is shown that there exist @, y€.Z
such that P(®), P() form a basis of this lattice of punctures and

(2.3) o=& =0, neny <0, |Iny|=>1/2, [ng|l = 1/2.
We also have

Theorem 2.1. If 0,(=1) is the minimum adjacent to 1 in &, then P(0,) must
be one of P(0), P(y), P(0—y), P(O+y) or P(20+Vy). O

Thus, in order to find 0,, we must first find 0 and . This is usually done by
using a form of the regular continued fraction algorithm in the lattice of punctures.
Since P(0,) is limited to one of 5 possibilities and |0;| <1, we only have a few choices
for 0,. It must be that one of all of the elements of % which have puncture P(9),
P(Y), P(®—y), P(®+y) or P2®+y) such that [;]<1 and 0,(=1) is least.
Since
(2.4) [”? = |&'|* = a’a” = {3+nz,

we must have |{,/<1 when |a'|<1. Now 6,=a-+y for some yc{®,y, P—V,
&+, 2¢0+y} and a€Z. Further o) =la+{,|<1; hence, a=[-{] or
[-{,]+1. Thus, there are only 10 possibilities for 6,.

Let @ te any order of % and let 0, (the ring of algebraic integers of ") be the
maximal order of ). If {1, u, v} is a unitary basis of ¢ and 4, is the discriminant of 0,
then 4,=1%4, where I€¢Z and 4 is the discriminant of X (or 04). Also, if &
is the lattice with basis {1, u, v} then % must be a reduced lattice. For, if it were not,
there would exist a€.% such that 0<=a<1 and |«'|<1. Hence |N(x)=|alla’|*<]1.
Since a€@ S0y, we have N(x)€Z, a contradiction. Let n be any unit (>1) and
let &(=1) be the fundamental unit of @. By using similar reasoning we see that y
must also be a minimum of #; hence, if 0,=1, we have 0,,,=¢g, for some p=0.
Since #=0,,1%,,1=6%,:1=%,4,, this algorithm, like the continued fraction
algorithm for an order in 2(yD), becomes periodic with period p.

We can also prove a theorem analogous to Theorem 1.2,
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Theorem 2.2. Let O be an order of X~ with unitary basis {1, p, v} and let &
be the corresponding lattice with basis {1, u, v}. Also, let ac0O, oo>1 and a=x+yu+
+2zv with x,y,z¢€Z and gcd(x,y,z)=1. I

(2.5) IN(@)| < V14¢l/27,
then o. must be an element of the chain (2.1) of % with 0,=1.

Proor. (c.f. [11], Theorem 4.5 and [9] Theorem 9.1). Since a>1 and the
sequence 6,, 0,, 0, ..., 0,, ... is not bounded above, we must have some k such that

9;‘ é o =< Bk"'l‘

Since |o|P=o'a"=a'a"+a'a+ta"a—a(a"+o"+o)+a?, we have N(x)/a€@ and
o=N(x)0,/ac0.

If a=0,, the theorem is true; suppose a#0,. Since « is not a minimum, we
must have |a'|>|0;|; hence,

0<g¢=<|N@| and |¢’| = |N(®)
d(e) = (e—0')(e’—e")(e"—0)*
then (see, for example, [9] p. 649)
(2.6) |d(@)l < 27N ()"

Also, g
a() = Ny (S &) (&%) (% _ )

Thus, if

o of, O}
= N@)* |« o0, 62|.
: "™ a0y 0,°
Since a®, af,, 03¢0, we have

(2.7) d(@) = N(®)*J* 4,

where JeZ. Also, if J=0, then d(¢)=0 and g€Z. If O,=a+bu+cv, then
ged(a, b, c)=1. Also, px=N(ax)a, gy=N(a)b, pz=N(x)e, together with gcd(x,
¥, z)=1, imply that ¢=|N(«)|, which is not so. Thus, the theorem follows on com-
paring (2.6) and (2.7). O

Thus, just as in the quadratic case, it is of some interest to be able to present the
complete Voronoi continued fraction for an order of X#". Unfortunately, Voronoi’s
algorithm is much more intricate than the regular continued fraction algorithm;
nevertheless, we will be able to obtain some results for certain orders in special subic
fields.

3. Some simple lemmas. In this section we will present some simple results
which have been found useful in the development of Voronoi’s continued fraction
for orders in 2. We assume here and in the sequel that & is a reduced lattice of J¢".
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Lemma 3.1. If o,€¥ and |o'|<]1, |)|<]l, &,>¢,+2, then o>}.

Proor. Since |w’|<1 and [y|<I, by (2.4) we have |{,|<1,|{,|<1. Since
w=¢,+¢&, and x=(,+¢,, the result follows immediately. O

Lemma 3.2. If y€£ and |&)|<1/2, then |y/|=1.

ProoF. Suppose |y’|=1. Since 1 is a minimum of %, we must have |y|=1.
Indeed, since [{,|=1>1/2 when [z|=1, we must have [y|>1; thus, if y>0 and
w=x—1, then w=0. Since {,<1 and §,<I1/2, we also have w<1/2; hence,

|@’|>1. Since
|O)’I= - IZ’|2"2C1+1,

we get {,<1/2 and y={,+¢,<1, a contradiction. Similarly, if y<0, we can put
w=x+1 and arrive at another contradiction. O

Lemma 3.3. If y€%, (>0, |{|<1 and y<2, then |y —1|>1.

Proor. Since |y|<1, we have {,>-—1 and x=(,+&,>—1. Also, since
lx’| <1, we must have |g|=1; hence y>1 and O<y—1<I1. Since % is a reduced
lattice, we get |y’ —1|=1. O

If w6 % and wé 2, let o* be defined as that element of % such that P(w*)=
= P(w), |o*’|<1 and |w*| is minimal. Clearly, by (2.4) w* cannot exist if |n,|=>1.
On the other hand, if |n,|<}'3/2, then % +({,—a)*<1 for some a€ Z; that is,
* exists in this case. We also note that if ®* exists and w*=0, then |w*—1|=1.
For if |o*'—1|=1, then w*>1 and |0*—I|<|w*|. Since P(w*)=P(w*-1),
this contradicts the definition of w*. Further, if ©=0, |o'|<1 and |0 —1|>1,
then w*=w. We will also require the following Lemma from [10].

Lemma 3.4. (See [10], Lemma 4.3). Let y,w€¥ and suppose that &,>0,
In<V3/2 and |o'|<1. If &,>E&, and nn,>0, then w=>y*. 0O

If 6 is the minimum adjacent to 1 in %, it is sometimes fairly easy to find w,
the minimum of % adjacent to 0. We give these conditions in

Theorem 3.1. ([11], Theorem 7.5). When (4<—1/2 the puncture P(®) of @
must be one of the punctures given in the second column of Table 3.1.

Table 3.1
P0) Possible choices for P(w)
P(®) P(®), P(v), P(P+y)
P(y) P(@), P(w), P(P~y)
P(@—vy) Py), P(@~y)
P(®+vy) P(D), P(P+y)
PQ2®+vy) P(®P)
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In this paper we shall consider the fields 2(5), where 8*=D¢cZ, §¢2, and
D=M3+1, M*+3, M*+M, M3*+t3M to be fields analogous to the quadratic
fields discussed in Section 1. While it is true that we did not discuss the case of
M*+2M in that section, we simply point out that M*+2M=(M+1)*—1, a case
that was discussed. These fields 2(4), like those of §1 have small fundamental units
(see NAGELL [5], STENDER [8], RUDMAN [7]); hence, the values for p should not be
very large.

In order to develop our continued fraction expansions we will also require some
inequalities and we must assume some lower bounds on M. We summarize these in
Table 3.2 below.

Table 3.2
D(=5) Inequalities ot iy
M1 M=<5<M+1/3M?) M=4
M3 -1 M—-2/3M*<5<M M=4
M*+3 M=<3<M+1/(3(M+1) M=4
M*-3 M—1/3M)<é<M M=4
M+ M M=<8<M+1/(3M) M=3
Mi-M M—1/2M)<6<M M=5
M3+3M M+1M~1M*<5<M+1/M M=3
M3 —3M M=2M<M—1/M=2/M*<6<M—1/M<M M=4

We also point out that if
® = (my+myd+myd®)/r,
where my,my, my, réZ and &°¢Z, then

3(8my+52my) V3(6my—52my)
$o = > s Mo = - ’

e 2my — my & — Ny 62
- 2r

Further, if % has a basis of the form
{1, (my+myd + my8®)fr, (ny+nyd +nyd®)/r},
then {1, u, v} is a basis of & if and only if u,vé % and

iy iy
ny iy

My Mg
ng Ny

]

Where y=(ﬁ1+ﬁ35+iﬁ362)/r, V=(ﬁ1+r-125+!-135’)/r, and ﬁ], ﬁa, ﬁs, ﬁl’ ﬁg, ﬁsEz-
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A special case. The method we use to derive our results is most conveniently
demonstrated by the complete development of the Voronoi continued fraction for a
simple, special case. We will use D=M?3+3M here. We will deal first with the order
0 with basis {1, 8, 6°}, where 6°=D. Note that 4,=27D% If D is square-free, then
in most of the cases mentioned above we have D# £1 (mod9) and 0=0,, the
maximal order; however, when D=M3*+1 (3|]M) and D=M3*+M (M==+2
(mod 9)), we do not have §=0y. In these cases 4=3D%

Theorem 4.1. If D=M?3*+3M and X =2(5), where =D, then the Voronoi
continued fraction expansion for the order O of X with basis {1, d, 6%} has period
length p=4.

Proor. Since D is square-free, M must be even and 31 M ; hence, we may assume
that M=10. If pu=(M3*+1)6+Mé* and v=M?3*+4+1+M5+46°% then {I,pu,v}
is a basis of 0(=0y). Now

. = V36(M2—1—M35)/2 >0

and
1. < (V39))2M?2 < 1)2.

Also, s

¥ p = 38(M2+14+M5)2 > &, = 36(M+6)/2>0
n, = V38(M—5)/2 < 0.

Since

=21, = V35(M—8) > Y3(1/M—1/M*)(M+1/M~1/M?3) > 1,

we see that we may put @=pu and Y =v. Thus, if 6 is the minimum adjacent to 1
in %, , the lattice with basis {1, 8, §°}, then P(0) must be one of P(®), P(), P(®—V),
P(®—y) or PQ®+y). Now [Y|P=yy"=1—-(M—-06)*<1 and

fo—28, = 35(M—1P+(M-2)3)[2 > 2;
hence,
So0+y = Co4y = S0 = Co—y = &y +2.
By Lemma 3.1, we can only have P(6)=P(J). Since |Y'|<1 and |y —1|=
=3M(6—M)=3M(1/M—1/M?)=>1, we must have 0=0{" =y*=y. It follows that
%, has basis {1, 1/}, ®/}.
Now

GM2*+ DN = 1-(M—-9),
BM2+1)Bfy = MO5+2M®—3M +(—2M*—3M2+ 1)+ (M3 +3M)6.

Thus, if we put
BGM2+ 1) = M3—M+(M2+1)6+Ms* > 0,

BM*+ 1)y = M3+ M*—M—-14+(M—1)26+(M+1)é% = 0,

we find that {1, u, v} is a basis of &, 0<n,<1/2, &,>¢&,>0, n,< —}3 /2. Thus, we
can put #=u and Y=v in %,. We have

CGM2*+1W'Y" = M+1)(M—1)*+(M+1)26—-2(M—1)8* < 3M*+1
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and
GM+D)W -1 1) = 3M2+1+(—(M2—1)M+3+(3M*—2M +3)5+45°)
> 3M241;
hence [y’|<1 and |Y'—1|=1. Also
4.1) o = IM(2M?2+1)/(3M3+1) > 2
and
(4.2) 0 <&p-y =362M-0)/(2(3M2+1)) < 1/2.

By (4.1), Lemma 3.1, and the fact that |{’| <1, we see that if 6 is the minimum adja-
cent to 1 in %,, then P(0)#=P(®+y), P(2®+y). Also, by (4.2) and Lemma 3.2,
we have P(0)#P(®—y). Now

GM2+1)&' " = —2M2+M5+6* < 3M2+1,
GM2+1)(9' —1)(@"—1) = 3M?+ 14 (—2M3—2M>+2M + (M2 + M+1)6+

+(M+1)6%) = 3M3*+1,
and
GM*+1)(P—yY) =—M>*+14+2Mé+6* > 0;

hence, |®|<1, |®'—1|>1 and ®=>y. It follows that 0=0{"=y*=y. Also,
{1, 1/, D[y} is a basis of L=(1/0")%,.
Here

BM3—-3M2+9M— 1)y = (M+1)(M—1)2+(M+1)26—2(M—1)5*
(BM3=3M2+IM—1)B/) = M>—2M*+5M+(M—1)25+(M+1)8%
Thus, if
BM3—3M?+9M—1)p = M3—2M*+5M+(M—1)26+(M+1)8* > 0
(BM3—=3M2+9M —1)y = 2M3—3M?>+4M+1+2(M?+1)6—(M—3)52 > 0,

then {1, u, v} is a basis of &5 and £,>¢&,>0. Further, 1/2<n,< 1/3—/2, —1/4<n,<0,
and we can put ®=u and Yy =v in Z;. We also have
CBM3-3M*+IM—1){, = 2M*-3M*+4M +1—(M*+1)6—(M—3)6*2 >0
< (1/2)(3M3*—-9M*+8M —5);

hence, {,<1/2 and |Y'|*={}+nj<1. Now it is easy to verify that {,<1 and
from this it follows that ¢ —1=¢,+{,—1=<1. Thus, |[y'—1|=1. Also,

BM3-3M2+IM—1)®'®" =—M?*+4+3M+2Mé—6* < IM3*—-3M*+9IM—1
and
(BM3-3M*+IM—1)D < BM*—-3M*+9M—1)+2;
thus, |#’|<1 and ®<2; by Lemma 3.3 we get |¢'—1|>1. If w=®+y or
2@+, then ngn,=0, [q,[-:]/3j2 and {,>&,. By Lemma 3.4, we see that if 0 is
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the minimum adjacent to 1 in %, then P(0)=P(®+y), PRP+y). Also, since
d*=¢, y*=y and Yy —P=>0, we cannot have P(0)=PW). If P(P)=P(P—y),
then O0=a+®—y, where acZ and a=0. Since 14+P—y <1, we cannot have
a=1; but, if a=2, then

thus 9=9§3’=d§*=¢. Also, -QT.=(I/8§3)).2’3 has basis {1, 1/®, y/®}.
We have
3IM/® =—M?*+3M+2M6—82,

IMYy/® =—-2M?*+3M+ Ms+6°;

hence, {I, u, v} is a basis of %, where 3Mu=M?*+M5+6>0 and 3IMv=—-M?*+
+2M5—4*%; thus, we can put @=p and y=v in %,. Since n,>1, Ne4+y>1,
Neo+y>1, |No-y/=1, we see that if 0 is the minimum adjacent to 1 in %, then
P(0)=P(®P). Now
&'P" =(6—M)/(3M) < 1
and
M(—P' —P"+P'P") = —-2M*—-2M +Ms+6* > 0.

It follows that |®|<1, |®#'—1|>1 and ®*=¢&. Thus, 0=0{"=¢*=¢ and
Zs=(1/0{") %, has basis {1, 1/®, y/®}. Since 1/P=4—M and /&= —1+Mé+3*,
we have Z=2%,; hence, p=4. O

5. Summary of results. As we have seen from Section 4 the process of obtaining
the Voronoi continued fraction is both lengthy and tedious. Since the example given
in that section is illustrative of the kind of techniques needed to develop these conti-
nued fractions, we will present only the final results in this section. The interested
reader can easily verify that these results will hold for the values of D indicated. We
first assume that @ has basis {1, J, 6%}, where §*=D.

(i) D=M+1, p=1,
0" = M*®+ M + 62,
0, = M*+Mo6+8% N(By) = 1.

(ii) D = M®*-1, p=2,
O = M*—1+M5+68%, 3M*-3M)0® = (M—1)*+(M—1)5+8*,
0, = M2—14+M56+8% N(0y) = 3M2—-3M, 0, = M2+ M5+52,
N(0,) = 1.

(iii) D = M3+3, p =3,
0 = M2+ M5 +82% 0 = (M?+Ms+68%)/3 = 02,
0, = M24+M5+6% N(0y) =9, 03 = M*4+2M+(M3*+1)5+M252,
N(O;) =3, 0, = M®4+3M3+14+(M°+2M?%)5+(M*+M)5,
N6 = 1.
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(iv) D= M3-3, p =6,
0D = M2—1+M5+8°, BM*—IM+8)0 = (M—3)*+(M—3)5+8,
30 = M*—3+Ms+8%, (3M2—3M—2)0® = (M—1)*+(M—1)5+6%,
300 = M2—3+ M5 +6%, (3M2—3M—2)0® = (M—10+(M—1)5+8%,
0, = M2—1+M6+08% N(0,) = 3M*— 9M +8,
0, = M+ M§+6% N(6,) = 9,
0, = M*— M*—2M +(M®— M —1)5+(M*—1)5%,
N(6,) = 9IM*—9M —6,
0, = M*—2M +(M3—1)5+M?28% N(6;) =3,
0 = M®—M*—3M3+2M+1+(M°5—M3—2M2+1)5 +
+(MA—M2—M)&,
N(0,) = 3M*—3M -2,
0, = M®—3M3+1+(M5—2M*)5+(M*—M)&, N(0,) = 1.

For this particular case much of the work can be simplified by using Theorem 3.1.
Indeed, the nearest integer variant of Voronoi’s algorithm (see [11]) has period
length 3 here.

(v) D=M3*+M, p=3,

0N = M2+ M6+82 0 = (M2+M5+8%)/M = 09,
0y = M24+M5+8% N(0,) = M2, 0; = 3M®*+2M+(3M2+1)6+3Mé2,
N(0;) = M, 0, = IM*+9M2+1+(9IM3+6M)5+(9IM2+3)82,
N(0,) = 1.

(vi) D= M3*=M, p=>5.
O = M2+ M5+6% (M+1)0P = M2—1+(M+1)5+82,
GM2=2M—1)0 = M*—M+(M+1)6+8*, MO = M*—M+Ms+8,
BM2—4M+1)0® = (M—1)2+(M—1)6+8%,
0, = M2—1+(M+1)5+8% N(0,) = M*—1,
0; = 3M3-2M2*-2M+1+4+(3M*-2M—1)6+(3M-2)8%,
N@Oy) =(M-1*BM+1), 0, =3M?*-2M+(3M*—1)5+3Ms2,
N0, = M,
05 = IM*—3M*—~IM2+2M + 1+ (OIM3—3M2*—6M +1)6+
+(OM2—3M—3)82,



256 H. C. Williams

N(6) = 3M2—4M+1,
0 = OMA*—IM2+1+(9M*—6M)5+(9M2—3)5%, N(0,) = 1.

(vii) D = M3+ M3, p =4,
0D = M2+ 14+M5+8% BM2+1)0® = M3+ M2—M—1+(M—-1)*5+
+(M+1)d?%
GBM3-3M24+9IM—-1)0» = M3 -2M*+5M+(M—1)*6+(M+1)8,
3MO® = M*+ Mo+ 82,
0 = M2+ 1+M5+82, N(0y) =3M?2+1,
0y = M34+2M —1+(M2+1)6+M352, N(6,) = 3M3—3M2*+9M —1,
0, = M3+2M+(M2+1)6+ M5, N(6,) = 3M,
Oy = M*4+3M24+14+(M34+2M)5+(M2+1)82, N(05) = 1.

(viii) D = M®*-3M, p =5,
00 = M2—2+Ms+5%, (3M2—8)0P = M3—2M*—2M+4+
+(M2*+M—4)5+(M—2)0% BM*—9IM*+6M+1)0® = M3—4M*+
+4M+(M2—-M—1)6+(M—1)4,
3IMO® = M*—3M+Mo+6%, BM2—6M+1)0 = (M—1)*+
+(M—1)6+82
0, = M2—24+Mb6+6°% N(0,) =3M2-8,
0, = M3—M2—2M+1+(M2—=M—1)6+(M—1)82, N(6;) = 3M3—
—9IM*+6M+1,
0, = M*-2M+(M?*—1)6+Mé* N(0,) = 3M,
0; = M4 —M3-3M24+2M + 1 +(M3—M2—2M +1)5+(M2—M—1)8%,
N(O) = 3M2—6M+1,
O = M*—3M2*+1+4+(M3—2M)5+(M2—1)8% N(04) = 1.

As noted above, when D is square-free, the only cases of those values of D
given here where 00, are those of D=M?3*+1 (3|M) and D=M*+M (M=2,
7(mod 9)). In fact, for the case of D=M?3+1 (3|M), the continued fraction given
in (i) is valid for @4, but in the other two cases there are several changes. We point
out here that 0, has basis {1, d, (6*+0d+1)/3}, where 6=+1 and o=D (mod 9).

0 = 0y, D square-free.
(ix) D=M3*+M,M = 2(mod9), p =35,
0 = M2+ Mé+62, 3IMOP = M*—3M+(M—1)5+6%,
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(IM3—19M2-5M—~1)0®/9 = (- 5M3+8M*+ M)/3+

+(4M32*—-2M)6/3+(M+1)6%/3,
GBM3—M*+4M—1)0/3 = M3+ 2M+(M*—M+1)5+(M+1),
MO® = M*+ M5+ 0%,
0, = M2+ M5+582, N(0,) = M?,
30, = 3AM3—4AM4+2M — 1+ 3(M*—4M +1)5+(3M —4)6%,
N(0,) = QIM3*—19M2*—-5M —1)/27,
30, =3M3*—M*4+2M—14+(BM*~M+1)6+(3M—1)5%,
N(0)) = BM3—M?*+4M—1)/217,
0s = IM*+2M +(3M2+1)6+3Mé% N(0;) = M,
0 = IM*+IM2+1+(OIM3*+6M)S+(9M2+3)62, N(04) = 1.

(xX) D=M*+M,M = T(mod9), p =6,
0" = M2+ M6+ 62 3IMO® = M*—3M+(M—2)6+8%,
(1M —-26M*—5M—8)0 /9 = (OIM*—-2M*+ M —8)/9+
+(5M*-5M)é/3+(4—M)é%3
(12M3—8M*+13M—8)0\"/9 = (4M2+ M +4)/9+(2M*—M+2)6/3 +
+(2M +1)6%/3,
(BM3—M*4+-4M+1)0/9 = (M3+2M)/3+(M2+M+1)5/3+
+(M—1)8%3,
MO® = M*+Mj+ 6,
0, = M2+ M5+6% N(0,) = M2,
30, = 3M3—5M*+2M —2+(3M2—5M +1)5+(3M—5)8%,
27TN(0,) = 21M3—26M2>—5M —8,
30, = IM3-2M242M 24+ (BM2-2M +1)6+(3M—2)8?,
27N(0,) = 12M*—8M*—13M -8,
30; = 3M3+ M2+ 2M+1+(3M2+ M+ 1)6+(3M+1)82,
27N(6;) = 3M3+ M2 4+4M +1,
Op = IM3—-2M +(3M2*+1)6+3M5*% N(6,) = M,
0; = OM*+9M2+1+(IM*+6M)5+(OM2+3)02, N(5;) = 1.
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In the next section we will discuss the simplest case here (D=M3+1) when
0=0,, but D is no longer assumed square-free.

6. A special case of D=M3+1. In the previous cases we have dealt only
with the order @ with basis {1, d, 6%} or {l, 4, (1+6d+6%/3, where &=D. As
noted above 0=0, whenever D is square-free. In fact, we know by a result of
NAGELL [4] that for each of the forms of D considered above, there exists an infinitude
of values of M such that D is square-free. Hence, we know the Voronoi continued

fraction expansion for the maximal order ¢()D) for an infinitude of values of D of

each form. When D is not square-free the problem of determining the continued
fraction for the maximal order becomes much more difficult. In this section we will
illustrate how these difficulties arise by examining the simplest of our cases above,
that is the case of D=M3+1.

Let D=M3+1 be cube-free and suppose D=/fg* where gcd(f,g)=1. Sup-
pose further that @ is the order with basis {l,d, 3}, where 3*=D=f%¢. We now
prove

Theorem 6.1. Let D be cube-free, D=M?*+1, and let O have basis {1, 9, 3}.
If V3M/(2g)>1+1/(2Y3M), then the period length of Voronoi's continued fraction
Jor Ois 1; if g=0o, then the period lenigh of Voronoi’s continued fraction for @ must
exceed 1.

Proor. Since ged(M, g)=1, there exist integers x,y such that O<x<g,
O<=y<M, and
Mx—-gy =-—1.

Put pu=M?*+M5+g5 and v=yd+x35. Clearly, {l,pu,v} is a basis of 0. Now
§p>¢v>2 and _1/2":”‘“":0. Also, =
V36

n, = V35(rg—x9)/(2g) > E T [yg—x(M+#]] -

a L o
=}/3.s[l_ x ]:_1/35[1_ g ]__,_13M_ 1 o
2g IM? 2g K) & 2g 2V3M

If V3M/(Zg)—lj(2V§M):=-l, then we can put &=u, Y=v and we have
|#'| <1, |®'—1|>1, n,>1, &,>2. Let 0 be the minimum of %, (basis {1, 4, 3})
adjacent to 1. Since #ny>1, then [ye-4/=>1 and P(0)# P(y), P(®—y). Since
¢y>2, we have >2+&, when P(0)=P(®+y), PQ2P+y). Thus, P(0)+#
#P(®+y), PP +y). It follows that 0=0"=@=9>* and it is easy to verify
that 2,(=(1/0") %)=,

I

(6.1) g=>9d
then 7,<}3/2 and v* must exist in %,. Further, since
¢ = 3((M—y)5+(g—x)5)/2 = 3(6+9)2 > 2,

we must have v*<p*=pu. Also, v*=¢,+{,+>2—1=1. Since u is the fundamental
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unit g, of 0 (see [5]) and v*€0, |v*'|<1, 1<=v*<p, we see that either v* is 2 minimum
of %, or A°(v*) contains a minimum of .%,. In either case we must have some y€0
such that 1 <=y<py and y is a minimum of %,. Thus the period length of Voronoi’s
algorithm must, in this case, exceed 1. O

Thus, if (6.1) holds, the Voronoi continued fraction for @ must have period
length =1. Hence the question which we now need to address is that of whether
(6.1) ever happens. We note first that if g=M, then (6.1) is certainly true. Thus, if
the diophantine equation

(6.2) xB41 = yz?

has a solution with y, z square-free, gcd(y, z)=1, and z>x, we will have a value of
D (=x%+1) such that the period length p for Voronoi’s continued fraction for
0 (=0, when 3{x) with basis {1, §, 5} must exceed 1.
A computer serach for solutions of (6.2) for all 0<=x=61 000 yielded only the
solutions
2841 =32

293341 = 158(399)
110933+ 1 = 1742(27993)?
169393+ 1 = 3605(36718)?
208853+ 1 = 2654(58587)2
608183+1 = 20273(105339)?,

where z>x,z,y are square-free and ged(z, y)=1. In fact for D=9, 293*+1=
=251 537 58, the value of p=3. In the latter case we get 0V =137 70+475+ 645,
0 =(158 82—226+1110)/332 58, 0¥ =(462 25+ 15856+ 21 5,5)/222 61.

o
7. The problem of when p=1 for 0y,. When X =2(YD) and @ has
basis {1, é, 6°} we know that p=1 for D=M?3+1. In fact DuBois [3] has pointed

out that if #'=2() D), 0 has basis {1, 3, 6%} and p=1, then D=M?>+1. In fact,
it could also occur that D*=M?3+1, but, as this can only occur (non-trivially) when
D=3 and M =2 and the period in this case is 3, we need only concern ourselves
with the D=M?3+1 case. The question could also be asked as to what form D must
take if the period length p of Voronoi’s algorithm for the maximal order Oy is to be 1.
In this case we may assume that D is cube-free and §*=D=/g? 5*=D=f%g with
¥ | ?quare-free and gcd(f, g)=1. We now have the following extension of Dubois’
result.

Theorem 1. If O has basis {1, ¢,d, ¢,0}, where ¢y, c,¢ Z and the period length
of Voronoi's algorithm for O is 1, then either ¢; D or ¢3 D must be of the form M*+1
orM3—1.

Proor. Let %, be the (reduced) lattice with basis {1, ¢,6, ¢,d} and let p be the
period length of Voronoi’s algorithm for @. Without loss of generality we may assume
that ¢,6<c,0. Let

iD= R¥*+r, where R<c, 6 <R+1.
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If 6=c,6—R, then 6060 and N(0)=r. Suppose r#1; then 6(=0) cannot be
a unit of 0. If 0 is a minimum of .%,, then &0 is a minimum of %, where g, is the
fundamental unit of @; hence, there must exist some y=gj0c0 such that y=1,
y is a minimum of %, and N(y)#1. It follows that in this case p=>1.

If 0 is not a minimum of %, there must exist some minimum y of %, such that

O<=pu=<0<1 and || < O]

Put p=my+myc,6+myc,d, where my, my, my€Z. If N(u)#1, we have p=>1
as above; hence, we suppose that N(u)=1.
Now
13mgl, 13mycydl, 3mycyd] < p+|w'|+1u"| = 04210

Since |0’|2=r/(c;6—R)=c}6*+¢;6R+ R*<(c, 0+ R)?, we get

|3m,|, |3mye,8], |3myeyd| < 3,6+ R.
Hence
(7.1) |mo| < €16+ R/3, |my| < 1+ R/(3¢,0), |my| < 1+ R/(3cy9).

Since c¢,0>c,6=>R, we find that |m,|, |m,|<2. If either of m, or m, is zero, then
because N(u)=1, we must get +c}D or +ciD=1—mj and the theorem follows.
Suppose my, my#0; we must have |my|=|my/=1. It now remains to show that no
value of p, subject to the constraints developed here, can exist.

Since p=my+ecymd+comyd and O<=pu<l1, we get my=—[c;myd+cym,yd).
If my=m,, then my=—[+(c;0+c¢,0)] and

|mg| > 2¢,6—1.

Since ¢;6=)R3*+r=1+R/3 (R=1), we get |my>c,+R/3, which is impossible
by (7.1). Thus, m,=—m,.

Let v=u~1. Since u is a unit of #, so is v and v must be a minimum of %,
with v=>1 and |v|<Il. Since N(u)=1, we get

v=p'p" = WP =101 = 6,6+, R+ R

Further,
V= u"t = mig+cy fg+8(fei—cymymg)+8(gct+camymg) =
= Hy+ N6+ nyd.
Since
13n38| = v+ |V |+ v < v+2 < 3cigd+2,
we get

lgct+comymy| < c3g+1.

It follows that my=0 or mymy<0. If m,=0, then from N(u)=1 we get
Adfe*—cdf?;g=+1; hence D=1, which is not possible. Thus, m,#0 and, if we
put m=—mym,, we get m=>0. We have pu=—mm+c,md—cymdé and |u|=
=|—m+¢,6—cyd|. Since —m=—1 and c¢;6—c;0<0 we get |u|>1, which is
also impossible. [0

Now if D# +1 (mod9) and ¢,=c¢,=1, then 0=0,, the maximal order of

X'. Further, if D or D is of the form M?3®—1, then put 0=M2*—1+MJ+4* or
M?—1+M35+352% respectively. Note that g, the fundamental unit (=>1) of Oy is
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60+1 and 1<0<g¢,. Further, it is easy to show that (0")<1. Thus, either @ is a
minimum of %, the lattice with basis {1, 4, } or a minimum of .%, occurs in A" (0).
As we have argued before, this means that p must exceed 1. Thus, if @y is the maximal
order of 2(6), where =Dz +1 (mod9) and the period length of Voronoi’s
algorithm for Oy is 1, then Dor D=M?3+1. Recall, however, thatif Dor D=M3+1,
it is not necessarily the case that the period length for 0y is 1.

The problem of determining those forms of D= +1 (mod 9) such that the value
of p for 0y is 1 is more complicated. We have not succeeded in solving this problem
completely, but we can show that there exists an infinitude of values of D such that
neither D nor D is of the form M3+1, but for which p=1 for @,. In order to do
this we must first prove two Lemmas.

Lemma 7.1. Let M=3T*-2 (T=4). Ilf #=(M+9T+9)M?* and y=3—
—3(T+1)/M, then

(7.2) 6 <= M+3+3T,
(1.3) 0 < 6/M—(M+1+3T)(M+1) < 3(T+1)[(M(M+1)?),
(1.4) y6/M > 3,
§ M-2—yM
(1.5) o NAT¥L "
5 3MT—9T+3/2
(7.6) o &

0 (M —=3T+1)(M+9T+9)

(1.7) ™M = M*+3MI-2M-9T—4°

PROOF. (7.2) can be easily proved by comparing ° to (M +3T+3). The left
side of (7.3) is easy to show by evaluating (M+1)*3—M3*(M+3T+1)*=
=9IM*(M+T+1)=>0. The right side of (7.3) can be proved by first noting that

(BM +3T+3)/M—(3M+3T+6)[(M+1) = 3(T+1)/(M(M+1)).

Hence,
3T+3 3r  3M+1+3T | 3(T+1)
M M+l  (M+1F T (M+1)yM°
and we get
oT+1) _ 9T 9(37)2 2773 9T+1)
M M+1  (M+1PF " (M+1p® " (M+1PM°
Thus,

—M-«—.[l r + 3(T+1) ]s—l
M M+1  MM+1) ’

(7.4) follows easily by using the left side of (7.3).
By using

(B—y)M—y)(M+1) = 3T(M+1) = 3(T+1)(M—3T+1)
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and
B-)M—y/M = (M+1)(M—-2—y/M)—(M+1+3T)(M+1-3T),
we get
M-2—yM  M+1+3T 3(T+1) o

=

M—3T+1 ~ M+1 MM+ M
(7.6) can be proved by showing that

3MT—-9T+3/2 ) M-2—y/M >_£_
M(M-2) M-3T+1 M’
(7.7) can be proved by noting that

(M=3T+1)(M+9T+9) M+1+3T _ M+3T—13
M*+3MT-2M—9T—4  M+1_ (M+1)(M*+3MT—2M—9T—4)

and

1+

M+3T-13 _ 3(T+1)
M*+3MT—2M—9T—4 M(M+))

__ MP_1SM—4M+30439T
= M(M+1)(M*+3MT—2M—9T—4)

0;

hence,
(M—=3T+1)(M+9T+9) % M+3T+1 + 3T+ }i
M243MT—-2M—-9T—4 M+1 M(M+1)* M’

Lemma 7.2. Let D be defined as in Lemma 7.1 and put =D =(M+9T+9)* M.
We have

0

(7.8) V3 <(M+1+43T)6—(M+1)8 <0,
(7.9) (M=2)6—(M-3T+1)3 > 3,
(7.10) 0 < 2(M2+3MT—2M—9T)—(M—2)6—(M—3T+1)3 < 5.

Proor. The right side of (7.8) follows from the left side of (7.3) and &*=M3J.
The left side of (7.8) can be verified by noting that

[(M+1+43T)6—(M+1)8| = d|(M+1-3T)M—-(M+1)é|/M <
< 35(T+ D)/(M(M+1)),
by the right side of (7.3), and that <M +3T+3. By using (7.5) we get
M(M-2)—35(M—3T+1) > y;
hence,
(M—2)6—(M—3T+1)5 > y5/M > 3
by (7.4).
From (7.6) and (7.9) we get

2(M?—-2M +3MT—-9T) > 2(M—2)6—3 > (M —2)6+(M—3T+1)é.
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From (7.7) we have

M24+3MT—-2M—-9T—-4 < (M—-3T+1)J;
hence, by (7.9)
2(M2+3MT—-2M—-9T—4) < 2(M—-3T+1)é <

< (M-2)6+(M—-3T+1)5-3
and we get (7.10). O
We now are able to prove

Theorem 7.2. If D=M?*(M+9T+9), where M=3T?—2 and M and M +9T+9
are both square-free, then the period length of Voronoi's continued fraction for Oy
is 1 and

300 = 30, = 36, = M*+(6T+4)M+3+(M+3T+1)5+(M+1)3.

Proor. The result can be easily verified for T=2. If T=3, then M=25,
which is not square-free; hence, we may assume T=4. Now gcd(M, M+9T+9)=1
and D=1 (mod9); thus, @, has basis {1, d, (1+5+3)/3}). Also, it is easy to verify
that @, has basis {1, u, v}, where

3u=M+1+(M+143T)64+(M+1)d =0,
3v = M-3T+14+(M-2)6+(M—3T+1)3 > 0.

Thus, &,>¢,>2 and by (7.8) we find that —1/2<n,<0. Further, by (7.9) we have
n,>V3/2; thus, we may put ®=p, y=v.

Put
30, = M2+ (6T+AHM+3+(M+1+43T)5+(M+1)3,

3, = M2+(3T-2)M—9T+(M—-2)6+(M—-3T+1)3,
and note that P(®,)=P(®P), P(,)=P()). Now

;07 = (—M+3+25-3)/3
and
N(®,) = &, |9;* = 1.

Since &,>1, we have |®j|<I1. It follows that #*=&, or &,—1. We also have
N(®7+P7) = (P, + P+ &) (P; 8] + P, §; + P, ) — N(P,) =

= (M*+6(T+4)M+3)(-M+3)—1 < 0;
hence,
(7.11) 2£p, =P +P; <0
and
D1 =112 = §1P] —P; — BT +1 = |D,|2+1-2[4, > 1.

Thus, ¢*=2&,.

7*
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By (7.10) we have
(7.12) 0 <{,, <5/6;

hence, if i exists, we must have yf=y, or y,—1. Now

N, = M*4+6MT—-18T—-M
and
3y, < 3(M*+3MT—-2M—-9T)

by the left side of (7.10); hence, ¥, <N(y,) and [y3|=1. Also,
NW,—-1) = M*+IMT+6M—-27T—19

: Y1—1 < N@,—1);
thus ¥7 does not exist.
Put w=®,—y,. By (7.11) and (7.12) we have —2<{,<0. It follows that if
o* exists, then w'=w+2, w+1, or w. Since

o =TM+2M+3T+1+(T+1)6+T9,

and

we have
00" =—MT—M+6T+7+(2T+3)6—(T+2)d
and
N(w) = 3IMT+9M + 27T+ 19.

Since {,=>—2, we also have

(T+1)6+T5 < 2(TM +2M+3T+3);
thus, :
@ < 3TM+6M+9T+6 < N(w).

Since N(w+1)=N(w)+3M+27T+25 and N(w+2)=N(w)+6TM+18M+ 72T+
+62, we get w+1<Nw+1), w+2<N(w+2) and o does not exist.

Thus, if 0 is the minimum adjacent to 1 in %, the lattice with basis {1, d,
(148+3)/3}, then P(8)#P()), P(®—y). Also, since ®* exists and &,>2, we
cannot have P(0)=P(®+y) or P(2®+y) by Lemma 3.1. It follows that 6" =0=
=@¢*=¢,; and, since N(®,)=1, we must have p=I1.

We mention here that since (37*—2)(3T7%*+9T+7) is square-free infinitely
often for T=2 [4], there must exist an infinitude of values of D of the form
M?2*(M +9T+9) such that M and M +9T+9 are both square-free. Further, since
for such values of D we get

gl =(-M+3+26-9)/3
and [5] G
& =iy—-

for D=N3+1, no D of the form given by Theorem 7.2 can also be of the form
N?+1. Thus, we have an infinitude of new values of D for which p=1 for 0. It is
not known whether the numbers D or D of the form N3+1 or of the form given in
Theorem 7.2 are the only values of D for which p=1 for 0, . A computer search over
all D=+1 (mod 9) with D<107 revealed no other values of D for which p=1.
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