Products of cyclic permutations

By GERHARD BEHRENDT (Tiibingen)

Abstract. If a cyclic permutation = of length n is a product of cyclic permutations m,, ..., 7,
of lengths n,, ..., n, respectively then n=1-r+ ¥ n,. We consider the case where equality holds.

i=1
Using graph theoretic means we show in how many different ways a cyclic permutation n can be
written as a product zn=m,...7m, of cyclic permutations as above.

1. Introduction and preliminaries

It is well known (see, for example, [1], [2], [6]) that there are n"~2 different ways
in which an n-cycle can be written as a product of n—1 transpositions. This may be
proved either by recursion, using a formula of Abel, or by showing that the number
one is looking for equals the number of labelled trees on n vertices, which by a result
of Cayley equals n"~2. We shall give a generalization of this result.

Let P={m,, ..., n,} be asubset of §,, the symmetric group on N(n):={l,2,...
..., n}. Define G(P) to be the graph with vertex set N(n) where distinct vertices 7, j
are connected by an edge if and only if there exists k€{1,2,...,r} and s¢N such
that j=in§. Itis clear that G(P)is connected if and only if (P) is transitive on N(n).

Now let P={n,,...,n,} be a set of cyclic permutations of lengths n,, ..., n,
respectively, and suppose (P) is transitive on N(n). Then G(P) is connected, and for
every i€ N(n) there exists n€ P with i¢supp (n)={j€ N(n)|jn=j}. It follows that
without loss of generality we can assume that the elements of P are numbered in
such a way that whenever j>1 then there exists a€N(n) and i;<j such that
acsupp (n;)supp (;). Thus we get

n=m+ 2 (m—1)=1-r+ 21'""
i=2 i=

In the following we shall consider the extremal case where n,, ..., n, are such that

n=1-r+ 2" n;. The graph theoretic concepts we use shall be defined as in [3].
i=1

Theorem 1. Let P={m,,...,n,} be a set of cyclic permutations in S, with

n=>1, where n; has length n,=1, and such that n=l-r+zr'n;. Then the follow-
ing are equivalent. i=1

(1) A,=(P).
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(2) (P) is transitive on N(n).

(3) myny...w, is an n-cycle.

(4) G(P) is a connected graph.

(5) G(P) is a connected graph whose blocks are cligues.

(6) G(P)isaconnected graph which has r blocks which are complete graphs on ny, ..., n,
vertices respectively.

ProoF. First assume (2). Clearly G(P) is connected. Let acN(n) be such that
a lies in two of the cycles in P. Then a is a cutpoint of G(P). For, otherwise we could
replace a by n+1 in one of the cycles, and the altered set P” would generate a transitive

group on N(n+1), hence n+1=1-r+ 3 n;, which is a contradiction. Thus if

i-1
B is a block of G(P) then there exists n€ P such that the vertex set of B is contained
in supp (7). But the subgraph of G(P) induced on supp (x) is a block, and hence we
have (6). Clearly, whenever a block is a complete graph then it is a clique, therefore
(6) implies (5). Trivially, (5) implies (4).

Consider the permutations 0=(1,2,....k) and o=(k,k+1, ..., n). Note that
cgo=(1,2,....k, k+ ,n) and ge=(1, 2 Jk—1,k+1,...,n,k), furthermore
00 o o= (k—] k k+1), hence also (crg) toc 0 o (00 =(k+z—-1,k+z,
k+z+1) for 2—k=z=n—1—k. Let G(P) be connected. Then, using this remark
together with induction and the fact that 4,_, and S,_, are maximal subgroups of 4,
and §, respectively, we get that (P)=A, or (P)=S,. Thus (4) implies (1). Tri-
vially, (1) implies (2) (note that if n=2 thcn we have P=S,). Similarly it follows
that (6) implies (3), and again (3) implies (2) trivially. §

2. The number of decompositions into products

We now consider the number of different ways in which an n-cycle can be fac-
torized as in (3) of Theorem 1 into a product of shorter cycles. If n=1+ Z m(k—1)

and =n€S, then we define f(n; my, ms, ...) to be the number of m-tuples (nl )
with m= 3 m, of cyclic permutations n; where there are m, permutations of cyc]e

k=2
length k such that n=mn,...xn,. This is clearly independent of =. If furthermore ¢
is a permutation of {n€N|n=2} then denote by F*(n; my, my, ...) the number of
m-tuples (m,, ..., m,) as above with the further property that =, ..., n,_, have
length ¢(2), that =, . 415 -oes Ty (ey+moey have length ¢(3), and so forth, ‘that is,
we first have all o‘(2)-cycles then all o‘(é)—cycles and so forth. It is clear that this is
independent of xn, and we shall see that it is also independent of a. In the following,

note that X and II shall mean > and ] respectively.
k=2 k=2

Theorem 2. Let m=2ZXm,. Then
F(n; mg, mg,...) = n""t.m!.(I(m"))2

Proor. Let C be the set of all m-tuples (=, ..., m,,) of cyclic permutations in S,
of which there are m, of length k and such that #,...7,, is an n-cycle. As the number
of n-cycles in S, is (n—1)!, we get |C|=(n—1)L.F(n; my, my, ...). By Theorem 1,
we have that G(P) with P={m,, ..., 7,} is a connected graph which for k=2
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has m, blocks which are complete graphs on k vertices. Kopr Husivi [4] (see also
[5, Cor. 4.2.2.]) proved that the number of such (labelled) graphs is

(n=1)1 nm=1 (I (((k—1))ymm, !) 2.

Furthermore it is easy to see that the number of elements of C which give rise to the
same labelled G(P) is equal to (IT((k—1)!)™)-m!, as the vertices of each block on k
vertices can be formed into a k-cycle in (k—1)! ways, and there are m! ways of
ordering the cycles. Thus

ICl = (n—=1)!-n™ - (M (m"))" - m!,
which gives the result. |}

Theorem 3. Let m=ZXm,. Then
Ft(n: my, m,, ...) = ™3,

Proor. Let D be the set of all m-tuples (n,, ..., m,) of cyclic permutations in
S, where m, ..., @, ,, are o(2)-Cycles, Mu, ., 415 s Ampey+mosy ar€ 0(3)-cycles,
and so forth. As above, we get |D|=(n—1)!- F*(n; my, mg, ...). Again, consider
the labelled graph G(P) where P={m,, ..., n,}. This time, the number of elements
of D which give rise to the same labelled G(P) is equal to IT((k—1)!)" - IT(m,!),
as we now only can order the cycles of the same length. We thus get |D|=(n—1)!.n""1
which proves the theorem. |j

In [1], JOzser DENES poses as a problem to find a natural bijection between the
(n—1)-tuples of transpositions whose product is a given n-cycle = and the set of
labelled trees on n vertices. This generalization of his theorem seems to indicate
that there may not be such a bijection, as the cardinalities of the corresponding sets
will differ in general. The numbers F(n; my, m,, ...) and in particular F*(n; m,,
my, ...) can even be expressed more simply than the corresponding numbers of
labelled graphs. This suggests to ask the following question. Is there a natural bijec-
tion between the set of m-tuples of cyclic permutations counted by F*(n; my, my, ...)
and the set of mappings from an (m— 1)-element set to an n-element set?
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