Existence of maximal elements and equilibria
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Abstract. The objective of this note is to extend the results available in the literature by
proving a general theorem on the existence of maximal elements and giving applications.

1. Introduction

Suppose that K is a subset of a Hausdorff topological vector space E. Then each
binary relation P on K gives rise to a multivalued map 7: K—-2X as follows: if
xcK, then T(x)={yeK: (x, y)€ P}. Conversely, if 7: K-2K is a multivalued map,
then a binary relation P on K is defined as follows: (x, y)¢ P if and only if yeT(x).
A point x, of K is said to be a maximal element of the map T: K-2X, with respect
to the binary relation defined above, if T(x,)=0.

Theorems on the existence of maximal elements have important applications in
mathematical economics. For example, in recent work in general equilibrium theory
without ordered preferences, the existence of an equilibrium in an abstract economy
or qualitative game is often proved by constructing a map P, which may bc construed
as a ‘preference map’, on a compact convex subset K of a Hausdorff topological vector
space and then by showing that there exists a point x, such that P(x,)=0. Sueh a
point may, therefore, also be regarded as an ‘equilibrium point’ of the map P.

Following the path-breaking work of GALE and Mas-CoLeLL [1975] several
theorems on the existence of maximal elements have been proved by BorGLIN and
KEIDING [1976], TOUSSAINT [1984], YANNELIS and PRABHAKAR [1983] and others.
These theorems have been used to generalize the work of Gale and Mas-Colell. The
object of this note is to extend the results available in the literature by proving a
general theorem on the existence of maximal elements and giving applications.

The note is organized as follows. In section 2, the main theorem is proved. In
section 3, this theorem is used to prove some general theorems on the existence of
equilibria in games and economies.

2. Maximal Elements

In what follows we assume that E is a real Hausdorff linear topological space
and K a compact convex subset of E.

Let L be a class of maps. Then by a L-map we mean a map belonging to the class
L.A map F:K-2K issaid to be L-majorized if for each x€K such that F(x)=0,



332 G. Mehta and E. Tarafdar

there is an open neighbourhood U, of x and a L-map T, such that for every z in U,
we have F(z)ET,(z). The map T, is said to be a L-majorant of F at x.

Definition 1. A map F:K-2K is said to be weakly B-majorized if for each
xeK with F(x)#0 there exists an open neighbourhood U, of x and a convexvalued
map T,: K—2% with z4T,(z) for all zéK and F(z)ST.(z) for z€U, and the
family {7, U,: xéK with F(x)=0} satisfies the condition that for each xcK
with F(x)#0 thereis y€K suchthat x€ M {Int T,"*(y): xc U.} where Int A denotes
the interior of the set A.

Although the concept of weak B-majorization is cumbersome, it will enable us
to obtain neat results of some generality as we shall see in the sequel.

Our work in this paper is based on the following fixed point theorem of TARAFDAR
[1977] (and also by BEN-EL-MECHAIEKH et. al. [1982] in equivalent form) which is a
generalization of a fixed point theorem of BROWDER [1968, Theorem 1].

Theorem 1. Let K be a compact convex subset of a Hausdorff linear topological
space E. Suppose that F: K—2%X is a map such that the following conditions are
satisfied:

a) for each xcK, F(x) is nonempty and convex,

b) for each x€K, there is y€K such that x€lnt F~2(y). Then there exists
xo€ K such that x.€ F(x,).

We now prove the following theorem.

Theorem 2. Let F: K—+2X be weakly B-majorized. Then there exists x, in K
such that F(x,)=0.

PROOF. Suppose that the theorem is false. Then F(x)=0 for all x¢K. Since F
is weakly B-majorized, for each x, there exist an open neighbourhood U, and a
convex-valued map T, with z4 T, (z) for every z, such that for every u¢ U, we have
F(u)ET,(u). As K is compact, there exists a finite set of points {x,, ..., x,} such that

K= L'_'J U,,. Let {V,,...,¥, ) be a closed refinement of {U,,, ..., U, }. Define
i=1

G: K—2% by

G(x)= () T,,(x) where i(x)={je(l,2,...,n): xEV, }.
JjEi(x)

Clearly, for each x€K, G(x) is convex and nonempty. We prove now that for
each x€K there is y€K such that x€lInt G1(y).

By virtue of our definition of a weakly B-majorized map, we have that for each
x€K there is y€K such that x¢ N {Int 7.7'(y): x€U.}. Hence, for every j€i(x),
x€Int T,:’( y) as jei(x) implies that xEl{,Jg u,,. Therefore x¢ () Int T,jl(_r)z

JEi(x)
=Int () T,j’(y) which is an open set. Now let A(x)=0,N{Int N T,,:’(y)}
j €i(x) JEi(x)
where O,=K\ J ¥,. Thus A(x) is an open set. Now, A(x)SG~1(y). Indeed
J€ix)
if ucA(x) then i(u)Si(x) and welnt ) To'(y)SInt N 7o'(y). Thus ue
JEi(x) J€i(w)

€G~1(y) and hence x€A(x)SInt G~1(y).
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Hence, all conditions of TARAFDAR's [1977] fixed-point theorem are satisfied
and we conclude that G has a fixed-point Xx,. This implies that x,cG(x,)=
= ) T.,(x,) a contradiction since for each j€i(x,), xo4T,(xo) by the defini-

_J€i(xg) -
tion of the map T,. The contradiction proves the theorem. q.e.d.

Remark 1. Suppose that the maps T, in the above proof are not convex-valued
but satisfy the condition that z does not belong to the convex hull of 7.(z) for each
z¢ K. Then the proof proceeds along the same lines except that we now define G(x)=
= N )co T.,(x) where co T, (x) is the convex hull of T (x).

jEi(x
4 In the definition of weak B-majorization we now require x€ () {Intco T.7'(y):
x€U. and F(z)=0)}.

Corollary 1. Let F: K—~2X be B-majorized. Then there exists a point xc K such
that F(x)=0, where T: K—2X is said to be a B-map if

a) T(x) is convex for each xcK,

b) x4 T(x) for each x¢K;

¢) T (y)={x€K: yeT(x)} is open in K for every ycK.

Proor. It is easy to verify that a B-majorized map is weakly B-majorized.
q.e.d.
The above corollary is due to ToussAINT [1984, Theorem 2.2]. A similar result
has also been obtained by YANNELIS and PRABHAKAR [1983, Corollary 5.1].

3. On Games: Applications of Weak B-Majorization

We proceed now to the problem of the existence of equilibrium points of games
and generalized games or abstract economies.

We consider a (possibly infinite) set 7 of agents. With each i€I we associate a
nonempty choice set or strategy set X; contained in an arbitrary topological vector

space. Let X= ] X;. The preferences of agent i are given by a multivalued map
icl

P: X-=2%: such that x;¢ P(x) where x€X, and x; is the ith coordinate of x. The

collection (X;, P);c; is said to be a qualitative game.

Definition 2. Let (X;, P);.; be a qualitative game. A point X€.X said to be an
equilibrium point of the game if P(X)=0 for all i€l

The following theorem on the existence of equilibrium points for games has
been proved by ToussainT [1984)].

Theorem 3. Let (X, P);.; be a qualitative game such that for each i<l the
following conditions are satisfied:

a) X, is compact and convex;

b) P, is B-majorized;

¢) {x€X: P(x)=0} is open in X.
The the game (X;, P) icl has an equilibrium point.

In the above theorem, the preferences of agent i are assumed to be B-majorized.
It is interesting to ask if the requirement in the definition of a B-majorized map that



334 G. Mehta and E. Tarafdar

the point inverses are open can be relaxed. To show that this can be done we need the
following generalization of a B-map.

Definition 3. A map F: K—2¥ is said to be an I-map if the following conditions
are satisfied:

a) F(x) is convex for each x¢K;

b) x¢ F(x) for each xeK;

c) for each x€K there exists a point y€K such that xcInt F~1(y).
The following theorem is a consequence of Theorem 1.

Theorem 4. Let K be a compact convex subset of a Hausdorff topological vector

space E. Suppose that F: K—2% is an I-map. Then there exists a point x, such that
F (xu)ZO.

We now have the following generalization of Theorem 3.

Theorem 5. Let (X, P);.; be a qualitative game such that for each icI the
Jfollowing conditions are satisfied:

a) X; is compact and convex;

b) P, is I-majorized;

¢) {xeX: P(x)=0} is open in X.
Then the game (X;, P);c; has an equilibrium point.

Proor. Let I(x)={i: P(x)=0}.
For each i, define B: X—2X by B(x)={yeX: H,(y)eP(x)} where II;: X—X;
is the natural projection. We now define a map P: X—-2%¥ by

N Bx) if I(x) =0
P(x) = {ienx) t
0 it I(x) =0

We note that P(x)#0 whenever I(x)=0.

We claim that P is weakly B-majorized. Suppose that P(x)#0.

Then PB(x)#0 forsomei (indeed B(x)=0 for all icI(x)) and hence P(x)#0
for the same i. Hence, there exists an /-map T; ,: X—-2% and an open neighbour-
hood U; . of x such that T; .(z) 2F(z) for every zcU,; .. We now define a map

Tox: X =25 by T .(u)={yeX: I;(Y)ET, ((v)}, ucX.
Then, clearly T; ,(u)is convex for each ucX and w47, .(u) since each T . is an

I-map.
Moreover, for yeX,

Ti:l(y) = {ueX: yeT; (w)}
= {ueX: M,(p)ET, (w)}
= {ueX: ue T} I,(»))}

= L7 (I1:(»)......... (*).
Set T.=1, .. (o)



Existence of maximal elements and equilibria 335

Let W,=W,NU,, where W={x: P(x)#0}. Then for each z<W,, we have
P(2) = JQ( )P;(Z) S B(2) ET..(2) = T.(2)

Thus we have shown that for each x with P(x)=0 we have a map T,: X 2%
and an open neighbourhood W, of x such that for each uc X, T, («) is convex, ué T, (u)
and P(z)ET.(z) for each zeW,. We need to show that for each x<JX, there
exists a point y€X such that x€N {Int T.,7'(p): xeW}. Let A(x)={zcX:
x€W.}. By construction, each W, and T, are of the forms W.=W,NU, . and
T.=1,. for some kel

Let J={i: W,SU,;, and z€ A(x)}. Then as each T}, is an I-map, for each
x€X, there exists y;€X; such that x€Int T;7'(y;). Thus for each i<J there exists
¥; such that x¢ ﬂ Int T;7'(y). Let y be any point in X such that IT,(y)=y; for

every icJ. Then by )
x€ ) I T 00) = () It T2 0) = NIt T (0): xel)

i€J

This proves that P is weakly B-majorized. Thus Theorem 2 implies that there exists
x, such that P(x,)=0. Hence, P(x)=0 forall /i and x, is an equilibrium point of
the game. q.e.d.

We now turn our attention to generalized qualitative games. Let (X}, F);.,
be a qualitative game. Let 4;: X—X; be a multivalued mapping such that A4,(x)=6
for all x€X. A; is called the ith agent’s constraint correspondence. The family
(X, B, A)icr 1s called a generalized qualitative game or abstract economy.

Definition 4. A point X€X is said to be an equilibrium point of the qualitative
game (X;, P, A));c; if for each i€l, X;,€A;(X) and P(X)NA;(x)=0.

For the existence of equilibrium points of generalized games ToussaINT
[1984] has proved the following theorem, the statement of which is included for
convenience of presentation.

Theorem 6. Let (X, P, A))ic; be a generalized qualitative game satisfying for
each icI:
1) X; is compact and convex,
ii) x;4co P(x) for x€X;
iii) P(x) is open in X, for each xcX,
iv) P~Y(y;) is open in X for each yX;;
v) A; has a closed graph in X XX;;
vi) There exists B;: X—2%: such that
a) B;(x) is non-empty and convex for each xcX;
b) B (y;) is open in X for each y;cX;;
¢) cl B;(x)=A;(x).
Then the game (X;, P, A);cr has an equilibrium point.

We now generalize the above theorem by replacing the condition that both 7,
and B; have open inverse images by a weaker condition.

Theorem 7. Assume that all the conditions of Theorem 6, except iv) and vi b)
hold. Further, assume that iv) and vi b) are replaced by a weaker condition: (**) for
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each x, such that (P,N\B,) (x)=P(x)NB;,(x)=0, there exists y; such that xclInt
[(RNB)~*(y)] and for each x such that P,(x)\B;(x)=0, there exists y; such that
x€lnt B71(y).

Then the game (X;, P, Aj)ie; has an equilibrium point.

ProoF. The general line of argument is the same as in ToussaINT [1984]. For
each i€/, define:
F(x)NBi(x) if xi£A(x)
o {Bi(x) if x 8 4,(x)
and
{COP,-(x}ﬂB,-(.\') il x;€A4;(x)
T =

Bi(x) i x;§ A4;(x)

where Q;, T;: X-2%,

We claim that the game (.X;, O,);., satisfies the conditions of Theorem 5.

Condition a) is trivially satisfied. Next we observe that W= {xcX: Q;(x)#0}=
={x€X: x;§ A,(x)}U{xc X: P(x)NB;(x)#0}. The set {xcX:x;4A4,(x)} is open
because A; has a closed graph. Now let x,¢{x€X: P(x)B;(x)=0}. By condition
(**) there exists y; such that x,€Int[(PNB;)"*(»;)]=V. Hence, y€(FNB)(z)
for every z in the open neighbourhood V of x,. This proves that the set {xcX:
P(x)NB;(x)#0} is open. Hence, W, is an open set and the condition c) of Theo-
rem 35 is satisfied.

It remains to prove that condition b) is satisfied. We prove this by considering
two cases.

Case 1. Let xéX and suppose that x;4 A;(x). This implies that Q;(x)=0.

Since A; has a closed graph, there exists a neighbourhood U, of x such that if
z€U,, then z;4 A(z).

First, we suppose that (P.(B,)(x)=0. Then condition (**) implies that there
exists y; such that x€lnt Bj'(y;)=V,, say. It is clear that y;€B;(z) for every
z€V,. Let W,=U,NV,. Then if zeW,, y;€Bi(z)=T/(z) by the definition of T;
as z;§A;(z). Hence z€T;7'(y;), ie. W.ST;'(y;). Now it follows that x¢
€Int Ti—l(_l';).

Next we suppose that F,(x)(B;(x)=0. Then the condition (**) implies that
there is a point y; such that x€lInt B~'(y)NInt By (y) SInt B '(y;)=V,. say.
Now arguing exactly as we did above we can show that xcW, = UNV.ST2(y)
which implies that x€Int T;71(y).

Case 2. Let xcX and suppose that x;€A4;(x). with Q;(x)=0. Then
(P.NB;)(x)#0 and condition (**) implies that there exists y; such that x¢lInt
(ZNB) ' (y)EInt(co RNB) (y)SInt T;7*(y;). the last inequality being a
consequence of the fact that (co PNB,) Y (V)T '(y;) for all y€X,.

Hence we have proved that for each x, there exists y; such that x€Int T;7'( ).

Since Q;(x)ST;(x) for all xcX, and T;is clearly a convex-valued map such
that x;¢ Ti(x) for all x€X, we have proved that T;is an I-map and that each Q;
is I-majorized. Hence, condition b) of Theorem 5 holds.

By Theorem 5 we conclude that the game (X;, Q));-; has anli equibrium point.
This implies that there exists a point X¢ X such that X,€ 4;(X) and P(X)NBy(X)=0.
Conditions iii) and vi) ¢) now imply that P(X)N A4,(X)=0. q.e.d.
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Remark 2. If P~'(y;) and B;'(y;) are open for all y;, then clearly condition
(**) is satisfied so that Theorem 7 is a generalization of Theorem 6.

Remark 3. If it is assumed that B;*(y,) is open for all y; then condition (**)
may be replaced by the following condition:
(***) for each x, such that (BN B,)(x)=#0 there exists y; such that

x€Int (BNB)~ (y).

The preceding material on games can be used to prove the existence of Wal-
rasian general equilibrium. In TARAFDAR and MEHTA [1985] it is shown that Theorem 7
can be used to generalize ToussAINT’s theorem [1984] on the existence of equilibria
in economies with infinitely many commodities and without ordered preferences.
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