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1. It is well known in the theory of Lie-groups that if a coordinate-system of
class C* is given for a Lie-group, then there exists a canonical coordinate-system of
the first kind in which the functions, corresponding to the group-multiplication are
analytic.

The classical proof of this theorem consists of two parts. In the first one it is
proved, with the help of the discussion of differential equations of oneparameter
subgroups, that the group multiplication is of class C*~* (cf. L. PONTRIAGIN [8],
Satz 59). In the second part the C”-property is shown by using the correspondence
between Lie-groups and Lie-algebras and tracing these differential equations back to
equations of constant coefficients.

The first part of the proof can be immediately extended to certain classes of
local differentiable loops (see e.g. E. N. Kuz’™mIN [6]).

In this paper we are discussing the question how the notion of canonical coor-
dinate-system can be extended to a more general class of loops without decreasing
the order of differentiability.

The existence of a special canonical coordinate-system, with respect to a local
analytical loop, was stated by M. A. Akivis [2, 1969], and proved by M. A. Akivis
and A. M. SHELEKHOV [3, 1986] later on. An analogous statement for local analytic
n-ary loops was proved by V. V. GOLDBERG [5, 1987]. A proof of the existence of a
canonical coordinate-system of the first kind for a special loop-class (strong power-
associative case, with C*-property) was given by E. N. Kuz’miN [6, 1971].

For the case of a strong power-associative loop-class in one dimension, the
solution of the above problem can be derived simply from a result of J. AcziL [,
1964], which states that in this case the loop is isomorphic to the additive group of
real numbers.

In the course of a classification of (p+1)-webs, J. P. Durour and P. JEAN [4,
1985], give a method which is applicable for our purposes, as well.

Our main purpose is to prove the following statement: if a loop is continuously
differentiable k-times in a coordinate-system, then there exists a so-called canonical
coordinate-system (in the sense of the definition in [3]), in which the loop-operation
is continuously differentiable k-times. Furthermore, as a simple corollary, we shall
find that the canonical coordinate-systems of the first kind have the same property.
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2. In this section the most important concepts which are in the centre of our
considerations will be introduced.

Definition 1. Let # be a differentiable manifold of dimension n. A map of
class C*
[i FXF-F;, (x,9) >z

where x, y, z¢#, is called a local differentiable loop of class C*, if
a) there exists an element e of # and a neighborhood U of e such that

(§)) fle,x) = f(x,e) = x
for every xcU, and

b) for this neighborhood U, there exists a neighborhood V of the element e
(V< U) such that for these Uand V, and for all x, ycV

VXV -U cCU

f(x’y) = 2,

where z£U, furthermore for arbitrary two elements xcU, zeU (y€V, zeU), (2)
has a unique solution in U, for x (for y),

c) for each neighborhood U, satisfying conditions a) and b), there exists a chart
(U. @) of dimension n, where

2

o: U-WCPR
and
p:e—~0,

where 0 is the origin of R", W is a neighborhood of 0, furthermore
o:x—+X,y->Y, z-Z (x,9,2€U; X,Y,ZEW).
The loop-operation f can be written in its usual coordinate form:
S M=2 @Gjik=1,..,n),

where f7 is the i-th component of the function

3 F = gofo(p™' X¢™),
for which obviously
F: RPRXR*+R'; WXW =W,

(2) F(X,Y) = Z,

and x7, y*, z' are the coordinates of x, y, z, respectively.

Introducing the chart (U, @), we get the coordinate-system 2,

d) the functions f* (i=1, ...,n) are of class C*. Then FeC* holds, as well
(k=2).

Introducing a new coordinate-system 17 by the chart (T, @), the corresponding
form of the loop-operation f'in these new coordinates is different from (2’) in general.
That is we can write (2) in 2 as

FR 7 =2
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where
$: 0 ~-WcR,

$:e~+0; x+X y+ 1, 22
W is a neighborhood of 0, and

F = gofo(¢~1X¢™Y).

Now let us introduce a coordinate-system with the property that the loop-ope-
ration / has an especially simple form in these coordinates. The loop f and the coor-

dinate-system & are such as in Definition 1.

Definition 2. Let f be a local differentiable loop of class C*. The coordinate-
system 2 is called Canonical coordinate-system (or C-coordinate-system) with res-
pect to £, if in @ for the function F we have

FX X)=2%
for all XeWw.

Notation. The canonical coordinate-systems of the first kind used in Lie group
theory (cf. PONTRIAGIN [9]) we shall denote by “C-1-K-coordinate-systems™.
It is easy to see that every C-1-K-coordinate-system is a C-coordinate-system.

3. In this section will be investigated the question of the existence of a C-coor-
dinate-system with respect to f.

Theorem 1. Let f be a local differentiable loop of class C* (k=2). Then there
exists a C-coordinate-system with respect to f of class C*.

Proor. Let 2 be a coordinate-system and F the loop-operation in &, FeCk
Let J(F) denote the Jacobian of F at the point (0, 0). What can we say about the
form of J(F)?

In consequence of (1) we have

and so
D;f'(0,0) = 5§ (1‘ N (S n]

D,y ) f'0,0) =8 U=1.n

where D; are the j-th partial derivatives. Thus we obtain the matrix form for J(F):

s =(5-96-]

Let us introduce the following functions in some suitable small neighborhood of
0. First the diagonal function Q:
Q: U-UXU

X —~ (X, X),
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then the function T:

T = FoQ
(4) T: U~ U; X~ FoQ(X).
It is clear that

T{0)="2.

Computing the matrix of DQ(0), it can be easily seen that it has the following
form

(DQ(0)) = |- :

since

D;Q(0) =6 (i=1,..., n]
D, =8 YV=1..n)
Differentiating (4) at 0, we obtain
DT(0) = DF(Q(0))oDQ(0)
= DF(0, 0)oDQ(0).
In this way the matrix of DT(0) has the form

L \
(DT(0)) = [{’) . ? o (1}] [1
0 s

9.

— - O
]
S—
(el 5]
oo

that is
(DT(0)) = 2(E),

where E is the identity map in R". It means that the linear map DT'(0) has only one
(but multiple: n-times) eigenvalue: 2.

Since FeEC* and Q¢C* obviously, the map T is of class C* in a neighborhood
of 0. Then there exists the inverse of the map T in a neighborhood of 0, and

D(T-*)(0) = (DT(0))7,

furthermore T~1¢C* in this neighborhood.
As the matrix of (DT(0))~? is

1l 9
2°. 1
&

1

the Jacobian J(T~') of the map T~! at the origin has the only eigenvalue 5
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When looking for a transformation to obtain a suitable new coordinate-system

2, we shall apply a result of S. STERNBERG [7, Theorem 2, 1957], with some modifi-
cation.

Let T* denote the set of all C* homeomorphisms defined in some neighborhood
of the origin in n-space, keeping the origin fixed and having a non-vanishing Jacobian
there. Let JT(0) denote the Jacobian of T at the origin.

Theorem. Letr T be a rran.gformaaon in T* such that J T(O)——- (E), and k=2.
Then there exists a transformation R in T* such that

(#) JT(0) = RoToR™1.

THE PROOF of this modified version of S. Sternberg’s theorem is in the Appendix
of the present paper.

If we apply this theorem for the inverse of the transformation 7, introduced by
(4), we get a transformation ReT* such that

R(0) =R (0) =0
and
D(T2)(0) = RoToR™,

If we compute the inverse of both sides, we find

(5) DT (0) = RoToR™},
or what is the same
R 'oDT(0)oR=T.

That is, the map T is linearisable by an inner automorphism R of class C*.
Let us now introduce new coordinates by R, as follows:

ReX e X, Y+ Y. 22

So we have been given a new coordinate-system & by the chart (T, $), where

¢ = Rog,
and the loop-operation £ has in & the form (see (3)):
(6) F = §ofo(¢—1X¢™) =

= Rogofo(¢~1oR™1X¢@ 1oR™Y) =
= Rogofo(p™' X@™)o(R™IXR™Y) =

= RoFo(R™1XR™),
That is, if
FX,Y)=
then
F(X, ¥) = RoFo(R'XRH(X, Y)

= RoF(X,Y) = R(Z) = Z.
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There remains only to compute F(X, X). Using (6), we get
F(X, X) = RoFo(R"1xXR-Y)(X, X).

Since from (4) it follows
F=Tog
we find

F(X, X) = RoToQ 'o(R-1XR-)(X, X) =
= RoToQ'(R™(X), R71(%)) =

= RoToR-(X).
Finally by (5) we obtain
F(X, X) = DT(0)(X) = 2%,

which completes the proof. —

4. As it was mentioned in the first section, the existence, for some special classes
of loops, of C—1—K-coordinate-systems which are C-coordinate-systems as well,
is already known. In connection with this there arises the question: what kind of
connection can we obtain among the C-coordinate-systems with respect to local dif-
ferentiable loops of class C*? More precisely, is there any classification of these
coordinate-systems?

Let us verify a simple statement first:

Lemma 1. Let @ be a linear transformation, which is a homeomorphism in R".
If @ denotes the C-coordinate-system with respect to the local differentiable loop f of
class C* and & denotes the new coordinate-system which we get from & by the trans-

Jormation ®, then 2 is C-coordinate-system with respect f, as well.

Proor. For the coordinate-system Z we have

F = 0oFo (@' x ),
If X and X are such that
d: X - X,
we can calculate F(X, X):

F(X,X) = ¢cF(@ 1 xd" )X, X) =
= ¢oFo(¢~1(X), d~1(X)) =
= PoF(X, X) = &(2X) = 20(X) = 2X.

This equation shows that Jis a C-coordinate-system with respect to /. —
The following Theorem is a modified version for loops of a statement to be found
in [5].

Theorem 2. The coordinate-transformation @ between two different C-coordinate-
systems is a linear transformation.
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Proor. Let F and F denote the forms of the loop-operation f in the two C-
coordinate-systems, respectively. Then we have

(N @oF = Fo(dx D).
Let W be a neighborhood of 0, according to Definition 1. If X—W (X=0)

and » is an arbitrary positive integer, then from X<W there follows 2_"€W too.

Since Z and Z are C-coordinate-systems, furthermore applying (7), we ge

20 () = [[X] ] )| = Foexo) (5. £ =

){ X
that is
X I i
“"[?] Bk ol

Replacing X” by ~§— from the above equation we get

o(2) - Lo(3) oo

Reiterating this still (n—2)-times we obtain
4 ) 1
®) o(%) = 300

for any positive integer n. (More precisely we can get it by a simple induction). As @
is differentiable,

9) ?(X) = DP(0)(X)+|X] -e(X),
where || - || denotes the usual Euclidean norm, and
jim o) =

Applying (9) for —;ﬂ—. we can write

o(5) -000 (5] +|7

()
2y

Now using linearity of D®(0) and the norm | - ||, then multiplying both sides
with 2", furthermore taking into account (7), we get

P(X)=DP(0)(X)+|X]e [-g—;-]
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Comparing it with (9), we obtain
IX1eC6) = 1Xle(2:).

for all n. From which follows
- X] g X
o) = Jim o () = tim ec0) =

and this, by (9), gives linearity of @. —

In this section we have shown that the group of linear homeomorphisms classi-
fies the C-coordinate-systems: two C-coordinate-systems are in the same class (are
equivalent) if and only if there exists a linear homeomorphism, mapping the first
C-coordinate-system into the other.

5. In this last section we prove a theorem, applying a C-coordinate-system.

Theorem 3. Let & be a C-coordinate-system with respect to the local differen-
tiable loop f. Then every one-parameter subgroup X(t) of f, defined in some neighbor-
hood of e, can be expressed in the coordinates of 2 as

X()=A-1,
where 1€1 (a suitable small interval around 0), and A€ R".

Proor. If F is the form of the loop-operation fin 2, then

F(X(0), X(1)) = 2X(1).
On the other hand
F(X(1), X(1)) = X(1+1) = X(20),

: : !
or in another form [msertmg 5 instead of r]:

)40

If X(1)eW, a neighborhood of O (according to Definition 1) then X (2—2]EW

for any positive integer n. From the above equation follows

(10) X[zi] = zl X(1)

for any positive integer n. Indeed, we simply have to write % instead of 1, (n—1)-

times, successively, afterwards to make an induction on n.
Since X(¢) is differentiable, it can be written:

(489 X (1) = DX(0)t+]|1] - &(1),
where l‘i_pgs(r)=0.
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If we apply (11) for X [?’] we get

<)

Y o )’

where lei”lgos [%]=0. Multiplying this equation by 2" and taking into account
(10), we get

X(1) = DX(0) 1+ i [21] :

Comparing the last equation with (11), it follows

-4

for any positive integer n.

Since 11m € [2,']_ lim e [2r ] =0, then

t/an—~ n—oo
e(t) =0,
that is, denoting DX(0) by A, from (11) we obtain
X(1) = Aot. —

Finally let us mention an important corollary of Theorem 3.

Corollary. If for the loop [ there exist one-parameter subgroups in every direction,
then there exists a C-1-K-coordinate-system. Moreover, every C-coordinate-system
is a C-1-K-coordinate-system. It means that in this case C-1-K-coordinate-systems and
C-coordinate-system are the same.

Appendix

For completeness sake we give here a proof of a version of Sternberg’s theorem
on normal forms of contractions used in the proof of our Theorem 1. We follow the
original proof, but the different assumptions involve some modifications.

Proor. a) The statement of the theorem will be proved first for special transfor-
mations. Let F* be the space of n-tuples of real polynomials without constant terms
of n real variables which have terms of degree at most k, and whose matrix of linear
terms is non-singular. The multiplication in F* is defined by substitution followed
by truncation of order k, that is terms of degree at least k are omitted.

2 " N
Lemma 1. Let T be an element of F*, whose matrix of linear terms is > (E).

Then T is equivalent to its matrix of linear terms by an inner automorphism R, of F*.
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ProOF OF LEMMA 1. Since the matrix of linear terms of T is actually the Jacobian
at 0, we can write

(12) JT(0) = Ry,cToRy!,
or
(12) RooT = JT (0)oR,.
The transformation T has the following form
Tr=@@,..1"=
(l 1 i i 1 n i i )
= _xl+ Z ’i P | xll see xu', ey _-Y.u+ 2 fi AR xl' ...I,," .
2 1 " 2 2 X 1 n

2=Ji =k
4

We wish to find an R,, the matrix of linear terms of which is the unit matrix.

i i i
Ry=(A ;)= (., ;% TR - SO0 A
2= 57, =k
J

If we substitute these forms into (12) we obtain for i-th component:

1 i i i B i
5 (xi+2-s}_2‘:sk ?,—1,”_.;".\'1' = .\',,") - 5 Xx;+ Z l:l ..... iy N1 eee Xa +
=2i=

i 1 1 i in 1 " i i
+ 2 AeaGur 3 daited) Grr 2 )
25:8}5* 25:5,5& = Qf%-ijg_ci
4 J

Comparing the coefficients of xp...xi» we can compute the constants rf _ .
step by step, starting with the terms of lowest degree, and therefore obtain R, itself.
b) To find an R belonging to T* but not necessarily to F* we introduce a
special norm. Let ¥, be the space of all C* mappings which arec defined on a neigh-
borhood N of the origin and which vanish at 0 with order k. Let us define a norm on
Vi as follows. For a mapping f¢V¥:
ID* (X)W, - WO
AP A ;

If1h = syp _sup

1%+ L

where the supremums are taken over all X and V. ..., ¥ such that X, ¥, ..., K EN,
and || X | is the ordinary Euclidean norm. It is clear that || - |% is a norm, furthermore
from feVy follows feV¥ for any k"=k and N’ CN.

Lemma 2. Let f be a transformation in Vyf. Then for arbitrary ¢=>0 there exists a
sufficiently small neighborhood N*® such that

(13) IS Ine < ellf Ine
Jor 1=l=k-1.

Proor oF LemmA 2. 1t is sufficient to give a proof only for the following case:

1S e < el fiINE"
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because from this the general case follows immediately. For the estimation we use
the mean-value theorem. Then for some O=7=1, in consequence of D'f(0)=0,
we obtain

IDSX) Ve D IDSUX) KW, . K
Virsp s =Spro 0 = 9,0 A4 -
I|Dl+lf(X)(X9 Vla seey K)“ 1+1
— S . Xl = ®
SYP S —ixminl il e X = el

since sup 1X|<=e, if N¢ is sufficiently small.
c¢) For the desired RcT* the relation (%) can be rewritten in the form
R = Z¢(R),
where the operation Z; is defined as follows. If R is a transformation in 7%, then
2y R -~ [JT(0)]"'oRcT.

If we define this operator in the space V¥, then there holds following

Lemma 3. Let fbe inVif, and T in T* for which JT(0)=— E. Then there exists
a neighborhood N’ of the 0 such that

122 f N < K1 f 1%
Jor some K-=<1.

PROOF OF LEMMA 3.

_ PR I STV X)W oo VI _

(14) 125/l = syp sop TAPIA

DALY X)W, o VI _
Al - 1% s

=2 sup s-l-lp

Voius

[ (rCONDTO G, ... TR
TANIA

"PR‘(X; K, suey K)H }
¥ ;‘ o = V.1Vl

P, (X; X1, ..., V) denotes the following term;
DT X)) (DT XY W;s isis Vs P T X)) Far 635 554 Vo timds 54

-’Dm‘T(X)(Ku-t-...-im,-]*l’ aeey Vm.+...+m,))9

= 2[sup sup
£yl

where 1=S=k and 2‘ m;=k. Thus for the second term on the right hand side of
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inequality (12) we have

IB(X; Wiy s Wil {
s = 8 s .
T L I D & e

FOREEY

D’f(X)(Dml'T(X)(Vle sasy V;u)e seny D'"'T(X)(K“.;. s FMg=y+1y 220y Km«l-...-l-m,))” x
[ D™T(X)(Prs o5 Vull oo D™ T(X)(Vory+. ... 4 myy 415 +oos Pyt ... 4 m)l

|DT(OFs . Vi)
*§S S
o Pt T 17 B | A

“DM'T(X)(P:m.....m,_1+1$ seey P:nri'm+m,)n - s my My
AN B | VR } = ; S 1% TR ... 1 TINe} =

= ;’ M| flI% < ;’&ﬂfllfw < el flk>

T -Sgp sup
vm|+ R N T o ""led.-m,

taking into account Lemma 2, and requiring ¢; to be sufficiently small, furthermore
choosing N’ according to &;.
The estimate of the first term of (14) is similar:

|D* £ (T(X))(DT(X)(W), ..., DT(X)(W))||

ol S ) TAPNIA o
o IPAX(DOTX) W, ... DTX) )|
o e, K TAAIA] ;
DT IDT(X)(W)I
% PRSI || IR . A 1 Fi

" \E 1 .
= 171 (up IDTCOI = 1714 (5-+3)
since T is smooth in a neighborhood of the 0. Thus we have

19:fe = 112 (5+8) +e] < Kifthe,

for some K<1, for a sufficiently small neighborhood N’, consequently for small &
and 0, and for k=2.

d) For a transformation 7 in T* which satisfies the conditions of the Theorem,
Lemma 1 implies the existence of an R, F*CT* such that the transformation
([JT(0)]"*oR,0T—R,) is in V. Indeed, in T* the coefficients of the power series of
R, and the [JT(0)] *oR,oT at the origin equal up to order k. Thus we can use norm
Il -|I% for the sequence R,—R,, where

R, = [JT(0)]"0oRyoT" = {2: Z%5([JT(0)]*oR,0T— Ry)} + R,

Owing to Lemma 3, the sequence R,— R, is uniformly convergent in some neighbor-
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hood of 0, and tends to a transformation R’ in T*, and R" tends to a transformation
R — R. b -+ Ro .
Thus lim ([J7(0)]"*oR,oT)=[JT(0)]"*oRoT. On the other hand [JT(0)] o

C‘RNOT=R"+1, that iS
lim (JT(0)]~'eR,oT) = lim R,.; = R,

which completes the proof. —
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