Products of cyclic permutations

By GERHARD BEHRENDT (Tübingen)

Abstract. If a cyclic permutation π of length n is a product of cyclic permutations $\pi_1, ..., \pi_r$ of lengths $n_1, ..., n_r$ respectively then $n \le 1 - r + \sum_{i=1}^r n_i$. We consider the case where equality holds. Using graph theoretic means we show in how many different ways a cyclic permutation π can be written as a product $\pi = \pi_1 ... \pi_r$ of cyclic permutations as above.

1. Introduction and preliminaries

It is well known (see, for example, [1], [2], [6]) that there are n^{n-2} different ways in which an *n*-cycle can be written as a product of n-1 transpositions. This may be proved either by recursion, using a formula of Abel, or by showing that the number one is looking for equals the number of labelled trees on *n* vertices, which by a result of Cayley equals n^{n-2} . We shall give a generalization of this result.

Let $P = \{\pi_1, ..., \pi_r\}$ be a subset of S_n , the symmetric group on $N(n) := \{1, 2, ..., n\}$. Define G(P) to be the graph with vertex set N(n) where distinct vertices i, j are connected by an edge if and only if there exists $k \in \{1, 2, ..., r\}$ and $s \in \mathbb{N}$ such that $j = i\pi_s^k$. It is clear that G(P) is connected if and only if $\langle P \rangle$ is transitive on N(n).

Now let $P = \{\pi_1, ..., \pi_r\}$ be a set of cyclic permutations of lengths $n_1, ..., n_r$ respectively, and suppose $\langle P \rangle$ is transitive on N(n). Then G(P) is connected, and for every $i \in N(n)$ there exists $\pi \in P$ with $i \in \text{supp}(\pi) = \{j \in N(n) | j\pi \neq j\}$. It follows that without loss of generality we can assume that the elements of P are numbered in such a way that whenever j > 1 then there exists $a \in N(n)$ and $i_j < j$ such that $a \in \text{supp}(\pi_i) \cap \text{supp}(\pi_{i_j})$. Thus we get

$$n \le n_1 + \sum_{i=2}^{r} (n_i - 1) = 1 - r + \sum_{i=1}^{r} n_i$$
.

In the following we shall consider the extremal case where $n_1, ..., n_r$ are such that $n=1-r+\sum_{i=1}^r n_i$. The graph theoretic concepts we use shall be defined as in [3].

Theorem 1. Let $P = \{\pi_1, ..., \pi_r\}$ be a set of cyclic permutations in S_n with n > 1, where π_i has length $n_i > 1$, and such that $n = 1 - r + \sum_{i=1}^r n_i$. Then the following are equivalent.

(1)
$$A_n \leq \langle P \rangle$$
.

- (2) $\langle P \rangle$ is transitive on N(n).
- (3) $\pi_1 \pi_2 \dots \pi_r$ is an n-cycle.

(4) G(P) is a connected graph.

(5) G(P) is a connected graph whose blocks are cliques.

(6) G(P) is a connected graph which has r blocks which are complete graphs on $n_1, ..., n_r$ vertices respectively.

PROOF. First assume (2). Clearly G(P) is connected. Let $a \in N(n)$ be such that a lies in two of the cycles in P. Then a is a cutpoint of G(P). For, otherwise we could replace a by n+1 in one of the cycles, and the altered set P' would generate a transitive

group on N(n+1), hence $n+1 \le 1-r+\sum_{i=1}^r n_i$, which is a contradiction. Thus if B is a block of G(P) then there exists $\pi \in P$ such that the vertex set of B is contained in supp (π) . But the subgraph of G(P) induced on supp (π) is a block, and hence we have (6). Clearly, whenever a block is a complete graph then it is a clique, therefore (6) implies (5). Trivially, (5) implies (4).

Consider the permutations $\varrho = (1, 2, ..., k)$ and $\sigma = (k, k+1, ..., n)$. Note that $\sigma \varrho = (1, 2, ..., k, k+1, ..., n)$ and $\varrho \sigma = (1, 2, ..., k-1, k+1, ..., n, k)$, furthermore $\varrho \sigma^{-1} \varrho^{-1} \sigma = (k-1, k, k+1)$, hence also $(\sigma \varrho)^{-z} \varrho \sigma^{-1} \varrho^{-1} \sigma (\sigma \varrho)^z = (k+z-1, k+z, k+z+1)$ for $2-k \le z \le n-1-k$. Let G(P) be connected. Then, using this remark together with induction and the fact that A_{n-1} and S_{n-1} are maximal subgroups of A_n and S_n respectively, we get that $\langle P \rangle = A_n$ or $\langle P \rangle = S_n$. Thus (4) implies (1). Trivially, (1) implies (2) (note that if n=2 then we have $P=S_2$). Similarly it follows that (6) implies (3), and again (3) implies (2) trivially.

2. The number of decompositions into products

We now consider the number of different ways in which an n-cycle can be factorized as in (3) of Theorem 1 into a product of shorter cycles. If $n=1+\sum_{k\geq 2}m_k(k-1)$ and $\pi\in S_n$ then we define $f(n;m_2,m_3,\ldots)$ to be the number of m-tuples (π_1,\ldots,π_m) with $m=\sum_{k\geq 2}m_k$ of cyclic permutations π_i where there are m_k permutations of cycle length k such that $\pi=\pi_1\ldots\pi_m$. This is clearly independent of π . If furthermore σ is a permutation of $\{n\in\mathbb{N}|n\geq 2\}$ then denote by $F^*(n;m_2,m_3,\ldots)$ the number of m-tuples (π_1,\ldots,π_m) as above with the further property that $\pi_1,\ldots,\pi_{m\sigma(2)}$ have length $\sigma(2)$, that $\pi_{m\sigma(2)+1},\ldots,\pi_{m\sigma(2)+m\sigma(3)}$ have length $\sigma(3)$, and so forth, that is, we first have all $\sigma(2)$ -cycles, then all $\sigma(3)$ -cycles, and so forth. It is clear that this is independent of π , and we shall see that it is also independent of σ . In the following, note that Σ and Π shall mean $\sum_{k\geq 2}$ and $\prod_{k\geq 2}$ respectively.

Theorem 2. Let $m = \sum m_k$. Then

$$F(n; m_2, m_3, ...) = n^{m-1} \cdot m! \cdot (\Pi(m_k!))^{-1}.$$

PROOF. Let C be the set of all m-tuples $(\pi_1, ..., \pi_m)$ of cyclic permutations in S_n of which there are m_k of length k and such that $\pi_1 ... \pi_m$ is an n-cycle. As the number of n-cycles in S_n is (n-1)!, we get |C| = (n-1)!. $F(n; m_2, m_3, ...)$. By Theorem 1, we have that G(P) with $P = \{\pi_1, ..., \pi_m\}$ is a connected graph which for $k \ge 2$

has m_k blocks which are complete graphs on k vertices. Kodi Husimi [4] (see also [5, Cor. 4.2.2.]) proved that the number of such (labelled) graphs is

$$(n-1)! \cdot n^{m-1} \cdot (\Pi(((k-1)!)^{m_k} m_k!)^{-1}.$$

Furthermore it is easy to see that the number of elements of C which give rise to the same labelled G(P) is equal to $(\Pi((k-1)!)^{m_k}) \cdot m!$, as the vertices of each block on k vertices can be formed into a k-cycle in (k-1)! ways, and there are m! ways of ordering the cycles. Thus

$$|C| = (n-1)! \cdot n^{m-1} \cdot (\Pi(m_k!))^{-1} \cdot m!,$$

which gives the result.

Theorem 3. Let $m = \sum m_k$. Then

$$F^*(n; m_2, m_3, ...) = n^{m-1}$$
.

PROOF. Let D be the set of all m-tuples $(\pi_1, ..., \pi_m)$ of cyclic permutations in S_n where $\pi_1, ..., \pi_{m_{\sigma(2)}}$ are $\sigma(2)$ -cycles, $\pi_{m_{\sigma(2)}+1}, ..., \pi_{m_{\sigma(2)}+m_{\sigma(3)}}$ are $\sigma(3)$ -cycles, and so forth. As above, we get $|D| = (n-1)! \cdot F^*(n; m_2, m_3, ...)$. Again, consider the labelled graph G(P) where $P = \{\pi_1, ..., \pi_m\}$. This time, the number of elements of D which give rise to the same labelled G(P) is equal to $\Pi((k-1)!)^{m_k} \cdot \Pi(m_k!)$, as we now only can order the cycles of the same length. We thus get $|D| = (n-1)! \cdot n^{m-1}$ which proves the theorem.

In [1], József Dénes poses as a problem to find a natural bijection between the (n-1)-tuples of transpositions whose product is a given n-cycle π and the set of labelled trees on n vertices. This generalization of his theorem seems to indicate that there may not be such a bijection, as the cardinalities of the corresponding sets will differ in general. The numbers $F(n; m_2, m_3, \ldots)$ and in particular $F^*(n; m_2, m_3, \ldots)$ can even be expressed more simply than the corresponding numbers of labelled graphs. This suggests to ask the following question. Is there a natural bijection between the set of m-tuples of cyclic permutations counted by $F^*(n; m_2, m_3, \ldots)$ and the set of mappings from an (m-1)-element set to an n-element set?

References

- [1] JÓZSEF DÉNES, The representation of a permutation as the product of a minimal number of transpositions, and its connection with the theory of graphs. *Publ. Math. Inst. Hung. Acad. Sci.* 4 (1959) 63—71.
- [2] O. DZIOBEK, Eine Formel der Substitutionstheorie. Sitzungsber. Berliner Math. Ges. 16 (1917), 64—67.
- [3] FRANK HARARY, Graph theory. Addison-Wesley, Reading, Menlo Park, London. Don Mills (3rd printing, 1972).
- [4] Kodi Husimi, Note on Mayer's theory of cluster integrals. J. Chem. Phys. 18 (1950) 682—684.
 [5] J. W. Moon, Counting labelled trees, Canadian Math. Monographs 1, Can. Math. Congress (1970).
- [6] PROBLEM E. 3058. Amer. Math. Monthly 91 (1984) 516 and 93 (1986) 820-821.

GERHARD BEHRENDT MATHEMATISCHES INSTITUT DER UNIVERSITÄT TÜBINGEN AUF DER MORGENSTELLE 10 D—7400 TÜBINGEN 1 FED. REP. GERMANY

(Received July 10, 1987)