Shaky polyhedra of higher connection’

Ry WALTER WUNDERLICH (Vienna)

Summary. Families of closed polyhedra admitting infinitesimal deformation are constructed
for any genus g=0 (connection h=2g+1).

1. Introduction

By the term ‘‘shaky” polyhedron, we understand a closed polyhedron in Eucli-
dean 3-space which admits an infinitesimal deformation conserving the forms of all
faces (and thus the lengths of all edges too). A model built up of rigid plates with
moveable hinges along the edges (for instance, stiff cardboard connected by means
of thin paper strips) shows this deformability very distinctly in a certain instability
of shape. A rich variety of examples is available, beginning with the shaky octahedra
of BLASCHKE [1], and completed by various contributions of GOLDBERG [2] and the
author [3] (antiprisms, dipyramids, dodecahedra, icosahedra).

All of these examples are topological spheres (genus g=0). The existence of
shaky polyhedra belonging to the topological type of the torus (g=1), occasionally
doubted, was proved in [4]. The corresponding examples, nevertheless, have the
disadvantage of possessing certain pairs of adjacent faces which are coplanar. To
remove this inconvenience, which causes a snapping noise accompanying the defor-
mation of the model, we are going to modify the construction and, at the same time,
generalize it for arbitrary genus g=1.

2. Construction

An orientable surface of genus g (connection h=2g+1) may be represented by
two spheres connected by n=g+1 tubes. We now intend to realize this prototype
by a system of connected tubular polyhedra.

Using Cartesian coordinates x, y, z we start with a plane kite 1234 determined
by the vertices

(2.1) 1(p, 0,0), 2(r, 5,0), 3(q,0,0), 4(r, —s,0),

1 Paper presented at the 4th Austro-Hungarian Conference on Geometry, held in Sopron on
May 18—22, 1987.
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with g>r>p>0 and s>0. A second symmetric quadrangle 5678 defined by the
points

(2.2) 5(0, 0,u), 6(at, pt, w), 7(0, 0, v), 8(xt, —pt, w),
where
(2.3) a=cosw, f=sinw, ® =n/n, n=g+l,

and v>w=>u=>0, >0 will be skew if g=1. Adding then to the eight sides of the
deltoids the eight segments 15, 26, 37, 48 and 25, 27, 45, 47, we obtain the edges of
an open tubular polyhedron consisting of eight triangular faces (Fig. 1).

Front view
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Fig. 1
Polyhedral tube element

Joining now this tube element with its mirror image with respect to the base
plane z=0, we obtain a broken tube contained in the space sector between the
planes fBx+ay=0 if as= fr. Combining finally this double tube with its congruent
copies generated by repeated turns through the angle 2w about the z-axis, we arrive
at a closed polyhedron of genus g=n+1, provided as<pr. It consists of f=16n
triangular faces with e=24n edges, and has k=6n+4 vertices (or knots in the
equivalent rodwork). These numbers are related by Lhuilier’s law

(2.4) k—e+f = 2(1—g).

For our polyhedron, determined by the prescribed genus g and the eight form para-
meters p, ¢, r, S, t, 4, v, w, the nine different edge lengths ij=a;; — fixing the shape
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of the object — can be calculated by means of the distance formulas
aly = (p—r)*+s%  ais = p*+ut,
ags = (q—r)*+s%, ajs =r*+s*+ud,

(2.5) azs = 2+ (u—w)?, a3, = r*+s2 4%
ag; = P+(v—w):, a3 = g* 408,

a3s = (r—at)®+(s—p1)2+wi

3. Conditions for shakiness

In general, the polyhedra constructed in Section 2 will be rigid. Under certain
circumstances, however, namely for appropriate values of the form parameters
P4, ..., w, such a polyhedron may be shaky.

To establish the corresponding conditions, we consider dislocations of the ver-
tex system which are caused by variation of the form parameters. Due to the assumed
symmetry, it is sufficient to investigate the single tube element of Fig. 1. If the dis-
placement of the vertices (2.1) and (2.2) is described by certain functions p=p(7),
g=q(t), etc. of a time variable 7, then their distances a;; depend on 7 in a definite
way determined by egs. (2.5). Stationary distances a;; may be replaced, for a moment
at least, by rigid rods. Differentiability supposed, we have to study the system of
equations da;;/dt=0. From eqs. (2.5) we obtain:

(p—r)(dp—dr)+sds =0, pdp+udu =0,
(g—r)(dg—dr)+sds =0, rdr+sds+udu =0,
(3.1) (u—w)(du—dw)+tdt =0, rdr+sds+vdov =0,
(v—w)(dv—dw)+1tdt =0, gdg+vde =0,
(r—at)(dr—oa df)+(s—pr)(ds—p dt)+wdw = 0.

Thus we have nine linear homogeneous equations for the eight increments dp, dg, ...
..., dw. For the existence of non-trivial solutions the matrix of coeffcients must have
the rank 7. Hence we have to expect two conditions.

The right-side block in the system of egs. (3.1) may be written as follows:

(3.2) pdp =—udu = rdr+sds =—vdv = gdq.

By means of these substitutions the first two of the equations on the left side of (3.1)
take the form

(3.3) p—r)udu+p*dr =0,

(2g—r)udu+q*dr = 0.
These relations are equivalent if the determinant of the coefficients vanishes, hence if
(3.4) 2pq = (p+q)r.

13
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This is the flrst condition expected for shakiness. Geometrically it means that the
vertices 1 and 3 are harmonically separated by the diagonal 24 and the origin 0
(Fig. 1). From the difference of egs. (3.3) it follows that

S
P44 7q

Further more, with attention to (3.2), we find

(3.5) o

(3.6) Spa P
Pgs

The third and fourth equations on the left side of the crucial system (3.1), written
in the form
(w—u) dw+tdt = (w—u) du,

(3.7
(w—v)vdw+otdt = (w—o) u du,
lead to
(3.8) L P L et T
v tv

Passing now to the last equation in (3.1), and replacing there the increments
dr, ds, dt, dw by the expressions (3.5), (3.6) and (3.8) which relate them all with du,
we obtain the second condition of shakiness:

(3.9) (r—af) [%4—%—0‘»—:«)@—'9)] +

uv B 2
+(s—p1) [m(pq r’)+7(w u)(v w)] = Wh,

Summarizing, we state: The polyhedra constructed in Section 2 admit infinitesi-
mal deformation if the eight form parameters g, p, ..., w satisfy the two conditions
(3.4) and (3.9).

Note that the foregoing developments and results stay valid also in the limiting
case g=0 (n=1, w=an, a=-1, f=0).

4. Examples

To construct a particular shaky polyhedron of prescribed genus g — which by
egs. (2.3) defines the coefficients & and f — we start with suitable values of the para-
meters p and ¢. Condition (3.4) then determines the third parameter r.

After appropriate choice of the parameters s and ¢, condition (3.9) yields a ho-
mogeneous quadratic equation in u, v, w which can easily be satisfied. For simplicity,
it seems suitable to choose s and 7 in such a way that

@.1) s = pt.
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This resctriction, which considerably reduces eq. (3.9), implies that the edges 26 and
48 are parallel to the plane of symmetry y=0.

As a first example, let us consider the case g=1 (n=2, w=n/2, =0, f=1).
Starting with p=10 and ¢=15, we find r=12 from condition (3.4). Choosing
then ¢=t=4 and w=12, we have to satisfy the second condition uv=150, for
instance by w=6, v=25. The resulting annular polyhedron, constructed by follow-
ing the rules of Section 2, is shaky, but without the inconveniences of the model in
Fig. 4 of [4]. Such a frame-like polyhedron would be obtained now by taking 7=s,
u=p, v=q. For our new model, depicted in Fig. 2, the infinitesimal dislocations of

Fig. 2
Shaky polyhedron of genus 1

the vertices, determined by egs. (3.2), (3.5), (3.6) and (3.8), are characterized by
4.2 dp:dg:dr:ds:df:du:dv:dw =
=—30: —20: —24: —3:39:50: 12: 24.

13+
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The second example concerns the case g=2 (n=3, w=n/3, oc_=l/2, B=}/§/2).
We start again with p=10, g=15 and r=w=12. Taking s=3})3 and 7=6, we
obtain for # and v the condition
(4.3) uv—300(u+v)+8400 = 0.

It may be satisfied with u=10 and v=540/29~:18,62. The resulting shaky poly-
hedron is shown in Fig. 3. Its infinitesimal deformation is characterized by

(4.4) dp:dq:dr:ds:dt:du:dv:dw =

=-—15: —10: —12: —1,15:1,78: 15: 8,06: 9,67.

Fig. 3.
Shaky polyhedron of genus 2
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