On Darboux points and the property of Swiatkowski of
transformations with closed graphs

By HELENA PAWLAK and RYSZARD JERZY PAWLAK (L6dz)

Abstract. In this paper conditions are presented under which a function with closed graph is
continuous, or possesses Darboux property.

It is known, that if Y is a Hausdorff space and f: X—Y isa continuous function,
then the graph of / W(f)={(x, y): xe XAy=/(x)} is a closed subset of X XY (see,
for example [2, Corollary 2.3.22, p. 114]). Since the inverse theorem is not true, many
authors have required additional assumptions under which a function with closed
graph is continuous ([6, Theorem 1], [S, Theorem 4]) or possesses properties “near”
to continuity (see, for example [1], [5], [6], [7]). Analogous problems where studied
for other classes of functions connected with closedness (see, [4], [9], [10], [13]).

In this paper we shall consider similar problems and whenever possible, we shall
use assumptions weaker than the closedness of the graph.

We shall use the standard notations and terminology as for example in [2] and
[11]. To specify some terms we remind of some definitions and symbols. An arc
with endpoints a, b we denote by L(a, b). For £=L(a, b), by £° we understand the
open arc £\ {a, b}. Let £ be an arc and a, bé £, then the symbol L;(a, b) denotes
the arc with the endpoints @ and b contained in £. We assume the definitions of cut-
ting and quasi-cutting as in [11]. Moreover, we say that a set A arcwise cuts a topolo-
gical space X between the points x, y, if A is open and A quasi-cuts X between x,y
in this way that there exists an arc £=L(x, y) such that £°C A.

The symbol C(f, A) denotes the set f(4NC,), where by C; we understand the
set of all continuity points of f. The cluster set of f at x, we denote by L(f, x,) (i.e.
a€ L(f, x,) if there exists a net {x,},¢s, such that xoﬁligrzl x, and aELi?g 706, if

we additionally require {x,},¢;CA4 then we write a€L,(f, x,). Let 4 be some set.
Put L(f, A)= U L(/, x).
x€A
We say that a function f: X—Y has an L-closed graph (at x,) if the restriction
fiz possesses a closed graph, for every arc £ (£=L(x,, t)).

In 1977 T. MANK and T. SWIATKOWSKT defined a new class of functions (see [8]).
The elements of this class we shall call Swiatkowski functions or the functions with
the property of Swigtkowski. In the original definition of Swiatkowski function the
natural order of the real line is used, in topological terms this definition may be for-
mulated as follows:
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We say that f: R—~R possesses the property of Swigtkowski if for every x, y€R
such that f(x)#/(y) and for every arc £=L(x, y) and for every set 4 such that 4
arcwise cuts R between f(x) and f(y), ANC(f, £°)=0.

Now, it is not difficult to generalize the definition of Swiatkowski function to the
case of a transformation from a topological space to a topological space. In our
considerations it is sufficient to adopt a weaker definition :

Definition. We say, that a function f: XY, where X, Y are topological spaces,
possesses the weak property of Swiatkowski if for every x, y€ X such that f(x)#=f(y)
and for every arc £=L(x, y) and for every set 4 such that 4 arcwise cuts ¥ between
J(x) and f(y), ANL(S, £%)=0.

The definitions of Darboux point and D-point are the same as in [10], [11], [12].

The symbol T denotes the closure of T in some topological space X. If 4 is a
subspace of X and Tc A then the closure of T in 4 (as a subspace), we denote by
cly T,

By a Fréchet space we understand a topological space X such that for every
AcX if x€A then there exists a sequence {x,}in; A4 such that x=lim x,

n—+oo

(there exist Fréchet spaces that are not first-countable, see [2, Example 1.6.18, p. 79].
A Hausdorff space X is called a Mazurkiewicz—Moore space if every open and con-
nected set in X is arcwise connected (for example, every metric, locally connected
and complete space is a Mazurkiewicz—Moore space, see [3, Theorem 13.5.17, p.
223]). A Hausdorff space X is called an m-dimensional almost-manifold if for every
x€X there exists a neighbourhood of x which is a finite union of the subspaces of X
homeomorphic with R™ and including x. A Hausdorff space X* is called an m-di-
mensional almost-manifold with boundary, if X* contains an open and dense subs-
pace X which is an m-dimensional almost-manifold. Then X"\ X is called the boun-
dary of X*. We say that the boundary is discrete if it is a discrete subspace of X*,

The fundamental theorems of this paper will be preceded by two lemmas.

Lemma 1. Every m-dimensional almost-manifold X is a Fréchet space.

ProOF. Let xp¢AcX and let U, be a neighbourhood of x, such that
U= C) Uy, where U, is homeomorphic with R™ and x,£U; for k=1, ...,n. We

k=1
can assume that x,¢ 4. Thus there exists k€{l, ..., n} such that x,€ ANU, and so
xgEcly, (ANUy). Consequently, there exists a sequence {x,}¢ANU, which is
convergent to X, in U as a subspace of X, It is easy to see that x,=Ilim x, in X.

n—-ee
It is not difficult to give an example of an almost-manifold which is not first
countable.

Lemma 2. Let X be an m-dimensional almost-manifold and let {x,} be a sequence
converging to x,. Then there exists an arc £ with endpoint x, such that the set of ele-
ments of {x,} belonging to L is infinite.

PrOOF. Let ¥ be a neighbourhood of x, such that ¥ is a finite union of subspaces
homeomorphic to R™, containing x,. Of course, Lemma 2 is true in the case if {x,}
contains a constant subsequence, and so we consider the opposite case. Let ¥* be
an element of the above union such that ¥* includes some subsequence {x; } of
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{x,} and let h:V*—~R™ be a homeomorphism. Put v*=h(v) for every veV*. We
may assume that if n,<n, then o(xf, , x0)=e(x}, , x0).
For m=1 we morcover assume that all elements of {x} } liec on the same side

of x§.

Let r,, be a positive integer such that xf ¢K(xh,r, ) and x}  €K(x§, r.)
(=l 2, ...).

By the symbol £, we denote the segment joining xj, with the sphere Fr K(x§, r;,)
of length equal to dist (xf,, K(x§, r)). Thus £,=L(x}, z,).

Let £'=L(x},,z,) be the segment joining xj, with the sphere Fr K(x§, r;,)
of length equal to dist (xf,, Fr K(x§, r,)). Let £2*=L(x},,z,) be the segment
joining x}, with the sphere Fr K(x}, r,,) of length equal to dist (xf,, K(x§, ri,).
Moreover, let £3={z, } if z, =z and £)*=L(z,, z;)CFr K(x§, r,,) if z,#2z,.
Put £,=£'U£2U£3. Then £, is an arc such that L;fl]L0={zh}.

Analogously we construct arcs £,, £, ... such that x} €£,_,, £,NE,_,={p},
where p is the endpoint of £, and £,_,, and £,CK(x§,r,) for n=1,2,.... Itis

casy to see that Z,=(xt}U U Z, is an arc and L=h"'(Z,) is an arc fulflling the
required conditions. n=0

Now, we present Proposition 3 which gives the connection between continuity
at some point and the Darboux property at this point of a transformation with a
closed graph. Moreover, this Proposition is a preparatory step forwards Theorem 4.

Proposition 3. Let X be an m-dimensional almost-manifold, Y a locally compact
and connected space. Let f: X—Y possess an L-closed graph at x,¢X. Then the
Jollowing conditions are equivalent:

(i) x, is a continuity point of f,

(1) x, is a Darboux point of the first kind of f,

(ii1) x, is a Darboux point of the second kind of f,

(iv) x, is a Darboux point of the third kind of f,

(V) x, is a D-point of f.

Proor. According to the considerations contained in [12] (see also [10], [11])
it is easy to see that:

(iV)«=(v)=()=(i)=(ii)=(iv).

To prove this Proposition it is sufficient to show the following implication:
(iv)=(1).

Let f(x,)=y, and let T be a neighbourhood of y, such that T is a compact set.

Assume the contrary i.e. that /'is not continuous at x,. According to Lemma 1 there
exists a sequence {x,};>, and a neighbourhood UcT of y, such that x,=lim x,

N+ oo

and f(x,)4U for n=1,2,.... By Lemma 2 we infer that there exists an arc £,=
=L(x,y, b) containing all elements of some subsequence of {x,}i>,. To simplify,
we may assume that {x,:n=1,2,...}c£,. Let V¥ be a neighbourhood of y,, such
that V< U and let % be the family of the neighbourhoods W of V such that Wc U.
By the connectedness of ¥ and the supposition that x, is a Darboux point of the
third kind, we have

(1) FYECW)NLey(x0, x,) %0 for Wew and n=1,2,....
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Let Z={(FrW,n): We#AncN}. In Z we define the directedness relation
— as follows
(FrW,m) = (FrW, n) oW, c W, ny =n,.

Let for every o=(Fr W, n)€Z, be y, an arbitrary element of the intersection
JS~YFr W)N Lz (x5, X,) (such an element exists according to (1)). Of course x,=
—l:m Vs. Let {z,}, ¢y be asubnet of {y,},¢s such that {f(z,.)}, ¢y converges to

some z. It is not difficult to see that z€Fr V. Since fz, possesses a closed graph and

{(zo+» f(z,))} converges to (x,,z) we have z=y,. This contradiction ends the
proof.

Theorem 4. Let X* be an m-dimensional almost-manifold with a discrete boun-
dary. Let Y be an arcwise connected and locally compact T,-space. If f:X*—-Y
possesses an L-closed graph and the weak property of w:qtkowsk: then:

(a) x, is a continuity point for every x, belonging to the complement of the boundary

of X*
and ¥
(b) x, is a Darboux point of first kind for every x, belonging to the boundary of X*.

Proor. Let X be an open almost-manifold such that X=X* and X"\ X is
discrete.

Let x,6X*. We shall show that x, is a Darboux point of first kind. Let
£ =L(x,, y,) be some arc with the endpoint x,. Of course, it fulfils Condition 3°
of the Definition of a Darboux point of the first kind (see [10], [11], [12]). Now, we
shall show that Condition 1° of this definition also takes place. Assume the contrary,
1e that there exists pEL such that f (L,_(x(,, p))=Y#f(Le(xo, p)). Denote

E=L;(x,, p). Let ye¥\J(£) and let {y,},ucf(l,) be a net such that y= llmy,

Let x, be an element of £ such that f(x,)=y, (for ¢€Z) and let {z,},¢5 be a sub-

net of {x,},¢ such that it is convergent to some x°¢ £. Then f(x°)=y. The obtained
contradiction ends the proof of Condition 1°.

Now, we shall establish Condition 2° of the Definition of a Darboux point of
the first kind. Let K be a set such that, for some net {x,},csC£ such that x,=
—llm x,, K quasi-cuts the set A—f(L)Uacp Sf(x,) (where acp f(x,) denotes the

set of all the accumulation points of {j(x,)}) between the sets {f(x,)} and
{/(x0): aef}Uaggf(x,)

Put
(1) ANK = UUV,

where U,V are separated sets, f(xo)¢U and {f(x,): aEZ‘}Uacp f(x,)cV. Let
6,€X and E£*=1L,(x,, x,,). It is sufficient to consider the case 1f £'cXU{x,).
We shall show that

(2 KNf(£*) #0.

Suppose, on the contrary, that

(3) KNf(£*) = 0.
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First, we prove that:

4) P=f(£L)NU and Q =f(L*)NV are closed sets.
Of course, these sets are separated. According to (1) and (3) we infer that:
(3 f(£%) =PUQ.

We prove the closedness of P, for Q the proof'is similar. Assume, to the contrary that
there exists z€ P\ P. Let {z,},.;=P be a net which is convergent to z. Since
Pcf(L*), we may infer that z€f(L*) (see the proof of Condition 1°), which is
impossible.

Let £ be an arc joining f(x,) and f(x,). Let h: [0, Ij-==. f.hbe a homeo-
morphism such that k(0)=f(x,) and h(1)=f(x,,). Let L=h""(PNL). Thus there
exists ’€[0, 1) such that (a, 1]N1A=0. Let ay=sup P, according to (4) ay€F,.
Put a=h(a,). Define by=inf{x=>a,: xch=*(QNL)}c¢h=(QNL) and put b=h(b,).
Of course, by>a, and L;(a, b))\ P={a}, L;(a, b)NQ={b}. Put A,=Y\(PUQ).
Then A, is an open set and 4, quasi-cuts Y between a and b, moreover the arc £'=
=L;(a,b) joining a and b fulfils the following condition: £°cA,. Let a,, b, be
elements of £* such that f(a,)=a and f(b,)=>b. Thus, according to the weak pro-
perty of Swiatkowski, we have

(6) 3 3  aEL(f; o).

a€4o cELg_g(ﬂp b],)

Of course, c€X. Let T be a neighbourhood of « such that ac TcT< A4, and T is
compact ([2], Theorem 3.32 p. 196). According to (6) and the Lemmas | and 2 we can
prove that there exist an arc £,=L(c, 1) and a sequence {c,};>=, such that {c,:
Rl 2l .!i”.l c,=c and {/(c,): n=1,2,..}cT. Let {t,},cx be a subnet

of {f(c,)}i=1 which converges to some a,cT and let {d,},.s be asubnet of {c,}i~,
such that f(d,)=t, (for ¢€ZX). Since fz, has a closed graph and {d,: ecZ}cC£L,,
we have f(c¢)=u,. This, according to (5), contradicts the fact that oy€ 4,. The ob-
tained contradiction ends the proof of (2).

We have shown that an arbitrary point from X* is a Darboux point of the first
kind of f, which according to Proposition 3 ends the proof.

Remark. If we only assume that ¥ is arcwise connected and locally compact then
of course, every point from the boundary of X* is a Darboux point of the second
kind. The remaining part of the theorem is the same as above.

It is easy to see that if /fulfils the conditions of Theorem 4 then not every point of
some almost-manifold with boundary X* is a continuity point of /. The following
theorem holds:

Theorem 5. Let X be a locally connected Mazurkiewicz—Moore space and let Y
be a locally compact and arcwise connected space. Then, if in some neighbourhood of x,
a function f: X—+Y possesses a closed graph and the weak property of Swiqtkowski then
J is continuous at x,.

Proor. For simplicity sake, we assume that f possesses a closed graph and the
weak property of Swigtkowski in the whole space.
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Let y,=/f(x,), and let B(x,) be a base of X and x, consisting of the connected
and open sets. Assume to the contrary that x, is not a continuity point of /. Thus there
exists a neighbourhood T of y,, such that T>Y and T is compact and moreover

(1) SUNT =0 for every U€cB(x,).

Let ¥ be a neighbourhood of y, such that V=T (see [2, Th. 3.32 p. 196]).
Let %~ be the family of all neighbourhoods W of V such that WcT. Put
W*=W\YV for every We# . We shall show that

(2) UNf-1(W*)#0 for every U€B(x,) and WeW.

Let UEB(x,), WeW'. According to (1) there exists z,€U such that f{(zy)€
EVNW=W. Let L*=L(x,, z,)c U. In order to prove (2) it is sufficient to show that
S(E)NW* 0. Suppose on the contrary, that f(£*)\W*=0. Then f(£*)cVUW
and so analogously to (4) in the proof of Theorem 4 we may prove that f(£*)NV
and f(L*)NW are closed and as in the proof of Theorem 4 there exist acf(£*)NV
and bef(E*)NW and an arc £'=L(a, b) such that £°cW?*. Let a,, b, be ele-
ments of £*, such that f(a,)=a and f(b,)=b. Therefore, according to the weak
property of Swiatkowski and the closedness of W (f) we get in contradiction to the
supposition that f(£*)NW*=0.

In the family X={(U, W): UcB(x,), We#'} we define a directed relation = in
the following way:

Uy, W) = Uy, W) < Uy D U AW, D W

For every o=(U,W)cZ, let x, be an arbitrary element of the intersection
UNf~Y(W*). Itis easy to see that {x,},.r tends to x,. Let {d,}, .5 be asubnet
of {x,},¢x such that {/(d,.)}, cs» tends to some acFr V. By the closedness of the
graph of f, we infer that f(x,)=a, which is impossible. The obtained contradiction
ends the proof of this theorem.
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