A result on the neutrix convolution product of distributions

By BRIAN FISHER (Leicester)

The convolution product of two distributions satisfying certain conditions was defined by Gelfand and Shilov [3] as follows.

Definition 1. Let f and g be distributions satisfying either of the following conditions:

(a) either f or g has bounded support,

(b) the supports of f and g are bounded on the same side.

Then the convolution product f*g is defined by

$$((f*g)(x), \varphi(x)) = (g(y), (f(x), \varphi(x+y)))$$

for arbitrary test function φ in the space K of infinitely differentiable functions with

compact support.

Note that if f has bounded support then $(f(x), \varphi(x+y))$ is in K and so $(g(y), (f(x), \varphi(x+y)))$ is meaningful. On the other hand, if g has bounded support or the supports of f and g are bounded on the same side, then the intersection of the supports of g(y) and $(f(x), \varphi(x+y))$ is bounded and so $(g(y), (f(x), \varphi(x+y)))$ is again meaningful.

It follows that if the convolution product f * g exists by this definition then

(1)
$$f*g = g*f, \\ (f*g)' = f*g' = f'*g.$$

This definition of the convolution product is rather restrictive and the next definition was introduced in [2] in order to extend the convolution product to a larger class of distributions. In this definition, we denote the convolution product by f*g to distinguish it from the convolution product given in definition 1.

Definition 2. Let f and g be distributions and let $f_n = f\tau_n$ for n = 1, 2, ..., where τ is an infinitely differentiable function satisfying the following conditions:

(i)
$$\tau(x) = \tau(-x)$$
,

(ii)
$$0 \le \tau(x) \le 1$$
,

(iii)
$$\tau(x) = 1$$
 for $|x| \le \frac{1}{2}$,

(iv)
$$\tau(x) = 0$$
 for $|x| \ge 1$

268 Brian Fisher

and the function τ_n is defined by

$$\tau_n(x) = \begin{cases} 1, & |x| \le n, \\ \tau(n^n x - n^{n+1}), & x > n, \\ \tau(n^n x + n^{n+1}), & x < -n. \end{cases}$$

Then the convolution product $f[\underline{*}]g$ is defined as the neutrix limit of the sequence $\{f_n*g\}$, providing the limit h exists in the sense that

$$N-\lim_{n\to\infty}(f_n*g,\varphi)=(h,\varphi)$$

for all test functions φ in K, where N is the neutrix, see van der Corput [1], having domain $N' = \{1, 2, ..., n, ...\}$ and range N'' the real numbers, with negligible functions finite linear sums of the functions

$$n^{\lambda} \ln^{r-1} n$$
, $\ln^{r} n$ ($\lambda > 0$, $r = 1, 2, ...$)

and all functions E(n) for which $\lim_{n\to\infty} E(n) = 0$.

Note that in this definition the convolution product $f_n *g$ is in the sense of definition 1, the distribution f_n having bounded support, since the support of τ_n is contained in the interval $(-n-n^{-n}, n+n^{-n})$. Note also that because the definition is nonsymmetric, the convolution product f[*]g is not always commutative.

The following theorem was proved in [2] and shows that definition 2 is a genera-

lization of definition 1.

Theorem 1. Let f and g be distributions satisfying either condition (a) or condition (b) of definition 1. Then the convolution product f |*| g exists and

$$f_{|*|}g = f * g.$$

The next two theorems were also proved in [2].

Theorem 2. Let f and g be distributions and suppose that the convolution product $f[\underline{*}]$ g exists. Then the convolution product $f[\underline{*}]$ g' exists and

$$(f\overline{|*|}g)' = f\overline{|*|}g'.$$

Theorem 3. The convolution product x_+^{λ} |*| x^s exists and

$$x_+^{\lambda} \, \underline{\boxed{*}} \, x^s = 0$$

for $\lambda > -1$ and s = 0, 1, 2, ...

In the following, E(n) denotes any function such that $\lim_{n\to\infty} E(n)=0$ and O(n) denotes any function such that $N-\lim_{n\to\infty} O(n)=0$. We will therefore write

$$0(n)+0(n) = 0(n)+E(n) = 0(n).$$

We now prove the following extension of Theorem 3.

Theorem 4. The convolution product x_{+}^{λ} |*| x^{s} exists and

$$x_+^{\lambda} |\overline{*}| x^s = 0$$

for $\lambda < -1$, $\lambda \neq -2$, -3, ... and s = 0, 1, 2, ...

PROOF. We will suppose that $-r-1 < \lambda < -r$. Then the distribution x_+^{λ} is defined by

$$x_{+}^{\lambda} = \frac{\Gamma(\lambda+1)}{\Gamma(\lambda+r+1)} (x_{+}^{\lambda+r})^{(r)},$$

where $\lambda + r > -1$.

The convolution product $(x_{+}^{\lambda})_{n} * x^{s}$, where

$$(x_+^{\lambda})_n = x_+^{\lambda} \tau_n(x),$$

exists by definition 1 and so

$$((x_+^{\lambda})_n * x^s, \varphi(x)) = ((y_+^{\lambda})_n, (x^s, \varphi(x+y)))$$

for arbitrary test function φ in K. If the support of φ is contained in the interval (a, b), we have

$$(x^{s}, \varphi(x+y)) = \int_{a-y}^{b-y} x^{s} \varphi(x+y) dx = \int_{a}^{b} (t-y)^{s} \varphi(t) dt =$$
$$= \sum_{i=0}^{s} a_{i} y^{i} = p(y),$$

where

$$a_i = {s \choose i} (-1)^i (t^{s-i}, \varphi(t))$$

for i=0, 1, ..., s and $\binom{s}{i}$ denotes the binomial coefficients.

Thus

$$((x_{+}^{\lambda})_{n} * x^{s}, \varphi(x)) = ((y_{+}^{\lambda})_{n}, p(y)) = (y_{+}^{\lambda}, (\tau_{n}p)(y)) =$$

$$= \frac{(-1)^{r} \Gamma(\lambda + 1)}{\Gamma(\lambda + r + 1)} (y_{+}^{\lambda + r}, (\tau_{n}p)^{(r)}(y)) =$$

$$= \frac{(-1)^{r} \Gamma(\lambda + 1)}{\Gamma(\lambda + r + 1)} \Big[\int_{0}^{n} y^{\lambda + r} p^{(r)}(y) \, dy + \int_{n}^{n+n-n} y^{\lambda + r} (\tau_{n}p)^{(r)}(y) \, dy \Big].$$

It is easily seen that

$$\int_0^n y^{\lambda+r} p^{(r)}(y) dy = 0(n),$$

where 0(n)=0 for r>s, and on noting that

$$\tau_n^{(i)}(n) = \begin{cases} 1, & i = 0, \\ 0, & i \ge 1, \end{cases}$$

$$\tau_n^{(i)}(n+n^{-n})=0, \quad i\geq 0$$

we have

$$\int_{n}^{n+n-n} y^{\lambda+r} (\tau_{n} p)^{(r)}(y) dy = \int_{n}^{n+n-n} y^{\lambda+r} d(\tau_{n} p)^{(r-1)}(y) =$$

$$= \left[y^{\lambda+r} (\tau_{n} p)^{(r-1)}(y) \right]_{n}^{n+n-n} - (\lambda+r) \int_{n}^{n+n-n} y^{\lambda+r-1} (\tau_{n} p)^{(r-1)}(y) dy =$$

$$= 0(n) + \frac{(-1)^{r} \Gamma(\lambda+r+1)}{\Gamma(\lambda+1)} \int_{n}^{n+n-n} y^{\lambda} (\tau_{n} p)(y) dy.$$

Now

$$\left| \int_{n}^{n+n-n} y^{\lambda}(\tau_{n}p)(y) \, dy \right| \le (s+1) \max \{ |a_{i}| : 0 \le i \le s \} (n+n^{-n})^{s+\lambda} n^{-n} = E(n)$$

and so

$$\int_{n}^{n+n-n} y^{\lambda+r}(\tau_n p)^{(r)}(y) dy = 0(n).$$

It follows that

$$((x_+^{\lambda})_n * x^s, \varphi(x)) = 0(n)$$

and so

$$N - \lim_{n \to \infty} \left((x_+^{\lambda})_n * x^s, \varphi(x) \right) = 0 = (0, \varphi(x))$$

for s=0, 1, 2, ... The result of the theorem follows.

Corollary 1. The convolution products $x_{-}^{\lambda} |\underline{*}| x^{s}$, $|x|^{\lambda} |\underline{*}| x^{s}$ and $(\operatorname{sgn} x \cdot |x|^{\lambda}) |\underline{*}| x^{s}$ exist and

$$x_{-}^{\lambda} \underline{|*|} x^{s} = |x|^{\lambda} \underline{|*|} x^{s} = (\operatorname{sgn} x \cdot |x|^{\lambda}) \underline{|*|} x^{s} = 0$$

for $\lambda < -1$, $\lambda \neq -2$, -3, ... and s = 0, 1, 2, ...

PROOF. The results follow from the theorem on noting that

$$x_{-}^{\lambda} = (-x)_{+}^{\lambda}, |x|^{\lambda} = x_{+}^{\lambda} + x_{-}^{\lambda}, \quad \operatorname{sgn} x \cdot |x|^{\lambda} = x_{+}^{\lambda} - x_{-}^{\lambda}.$$

Corollary 2. The convolution product $x_{+}^{\lambda} | \overline{*} | x_{-}^{s}$ exists and

$$x_{+}^{\lambda} | \overline{*} | x_{-}^{s} = (-1)^{s+1} B(\lambda + 1, s + 1) x_{+}^{\lambda + s + 1}$$

for $\lambda < -1$, $\lambda \neq -2$, -3, ... and s = 0, 1, 2, ..., where B denotes the beta function. PROOF. We will again suppose that $-r-1 < \lambda < -r$ and then

$$x_+^{\lambda} = \frac{\Gamma(\lambda+1)}{\Gamma(\lambda+r+1)} (x_+^{\lambda+r})^{(r)}.$$

The convolution product $x_{+}^{\lambda+r} * x_{+}^{s}$ exists by definition 1 and

$$x_{+}^{\lambda+r} * x_{+}^{s} = \int_{-\infty}^{\infty} (x-t)_{+}^{\lambda+r} t_{+}^{s} dt = x_{+}^{\lambda+r+s+1} \int_{0}^{1} (1-u)^{\lambda+r} u^{s} dt =$$

$$= B(\lambda+r+1, s+1) x_{+}^{\lambda+r+s+1}.$$

Equation (1) holds and it follows that

$$\frac{\Gamma(\lambda+r+1)}{\Gamma(\lambda+1)}\,x_+^{\lambda}*x_+^s = \frac{\Gamma(\lambda+r+1,s+2)}{\Gamma(\lambda+s+2)}\,B(\lambda+r+1,s+1)x_+^{\lambda+s+1}.$$

Thus

$$x_{+}^{\lambda} * x_{+}^{s} = B(\lambda + 1, s + 1)x_{+}^{\lambda + s + 1}$$

for $\lambda < -1$, $\lambda \neq -2$, -3, ... and s=0, 1, 2, ... The result of the corollary now follows on noting that

$$x_{-}^{s} = (-1)^{s}(x^{s} - x_{+}^{s}).$$

Corollary 3. The convolution products x_{-}^{λ} |*| x_{+}^{s} , $|x|^{\lambda}$ |*| x_{+}^{s} and $(\operatorname{sgn} x \cdot |x|^{\lambda})$ |*| x_{+}^{s} exists and

$$x_{-}^{\lambda} \underline{|*|} x_{+}^{s} = (-1)^{s+1} B(\lambda + 1, s + 1) x_{+}^{\lambda + s + 1},$$

$$|x|^{\lambda} \underline{|*|} x_{+}^{s} = \begin{cases} B(\lambda + 1, s + 1) \operatorname{sgn} x \cdot |x|^{\lambda + s + 1}, & even \ s, \\ B(\lambda + 1, s + 1) |x|^{\lambda + s + 1}, & odd \ s, \end{cases}$$

$$(\operatorname{sgn} x \cdot |x|^{\lambda}) \underline{|*|} x_{+}^{s} = \begin{cases} B(\lambda + 1, s + 1) |x|^{\lambda + s + 1}, & even \ s, \\ B(\lambda + 1, s + 1) \operatorname{sgn} x \cdot |x|^{\lambda + s + 1}, & odd \ s \end{cases}$$

for $\lambda < -1$, $\lambda \neq -2$, -3, ... and s = 0, 1, 2, ...

The results of this corollary are immediate.

References

- [1] J. G. VAN DER CORPUT, Introduction to the neutrix calculus, J. Analyse Math., 7 (1959-60), 291-398.
- [2] B. FISHER, Neutrices and the convolution of distributions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 17 (1987), 107—118.
 [3] I. M. GELFAND and G. E. SHILOV, Generalized functions, Vol. I, Academic Press (1964).

DEPARTMENT OF MATHEMATICS THE UNIVERSITY LEICESTER LEI 7RH ENGLAND

(Received April 7, 1987)