On realizations of Fourier series operators

By JOUKO TERVO (Jyviskyld)

Abstract. The paper deals with linear operators L(x, D) defined by
)] (L(x, D)p)(x) = (2“)-”&22':;" L(x, 1)@,

where ¢ lies in the space Cg of all smooth periodic functions, @, is the Fourier coefficient of ¢ and
L(-, +) is a mapping R"XZ"-+C such that L(-,/)€Cy and that

(2) sup |DEL(x, 1) = C.(1+|I12)"2.
XEW

Here W is the cube {x€R"|x;€]—m, n[.} The assumption (2) quarantees that L(x, D) maps Cx
continuously into Cg.
In the case when pu,=pu+d|z| with d<1, the formal transpose L'(x, D). Cg—-Cx of L(x, D)

exists. Denote by L« (and L;‘f.‘) the minimal realization (the maximal realization, resp.) of L(x, D)
in the appropriate weighted spaces # .. Conditions for the bijectivity of L} . +al and for the essen-

tial maximality of L (x, D), that is, for the equality of operators L, , and 1;‘ « are established.

1. Introduction

Let L(x, D) be a linear operator defined on the space Cy of all smooth periodic
functions ¢: R"—-C by the requirement

(1.1) (LG D)P)) = 20" 3 L(x Doue®.

Here L(-, -): R"XZ"-C is a mapping such that L(-,/)éCy for I€Z" and that
with some constants C,>0 and p,€R one has

(1.2) sup |DEL(x, )| = C,(1+|l]2)#2 =: C,k, () for I€Z"
xXEW

The constant ¢;:= f @(x)e~ "3 dx is the Fourier coefficient of ¢. Every linear
w

partial differential operator with C; -coefficients can be presented in the form (1.1).
For the theory of periodic partial differential operators cf. [3], [4], [2], [1] and [8].
In [11] it is showed some boundedness and compactness criteria for the operators
(1.1) in the appropriate spaces and in [10] one-sided invertibility of the operators (1.1)
is considered. For the related topic we also refer to [7].

The operators (1.1) for which (1.2) is valid form an algebra (cf. Corollary 2.2).
In the case when y, is of the form p,=pu+dl«| with =<1, the formal transpose
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L' (x, D) of L(x, D) exists and L’(x, D) is of the form (1.1) (cf. Remark 2.6 and
Theorem 2.8). Supposing that L’(x, D) exists we can construct the minimal and maxi-
mal realizations, say L;, and Lj,',k. of L(x,D) in the weighted spaces %],
(cf. Section 2.4). In the case when L(D):=L(x,D) is a translation invariant
operator, one has L;.,‘=L;,‘f. (cf. Theorem 3.1). The spectrum ¢ (L, ;) of the mini-
mal realization of the translation invariant operator L(D) is given by o(L; )=
={L()|leZ"} (cf. Theorem 3.4). This fact implies a criterion for the bijectivity of
L, x+al when a is large enough.

In the fourth chapter we pertuebate the translation invariant operator and obtain
a condition for the bijectivity of Lj ,+al, where L, , is the minimal realization of
the perturbed operator L(x, D). A condition for the essential maximality, that is, for
the equality L, ,=L,%, is also established. The fifth chapter considers operators
(1.1), which are semi-bounded (from below) in appropriate spaces. Criterions for
the bijectivity of L, ;+al and for the equality L ,=L;,'fk are proved. Our theory
especially implies that for elliptic periodic partial differential operators one has
L,'.th;f,l, N(L;f,.-i—af):{O} and that R(L;, +al)=%3, for a large enough,
where ¢ lies in Z.

2. The algebra of Fourier series operators

2.1. Denote by Cg° the linear space of all C=(R")-functions ¢ such that each
function x;—(xy, ..., X}, ..., X,) is 2n-periodic. Eguip the space Cy* with the (stan-
dard Frechet space) topology defined by the semi-norms ¢--sup |[(D?¢)(x)|,

xEW

oc€Nj. Here W denotes the cube W:={x€R"|x;€]-mx, [, j=1, ..., n}. The dual of
C7 is denoted by Dy, in other words, Dy, is the linear space of all periodic distribu-
tions. We recall that for T€D, and for @€C: one has

2.1 T(p) = (27r)"'l€§nT:<.o_n
where T,€C is defined by
(2.2) Ti= T (e,

and where ¢;€C is the Fourier coefficient of ¢, that is,
23) o= [@(x)e " dx =: g(e=""").
W

Furthermore, for each T€D; there exist constants C=>0 and s€R such that
(2.4) 1Tyl = C(1+]]?)** =: Ck,(I) for all [eZ"

A distribution T€D; lies in Cy if and only if for each NEN there exists a constant
C=0 such that

(2.5) ITy| = Ck_x(l) for all leZ".
The product YyTe€D, of TeD, and YeCZ is defined through the relation
(2.6) YT)() =T(We) for @eCy.
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Then one has

(2'7) (wT)l = (2,1)_“86%'" Tz wl-:'

For the definition of Banach spaces &7 , we refer to [11]. Here p lies in the
interval [1,es[ and k belongs to an appropriate class ), of weight functions
k: Z"—~R. We have the topological inclusions C3 <@} Dy, when D; is equipped
with the weak dual topology. The relations

Cr= ) Zpx
keXx,
and
D= U %,
kEX,

are also valid. Let p’€[l,<=] such that 1/p+1/p’=1 and let k™€, such that
k™ ()=k(—1). Denote by @5, pc[l, [ the dual space of #5 .. Then for each
tc By there exists an unique T€Z;. .- such that

(2.1) tp =T(p) for @eCy.
On the other hand, the linear form
(2.9) @ =~ T (), TEBG 1~

has an unique continuous extension from %7, to C. Furthermore, the mapping
L. By ap~—~By defined by

(2.10) ¢T) =1t

is an isometrical isomorphism. For some additional properties of % ,-spaces we
f>fer to [11], [10] and [7].

2.2. In the sequel L(-, -) denotes a mapping R"XZ"—C such that

(2.11) L(-,DeCy for each [€Z".

We shall deal with linear operators L(x, D) defined by the requirement

(2.12) (L(x, D)o)(x) = @2r)™" 3 L(x,Dg;e™» for @eCy.
leZn

Supposing that with some C>0 and M¢R one has
(2.13) sup |L(x, )| = Cky(l) for all IleZ"
XEW

one sees that L(x, D) is a mapping R"—C, which, in addition is 2z-periodic with
respect to each variable.
Furthermore, we have

Theorem 2.1. Suppose that for each «cNj there exist constants C,»>0 and
u.ER such that

(2.14) sup |DIL(x, )| = C,k, (1) for all IcZ".

XEW

Then the operator L(x, D) defined by (2.12) maps Cy continuously into Cy.

g9e
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On the contrary, suppose that a linear operator L:Cg —~Cg is continuous. Then
there exists a mapping L(+, +): R"XZ"~C such that (2.11) and (2.14) are valid
and that one has

(2.15) L = L(x, D).

Proor. A) The proof of the first part of the assertion is established in [11],
Theorem 3.1; cf. also [10].

B) We show the last part of the assertion (for an alternative proof cf. also [10]).
Let L be a continuous operator Cy —Cy. Then for each a€Nj there exist cons-
tants C,>0 and N,EN such that

(2.16) SHPID“(L‘P)(x)I5C Z' sup [(D@)(x)| for all @eCT

|B|=Ng, x€W
(cf. [12], p. 42). Define a mapping L(-, -): R"XZ"-C by
(2.17) L(x, ) = [L(€@®?)](x)e~ ",

Then L(-, /) belongs to Cy* for each I€Z" and by (2.16) one has

(2.18) IDAL(x, )] = ;‘] D*7(L(¢"))(x) D? (e~ ") (x)| =
=a

= 2[ Coey 3 sup|DP(e0))(x)||(—D)7ei® )| =
y=a \V) IBI=N, -, x€W

= 2 P+ =
7%;[71 x TI:|§%_,| L
= Ttle., S kneyrin() = Ciki ()
y=a\Y) 1Bl=Ng—y

forall /€ Z" and x€ W, where C, is a suitable constant and where p, i=max {Ne-,}+
+|«|. Hence the estimate (2.14) is valid.
We have to show that L=L(x, D). Let @€Cy and let qo,,EC;" such that

Pa(x) = 20)" 3 @,

[1]=n

(that 18, (¢,)=¢, for lfl*n and (¢,),=0 for || :=-n) Then one sees that ¢,—~¢@
in Cy. Hence the continuity of L implies that

(2.19) Lp,~ Ly in C=

Let L(x, D) be the operator (2.12) with the symbol (2.17). In virtue of the first part
of the assertion L(x, D): Cy —~Cy is continuous, as well. Hence one has

(2.20) L(x,D)¢, -~ L(x,D)¢p in Cg.
Noting that
(2.21) (Lon)(x) = [2r)~" |:éu @ L(€"N)](x) =

=@n™ & (LEHN@)e™2)@ e = (L(x, D)ou) (),
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onc obtains L¢,=L(x, D)p,. Hence by (2.19)—(2.20) one has Lo=L(x, D)o,
as required. [J

Denote by S* the linear space of all mappings L(+, +): R*"XZ"~C such that
L(-,NeCy for each I€Z" and that

(2.14) sup |[D3L(x, )| = C,k, () for all IcZ".
XEW

In virtue of Theorem 2.1 for each L(-, -)€éS™ there exists the continuous linear
operator L(x, D): C;>—~C7 defined by (2.12) and, in vice versa, every continuous
linear operator L: Cy —~Cyg isoftheform L(x, D) with L(-, -)€S*. We denote by
L* the linear space {L(x, D)|L(-, -)€S*} of linear operators Cy —~Cj’. Then the
mapping %:S*-L" such that
K(L( e A )) = L(x: D)

is a well-defined linear bijection.

Let o denote the composition of two operators L(x, D) and K(x, D)€ L*. Since

(due to Theorem 2.1) L™ is exactly the linear space of all continuous linear operators
Cy —Cy one has (for the definition of an algebra cf. [5], p. 140, for example)

Corollary 2.2. The pair (L*, o) forms an algebra with unit. [

Remark 2.3. Since one has
(2.22) o(x) =) 5 @,
ezn

the symbol I( -, ) of the identical operator (which is the unit of the algebra (L*, o))
is defined by I(x,)=1.

For the symbol (LoK)(-, +) of the composed operator L(x, D)oK(x, D) we
obtain

Theorem 2.4. Let L(-, -) and K(-, +) be in S*. Then (LoK)(-, ) has the
expression

(223) (LoK)(x. D) = @)~ 3 L(x, )(K(-, D)-,e=.
zed”

ProoOF. A) At first we verify that (LoK)(-, -) lies in S*. For each y€Nj one
has with suitable constants C,>0 and p,€R

(2.24) [0=2)"(K(-, D)-s| = [(DLK(C-, D)-s| =
= DL K(x, 1dx = 2x)°Cky for I, zeZ".
sup [DLK(x, D) ,,-[ X = (2n)'Cyk, () for 1, z€

Here we used the fact that by the periodicity the relation
(2.25) I'g, = (Do)

holds. Due to (2.24) for each méeN there exist constants C,,>0 and p,fR suc
that ;

(2.26) (K> D)i-o| = Cuky, (D m(2)-



298 Jouko Tervo

For each «€Nj we get

e |DHLC. D)W = 3 ()DL Al I0-2 =

= Z[:]C‘,_,k,._”(z)k],,l(I—z)é

= Cokyr s 1 (D Ky (D),

where C, is a suitable constant and where p;:= max {ttz-o}. Choosing in (2.26)
m=n+1+p2+|x| one sees by (2.27) that the series

8622'“D:(L( ‘s Z)E“"")(X)(K(‘ ’ 1))!-:

is absolutely and uniformly convergent in R". Hence DZ%*(LoK)(x,[) exists,
Dx(LoK)(-,]) is continuous and

(228)  Di(LoK)(x, D) =(2r)~" Zz' Di(L(-, 2)e"N(xX)(K (+s D)i-s-
ZEL"
Thus (LoK)(-,)eCy and by (2.26)—(2.27) one has
o | D3 (LoK)(x, )| = C'sz(SGZZnk—(..+n(2))k|=|+.,,(l)

where we chosed m=n+1+p;+|2|. Hence (LoK)(-, -)ES™. -
B) Let @€CZ and let ¢,£C7 be defined by ¢,(x)=2r)™" 3 ¢, Since

@,—~¢ in Cy one has W=
(2.29) (L(x, D)oK(x, D)), =~ L(x, D)oK (x, D)o

and

(2.30) ((LoK)(x, D)@, = (LoK)(x, D)¢.

To complete the proof it sufficies to note that
@31) (L D)oK(x, D))n = 20)"L(x, D) 3 K(-, De™ o) =
Il=n
= (2n)~* z [L(x, D)(K(-, De'")e~ 1], et =
|t|=n
I~ - . (1), iz =1,) )
e (2‘") oy i‘é"' [:GZZ'_ L(x’ Z)(K( ’ I)e‘ ),e‘( ]q:?;e T
= (27*:)""I JZ [ zz' L(x, 2)(K(, D)), €] @yl =
I|=n zcZ"
e (LOK)Q’R' O
Remark 2.5. A) The symbol (LoK)(-, ) can also be expressed in the form

232) (LK), D=@m)™" 3 ( [ L(x, DK(y, De'*~"*Pdy).
€L Ty
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B) Let S7; J€R be the linear subspace of S™ such that L(., -)€SF if the
estimate
sup I-D:L(x! DI B Cakp+6[¢|(l) for all IE /o

xEW

holds. Equip the space S§ with a locally convex topology defined by the semi-norms
L( g ') —+Sup (SUP ID:L(x, Dl)lkn-l-ﬂa[(l)s dGNg-
IEZ" xEW

Since C7 is complete, one sees that ST is a Frechet space.

2.3. Let L be a linear operator Cy°—~Cy. We say that the formal transpose of
L exists, if one is able to find a linear operator L’: Cy>—~C7 such that

233)  (Lo)¥)= [(Lo)Y(x)dx=o(L'Y) forall o,yeCs.

L
The operator L’ is the formal transpose of L. One sees that L’ is unique and that
(L'Y=L.

Remark 2.6. Suppose that for each a€Nj there exists a constant C,>0 such
that

(2.34) sup [DEL(x, )| = Cokysopm (D) for IEZ,

xXEW
where p€R and where d<1. Then the formal transpose L'(x, D):Cy—~Cg of
L(x, D) exists (cf. [11]).

Lemma 2.7. Let L be a linear operator Cg —~Cy such that the formal transpose
L':Cy—~Cy exists. Then L (and L’) is continuous.

Proor. Since C7 is a Frechet space we have only to verify that L:Cy—~Cg is
closed (cf. the Closed Graph Theorem given e.g. in [12], p. 79). Let {¢,}=CZ be a
sequence such that ¢,—~¢ and L¢,—~y in Cy with some ¢, y€C;. Then one has
for each IeNj

(2.39) = Y (em®9) = lim (Lo)(e™"")
= lim @,(L(e=""?) = ¢(L'(e=""")) = (Lo
This shows that Lo=y and then L is closed. O
Denote by L™ the linear subspace of L* defined by
(2.36) L'™ = {Le L*|the formal transpose L’ exists}.

If LeL'™ then L'eL'™ (cf. Lemma 2.7). Furthermore, one has
Theorem 2.8. The pair (L'*, o) forms a subalgebra (with unit) of (L%, o).

Proor. Let L=L(x,D) and K=K(x, D) be in L'®. Then one has
(237) ((LoK)@)(Y) = (Ko)(L'Y) = @((K'oL)Y) for ¢, YcCy.
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Hence (LoK) exists and (LoK) =K’oL’€L*. Clearly I’ exists and I’=IcL*.
This completes the proof. O

Let S™ be a subclass of S* defined by S™=x"1(L'"). We have

Theorem 2.9. Let L(-, -) be in S*. Then the symbol L'(-, -) of L' (x, D) has
the expression

(238) L'(x,2)=(2m)~" :ezz'- (L(-s = (z+D))e'b®  for z€Z", x€R™

PRrooF. Since L’(x, D)cL* there exists L'(-, +) S® such that
(LG D)) = @1 3 L'(x, Dire

and the one has
(2.39) L'(x, 2) = [L’ (x, D)('®")](x)e""®® for z€Z".

Furthermore, we obtain for each z€Z"

LGy 2= (L, DY) =
= (L' (x, D)( ] e=)(e=10) =
= (@) (L(x, D)) = (L(-, —(z+ D),

and then one has

L'(x, z) = 2n)~" IEZZ"‘ (L'(-, 2))e® =
=)™ 3 (L(-, = (z+D))e™,
lez"

as required. [J

Remark 2.10. In virtue of (2.40) the symbols L(-, -) and L'(-, -) satisfy the
relation

(2.40) ¢y 2)=(L(-,=(z+D)) for 2z lcZ"

24. Let L=L(x,D) be in L', Then we are able to construct the linear ope-
rators L, and L, ,: &% ,~B%, as follows

2.41) {D(L = {uc By |3 f€ By such that u(L’¢) = f(g) for peCs}
Lp x = f,
and

(2.42) {D(L"") s

L,x¢ =Lp for ¢cCy.

One sees that L;?, and L, , are densily defined. Furthermore, L%, i w cIosed and L, ,
is closable (cf. [12], pp. 77 and use (2.6) of [11]). Let L, : %5 —~%; , be the smal-

P
lest closed extension of L, ;. One always has L, ,CL,, ,, that 1s, L,f, is the

extension of L
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3. The translation invariant operator L(D)

3.1. Let L(-): Z"~C be a mapping such that
3.1) IL(D| = Ck, () for IcZ".

Then by Theorem 2.1, by Remark 2.6 and by Theorem 2.9 the operator L(D) defi-
ned by

(3.2) (L(D)p)(x) = 2n)~" lezz‘u L)@@

maps C;° continuously into Cy’, the formal transpose L’(D) of L(D) exists and
L’'(1)=L(-=1). In addition, we have for p€[l, <]

Theorem 3.1. Suppose that L(-) obeys (3.1). Then the identity

(3.3) L, =L%
holds.

Proor. Let u be in D(L;ft) and let L;’;*u=f. Then for each I€Z" we get
(34) fi = (L) (e™™) = u(L'(D)(e="""))

= u(L(De~""?) = L(Du,.

Let {u,}JcCg be a sequence such that
-~ -n i(l, x)
u,(x) = (2n) IIIZ u,e'"h®,

Let p€[l, «[. Then one sees that |u,—ul, ,=((27)~" 3 |4k()|?)/?-~0 and that
by (3.4) =

WL ety =S N ok = ((21’0"“I GZZ"‘ (LD @)~ )k D]y = ((2m)~ "IZ |k (D)IF)/? -0
with n—ee. Hence u€D(L,,) and L, ,u=f, asrequired. O

3.2. Let p be in the interval [1, e[ and let k and k™ be in in A,. We have
Theorem 3.2. Suppose that L( -) obeys (3.1). Then the inequality

(3.5) ILD) @,k = Cill@llpia=—Cell@ll,x  for all @eCF
holds with C;>0 and C,=0 if and only if there exists a constant C=>0 such that
(3.6) k(D =C(1+|L(D)) for all IcZ"

Proor. Suppose that (3.5) holds. For each k€X,, p€[l,e[ and I€Z" one
has
(3.7 ILD)(E ") px = (7)™ EZZ' I(L(D)(e"" ). k(2)|P)? =

= (@2n)~" i EZZ,' IL(D (). k(2)IP)/? = |L(DIk()
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and

e, = k(D).
Hence (3.6) is valid.
Multiplying (3.6) by |¢,k(/)| and taking into account that (L(D)¢),=L())¢,
one sees easily that (3.6) implies (3.5). O

Suppose that p=2. Then the space J#~:=%7, is a Hilbert space with the
inner product

(3.8) (u, V) = (2m)™" IGZZ'” v k* (D).

Similarly as Theorem 3.2 one has obviously
Theorem 3.3. Suppose that L(-) obeys (3.1). Then the inequality

(39 Re(L(D)o, o) = Ciloli-—Calloli for ¢eCy
holds with C,>0 and C,=0 if and only if there exists a constant C =0 such that
(3.10) k() =C(ReL(D+1) for IleZ".

3.3. Denote by o(L, ) the spectrum of L, . Let L,%: &5~ be the
dual operator of L, ;. Because L, , is a closed operator, the sca]ari liesin the resol-
vent set @(L, ,):= C\a(L, ") of L, i if and only if the relations

(3.11) N(L; (—AI) = {0)
and
(3.12) R(L, y—Al) =

hold (cf. [9], p. 14). We obtain for pe[l, o[
Theorem 3.4. Suppose that L(-) obeys (3.1). Then one has

(3.13) o(L]) = {LD|IEZ}.

ProOF. A) Suppose that A¢a(L; ), that is, i€e(L; ). Then by (3.11)—
(3.12) then inverse operator (L, ,—AI)™': &} ,—~®Bj,, exists and D((L, x—Al)™Y)=
=B - Since the operator (L x—AI™! [ closed the Closed Graph Theorem
implies that (L, ,—AI)™" is bounded Hence one has

(3'14) " u"p k= “(Lp k_AI) 1" "(Lp k__AI)u"p k for HGD(L;,I:)'
Choosing u=e¢'"™") one obtains that
(3.15) IL()—=A] = V|(L;c—AD)"Y forall IeZn,

and then A¢{L(])|lcZ"}.

B) Conversely, suppose that A4 {L(/)|/€Z"}. Then there exists a constant
¢>0 such that

(3.16) IL)—A =c forall leZ



On realizations of Fourier series operators 303
Hence one has for all ¢€Cy

(3.17) (Z@)—20) 0|,k = clloll s

which implies that R(L, ,—AI) is closed and that

(3.18) N(L,—A1) = {0}.
We establish that
(3.19) N(L;j-).l) = {0).

Choose U from N(L,"\—AI)C@&5,. Let u€®By - be defined by u=2-1(U)
(cf. Section 2.1). Then one has for all @€Cy

(3.20) u((L(D)—AI)g) = U(L(D)—21)@) = U((L; x—1)@) =0

and then uEN(Lf,'.m-—}J). In virtue of Theorem 3.1 one has Lf,',l,.«=Lj,I: Lk
Due to (3.16) we also have

(L' (D)= 2D) ¢l .1n~ = cll@ll 1

and then N(L, yk~—Al)=N(L}" y - —2I)={0}. This shows that U=2(u)=0.

Since R(L, —AI) is closed, the relation (3.19) implies that R(L, ,—Al)=
=25 . Hence Ae e(L,,), thatis, A¢a(L, ;). This completes the proof. O

Remark 3.5. Suppose that |L([)|+e with |l|-+ecc. Then the set {L(])|lcZ"}
is closed and so one has

(3.21) a(L, ) = {L(D)|lZ"}.
For p€[l,-=[ we obtain

Corollary 3.6. Suppose that L(-) obeys (3.1). Furthermore, suppose that there
exists a positive constant ¢>0 such that

(3.22) ReL(l) =—c for all IcZ".
Then the relations

(3.23) N(L; +al) = {0} and R(L},+al) =23
hold for a=c.

Proor. In virtue of (3.22) one has
(3.24) IL(D+a| = ReL()+a = a—c >0 for all [eZ".

Hence —a does not belong to {L(/)|/¢Z"} and then by Theorem 3.4 —a belongs
to ¢(L, ). This proves the assertion. [J
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Remurk 3.7. A) The proof of Corollary 3.6 shows that the condition (with
41€C)
(3.25) |IL(D+AI| = E=>=0 for all lZ"
implies the relations (3.11)—(3.12).

B) The elements k of J, satisfy (3.1). In the Chapter 5 we shall denote the corres-
ponding operators (3.2) by k(D).

4. The perturbed operator

In the sequel we assume that the operator L=L(x, D) belongs to L'* and that
PE[l,==[. At first we establish

Theorem 4.1. Suppose that P(-): Z"—C obeys the estimates

4.1) [P(D] = Ckp (D)
and
(4.2) Re P(l) =—c for all IcZ",

where C, M and c are positive constants. Furthermore, suppose that LEL'™ such that

(4.3) I(L—=P)plp,x = 2l Pl x+Blollpx Sfor all 9eCZ,

where €]0,1[, p=0 and P=P(D).
Then there exists R=0 such that the relations
(4.4) N(L,x+al)={0} and R(L,;+al)=RB},
hold for a=R.
Proor. Due to Corollary 3.6 the operator P, +al is a Fredholm operator
with
(4.5) ind(P,;+al)=0 for a=ec.
In virtue of (4.2) we obtain

|P(D+a|l = a—c for I€Z"
and then one has

(4.6) I(P+al)ol,x = (a—0)l¢l,x forall ¢@cCy.
Furthermore, one has for a=2c

|P(D+al* = |P(D|*+2a Re P()—a® =
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= |P(D|*—2ac+a® = |P()|* for all IcZ"

and then
4.7) I(P+al)@ll,x = [ Poll,,x forall @eCy.

In view of (4.3), (4.6) and (4.7) we obtain for a large enough, say a=R (=2c)
(4.8) I(Lp,x+al)o—(Ppx+al) ol x = I(Lpx—Fp ) @llpx =

= (a+plla—) (Pt al)@llpi = o [(Ppx+al)gl,, forall @eCy,

where «’€]0, 1[.
The inequality (4.8) implies that D(L, ,)=D(P,,) and that for a=R

(4.9) I(Lp,x+aD)u—(Py x+al)ul,x = & |(Fpx+alull ,x

for all u¢ D(P, ). Since P, +al is a Fredholm operator with ind (P, ;+al)=0
and since by (4.9) the operator L ,+alis (P, ;+al)-bounded with relative bound o’
smaller than one, one sees that L, ,+al is a Fredholm operator with

(4.10) ind(L, +al)=0

(cf. [6], p. 236). Due to (4.9) and (4.6) the range R(L, ;+al)is closed and the kernel
N(L, +al)={0}. Thus by (4.10) R(L, ,+al)=23j .. This finishes the proof. O
For p€]l, e[ we obtain

Corollary 4.2. Suppose that P(-) and Q(-): Z"~C obey the estimates

(4.11) |[P()| = Cky(l) and |Q())] = Cky ()

and

(4.12) ReP(l)=—c and ReQ(l)=-—c forall IcZ",

where C, M and c are positive constants. Furthermore, suppose that Le L' such that
(4.3) IKL—P)oll,,x = allPell,,x+ Blloll

and

(4.13) (L =)ol 15~ = 2190l r, 10~ +Bll@l 5, 10

Jor all @eC, where ac)0,1[, p=0 and Q=Q(D).
Then the equation

(4.14) L.=L}
is valid.

ProoF. In virtue of Theorem 4.1 one has
(4.15) R(L,  +al) =35, and R(Ly yx-+al)= By 1p.
for a large enough, say a=R. We show that
(4.16) N(L}+al) = {0).
Let # be in N(L;f,+al) and let U=%(u). Then one has
U((Ly,ap-+al) @) = u((L’+al)p) =0 forall ¢eCy
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and thus

U((Ly yu-+al)v) =0 for all »€D(L} yj~).
This shows that UG(R(L"U,- +al))+={0}. Hence (4.16) holds. Let u be in
D(Lp ¢ and let L,, wu=f. Choose weD(L,,) with (L;,+al)w=f+au=

—(L,f;-%al)u Since (L, +al)w= (L;,f,+a1)w one sees by (4.16) that u=
=weD(L,,) and that L, ,u=f This shows (4.14). O

5. The semi-bounded operator

5.1. We assume further that L=L(x, D) lies in L**, In addition, we in this
chapter assume that p lies in the interval ]I, e=[. Then the spaces & are reflexive
and so one has L, ,‘—L"‘ (cf. [6], p. 168).

Let k and k™ bc in k We show

Theorem 5.1. Suppose that LeL'™ such that with some constants C=0, acC
and ¢>0 the estimates

(5.1) I(L+al)oll,x = Cllol,,
(5.2 I(L+aD)ol,x = cllol,x
and
(5.3) 1L+ al) ol y, yax-)- = cloly, yux-- for @€CF
hold.
Then the relations
(5.4) N(L,x+al)={0} and R(L,;+al)=2%
are valid.
Proor. A) In virtue of (5.2) and (5.3) one has
(5.5) I(Z;e+aDul . = clul,, for ueD(L;)
and
(5.6) 1Ly 1jx=y-+ @DV 1jgamy-  for  v€ED (L7 3 jukey~)-

Thus one sees that R(L, ;+al) (and R(L, yjux-)-+al)) is closed in %5, (and
in B 1/0k) > resp) In addition, the relations

(5.7 N(L, +al)={0} and N(L, -y~ +al)= {0}
hold. Hence we get
(5.8) R(Ly, yjga=y- +al) = R(Ly: Yygaey- +a1) =

= N(L} yaxmy-+aI* = {0} = B j0a-y~ -
B) We show that
(5.9) R(L}-+al) = BZ .

Let f€#] -~ and let F=2(f)€®; 1 ax-)-- Due to (5.8) we find an element U
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from B 1/ax-y- such that

(5.10) (L;?’n(gg-—)-'l'al)v = F
and then one has with u:=2%"1(U)
(5.11) u((L'+ aI)(p) = U((L:,’_um-,-+al)(p)

= F(p) = f(p) forall ¢eCy.
This shows that f=(L¥~+al)uc R(Ly}w-+al), as required.
C) It remains to show that
(5.12) R(L; ,+al) = BE,.

Let § be in C;°. Due to (5.9) we find an element w€Z#] 4~ such that (L;f..- +al)w=
=y. From (5.1) and (5.2) one sees that

(5.13) By - < D(Ly,,)
and then weD(L,,) and (L, +al)w=y. Hence the inclusion
(5.19) Cy C R(L,s+al)

is valid. Since Cy’ is dense in 4}, and since R(L, ,+al) is closed, the relation (5.12)
holds. This completes the proof. O
Let k, k; and kg be in X,. The following corollary is obtained

Corollary 5.2. Suppose that LEL™ such that with some constants C=>0, acC
and ¢=0 the estimates

(5.1 I(L+aD)ell, « = Cllollp,ua;
(5.2 I(L+al)o|,x = clloll,,«
(5.3) L+ aD) @l y,yaxsy = cll@llp i)
(5.15) I(L+aD) @l 1~ = Clol s
(5.16) (L +al) ol 16~ = cll@llp,1x-
and
(5.17) I(L+aD)ollyxan” = clloly.xag: for all @eCy
hold.

Then the equality
(5.18) I y= LY,
is valid.

Proor. In virtue of Theorem 5.1 one has R(L,,+al)=%;, and
R(L}7 s~ +al)=2} 1 - . Thus the assertion follows as in the proof of Corollary
. )
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5.2. In the sequel we assume that p=2. As we mentioned above, the spaces
H =23, are Hilbert spaces with the inner product

(u, V) := 2m)™" 2> w,k*(]).
1eZn

In the case when k=1 we denote (u, v),=(u, v),.

Theorem 5.3. Suppose that LcL'™ such that with some constants C=>0 and
¢>0 the estimates

(5.1) Lol = Clloll -
(5.19) Re ((L+cf)tp, k*(D) (p)o =0
and
(5.20) Re ((L+cI)q>, (kk-)z(D)(p)n =0 forall ¢ceCg,
where k™ =1.
Then the relations
(5.9) N(L;y+al)={0} and R(L;i+al)= X"

are valid for a=-c.
Proor. In virtue of (5.19) one has for a=c
(5.21) Re((L+al)g, ¢), = Re((L+al)o, k*(D)¢), =
=—c(p, k*(D)9)o+a(p, k*(D)9), = (a—o)|lolli

and then

(5.22) l|((L+aI)(p”. = (a—o)lely for all a=>c.
Similarly we obtain

(5.23) Re ((L+al)g, (kk™)*(D)¢)y = (a—c)|(kk™)(D) |3

and then

(5.24)  Re((L+al)(kk™)~*(D)@, ¢)o = (a—0)| (kk™) 1 (D)@ll§ = (a—) | @lI}x=)-
One has
(5.25)  [Re((L+al)(kk™)"2(D)g, ¢)o| = |Re ((L+al)(kk™)"2(D)¢)(@)| =

= |Re ((kk™)~*(D)p)((L'+aD)p)| =
= |Re ((kk")*(D)¢, (L'+aD)d), =
= 19llym- |(kk) 1 D)Z + aDd)||p =
= l@llyms- 1L’ +aD)@ll 3y~
where we used the fact that

(5.26) I1PlE = 2m)~™ 2 (@)k(DIF =)™ F @ k(D* =
leZn lezn

= @)™ 3 lok (=D = loli--
iezn
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Hence by (5.24) we obtain

(5.27) (L +al)olypx~y- = (@—=0¢)|| @l = (@—) [ @ll1yxx=y~
for a=-c.

Finally we note by (5.1) that
(5.28) [(L+al)o|, = (C+a)|o|w-~

since k” =1. Hence all of the assumptions of Theorem 5.1 hold. This completes
the proof. O

Corollary 5.4. Suppose that LzL'™ such that with some constants C>0 and
¢=>0 the estimates

(5.1) [ Loliy = Cliol.

(5.29) | Lollxn~ = Cllol

(5.19) Re((L+cl)o, kD)), = 0

(5.20) Re ((L+cl)o. (kk™)*(D)¢), = 0

and

(5.30) Re ((L+d)(k')2(D)qJ_.kg(D)(p)n =0 for all ¢cC?

hold, where k™ =1.
Then the equality

(5.31) Ev=5%
is valid.

Proor. In virtue of (5.1) we obtain
(L @)W = lo(LY)] = 1@l k= iy~ 1 L i = Cl@ll =y~ 1l
and then

(5.32) IL @lyx~ = Cll@lx--p~ forall @eCy.
Furthermore, one sees by (5.19) that

Re ((L+cI)(k*(D)Y), ¥), =0 for all yeCy
(choose @=k~2(D)ycCz in (5.19)). Hence one has
(5.33) Re ((L'+ecl)y, (k)"2(D)¥), =

= Re ((L'+Cf)(ﬁ)l(k')_2(0)l,b) = Re ((L'+c!)_¢)(k‘2(D):I)
=Rey((L+c)k=*(D)¥) = Re (L+cI)(k~2(D)¥), ¥), =0

for YyeCy. Similarly one sees by (5.30) that (at first choose ¢ =k~%(D)y and then
evaluate as in (5.33))

(5.34) Re((L+cD)y, (k"/k) (D)), =0 for yeCe.

The inequalities (5.1), (5.19) and (5.20) imply by Theorem 5.3 that R(L; ,+al)=
=H#," for a=c. Similarly the inequalities (5.32), (5.33) and (5.34) imply by Theorem

10
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5.3 that R(Lyu-+al)=5,. for a>c. Hence the identity (5.31) is showed as
in Corollary 4.2. O

The Corollary 5.4 can be also formulated as follows (cf. the computation per-
formed in (5.33))

Corollary 5.5. Suppose that L L™ such that with some constants C=>0 and
¢>0 the estimates

(5.1) ILollx = Cll@llu-

(5.29) ILplip~ = Clioll

(5.35) Re((L'+cI)(k™)* (D)@, ¢), = 0

(5.36) Re((L'+cI)(kk™) (D)o, ¢), = 0

f;gm Re (k*(D)(L+cI)(k™ (D)@, @)y =0 for @cCy

hold, where k™ =1.

Then the equality
(5.31) Lo le,= L& I
is valid.

The assumptions (5.35), (5.36) and (5.30) mean a semiboundedness (from below)
condition for (L' +e¢I)(k™)*(D), (L +cI)((kk™)")*(D) and k*(D)(L+cI)(k™)*(D).
The assumptions (5.1) and (5.29) mean a boundedness condition for L.

The formulation of Theorem 5.3 can be similarly modified (that is, (5.19) and
(5.20) can be replaced (5.35) and (5.36)).

Corollary 5.6. Suppose that LcL™ such that with some constants C>0 and
¢=0 the estimates

(5.37) ILello = C ol
(5.35) IL@ll1 - = Cllello
(5.39) Re((L+cl)g,9), =0
(5.40) Re (L' +cI) (k™) P (D)o, ¢)o = 0
and
(5.41) Re (L+c)(k™ (D)@, ¢)y = 0
are valid, where k™ =1.

Then the equality
(5.42) L :=1L;,=L}=1"
holds.

Remark 5.7. The inequalities (5.35), (5.37) and (5.38) imply that N(L~ +al)=
={0} and that R(L™ +al)=x#" for a>c. ™ is the space of all periodic L*(W)-
(Lebesgue) integrable functions.
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5.3. Suppose that L is an elliptic partial differential operator with Cg-coeffi-
cients, that is,
Lex,D)y= J a,D° mEN,a,EC.

|a|=2m

Then for each 7¢N, there exists a constant ¢>0 and y=>0 such that

(5.43) Re((L(x,D)+c)@, @) = 710ly,, forall @eCy
(cf. [3], p. 117). Let 7 be in N,. Choosing k,(I)= (Z )2 and k™ ()= z M~

one sees that L’(x, D)k}(D), L'(x,D)(kk" )2(0) and k*(D) L(x, D)(k )*(D)
are also elliptic operators (of order 2(m+t) and 2(2m+1t), resp.). Hence by (5.43)
there exists a constant ¢=0 such that (note that k™ =1)

Re (L' (x, D)ki(D) o, ¢)o+c(Ki(D)g, @), = 0,
Re (L' (x, D)(k,k" (D)o, ¢)o+c((kk™ (D)o, ¢); = 0

Re (K2(D) L(x, D)(k™ (D), )+ c((R2k™ (D)@, ) = 0.

Hence the inequalities (5.35), (5.36) and (5.30) hold. The inequalities (5.1) and (5.29)
are also valid (cf. [3], p. 111).

Using the evaluation such as in (5.33)—(5.34) one sees that the inequalities
(5.35), (5.36) and (5.30) hold also in the case when k=(k)~!. For example, (5.30) is
proved as follows: The operator k}(D)k™2(D)L’(x, D) is elliptic. Hence there exists
¢=0 such that

Re (K}(D)k™*(D)L'(x, D)@, ¢)y+c(k}(D)k" (D), @)y = 0
and then

and

Re (k“2(D)(L’ (x, D)+¢) @, R(D)p)o = 0.
Choosing @=k;*(D)y one has

Re (k“2(D)(L’ (x, D)+ ) (D), ), = 0.
Thus one has (cf. (5.33) and note that k™" =k” and Kk, =k,)

Re (k- (D), (L(x, D)+c)k™*(D) ), = 0,

which implies (5.30).
Since k, and k, are equivalent weight functions we obtain

Corollary 5.8. Let L(x, D) be an elliptic partial differential operator with Cg -
coefficients and let t be in Z. Then one has

(5.44) N(L¥+al) = {0} and R(L;+al)= A7

Jor a large enough and
(5.45) L =L

For elliptic operators one has
IL(X, D)ol +clloly, = yl@ly+2m for @cCy.

10*
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Hence we obtain from (5.45)

D(L) = D(Li) © Hiiam-
We remark that in the proof of Corollary 5.7 we need only the validity of

Re(L(x, D)9, ¢)y+c(p,9)y =0 for @cCy

for elliptic operators; we not need the strong estimate (5.43).
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