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Perfect Polynomials Revisited

By J. T. B. BEARD, Jr. (Cookeville)*

Abstract. Earlier it was shown that every splitting polynomial A =
= (2P — z)N?" =1 with N|(p = 1), n > 0 is perfect over GF(p); i.e., the sum o(A)
of the distinct monic divisors of A over GF(p) equals A. Conversely, it was proved in

p—1 o Len
detail that whenever a splitting polynomial A = n (z — i)}\'(‘)”“(')_1

i=0
GF(p) then the N(i)|(p — 1) and n(0) =--- = n(p — 1); and it was claimed (as already
proved by CANADAY for p = 2) that N(0) = --- = N(p — 1). This note verifies the
claim in detail, via an argument on the level divisors of A. In the process, an equiva-
lence relation is exhibited on the set of splitting perfect polynomials over GF(p) and
an intriguing multinomial identity modulo p is discovered.

is perfect over

In [1] it was shown that every splitting polynomial A = (z? —z)N?" 1
with N|(p — 1), n > 0 is perfect over GF(p). lLe., the sum o(A) of the
distinct monic divisors of A over GF(p) equals A. Conversely, it was proved

-1 :
in detail that whenever a splitting polynomial A = ?n (z — i)N(i’Pn(')'l
1=0
is perfect over GF(p), then the N(¢)|(p — 1) and n(0) = --- = n(p — 1);
and it was claimed (as proved by CANADAY [5] for p = 2) that N(0) =
= ..+ = N(p—1). The purpose of this note is to verify the claim in detail,
via an argument on the level divisors (to be defined) of A. In the process we
exhibit an equivalence relation on the set of splitting perfect polynomials
over GF(p) and discover an intriguing multinomial identity modulo p.

p=1 Nyt
Theorem 1. Let A = [ (z —i)N(?" =1 be perfect over GF(p), with
1=0

podd and n > 0. Then N(0)=---= N(p—1).

*Written while visiting at the University of Tennessee-Knoxville.
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PROOF. First, note that each polynomial A = H (z —i)N()P" -1 hag

a unique description of the form A = A(N(0),-- N(p — 1);n). Thus for
any n > 0 and all sequences N(0),...,N(p—1),

A= A(N(0),...,N(p—1);n) = H (= (_;)_h;(;p
=0
p=-1 \N(i)p" N p" —1
(z —2)MWP (2 — )P
=H

(z -9

=0

3 (’ﬁ(z—*)"'“)"l)‘p (s -2yt =

1=0

= [A(N(0),...,N(p—1);0)]P" (z? —z)?" .

Moreover, since o is multiplicative and a((z—i)N(i]P"_l) =

il PR

r—i—1

— )N _
a(A(N(0),.. N(P_l)!n))"l-.[(x E —pl =

1=0

e — NNDP™ e
o (z —1) 1, (2—i~1} 2
-g{ (z—1-—-1)" (x—i—l)}

Pl gV _1)” "
={H((3;_)i)—11} (eP—2z)y 7' =

1=0

= {0 (A(N(0),...,N(p—1);0))}*" (z® —z)P" 1.

Thus A(N(0),...,N(p—1);n) and A(N(0),...,N(p—1);0) are simultane-
ously perfect, and it suffices to prove the equalities N(0) =--- = N(p—1)
in the case n = 0. ]
P= \
Accordingly, consider a perfect polynomial B = [] (z —)N(®)-1 £1
i=0
over GF(p), and let m = min{N(7)}. Since at least p distinct primes divide
every nontrivial perfect polynomial over GF(p) [1; Theorem 6], then m > 2
and we may write

=@ -2)*" ] -0 ™=8B, [] (=-i)VO-"

N(1)>m N(i1)>m
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Let B denote the sum of all distinct (monic) divisors of B whose
degrees equal deg B — I, and call B(") a level-1 summand of o(B). Also,
let p;B(") denote the elementary symmetric function on the roots of B(")
taken i at a time; and let 7B be the number of distinct summands of

B ie., the number of distinct level-l divisors of B. Note that whenever
deg D =1l and | < m — 1, then D|B if and only if D|B,,. Thus whenever
1 <1< m—1, the level-l summands of o(B) and o(B,,) are related by

B B
Bh= Y Z= Y Lo - 210}
- m-—1"—"m
deg D=1 D deg D=1 D ™ deg D=1 D IP z)
D|B D|By, DIB...

As before [1; Theorem 3|, m | (p — 1) and B,, is perfect, so that

(m=1)p

Y. BY =0(Bn)-Bm =0,

=1
from which

(m—1)p

m-—1 m—1
B
£\ PO, AT BW _ B(f) e
Z (:CP _I)m——l ; m (zp _:B)m 1 Z

=1
B (m-1)p

T, (
-~ ‘;‘ BY.

: &P o) (m) g =
Now considerdeg ), Bm' <deg By  .Since B, = [[ (z—i)™™,

I=m i=0

then every summand C of Bfnm) satisfies

B
Tzro(z =DM (z—p+ 1)Ae-2

wherem = Ao+---+Ap-1and 0 < A\; <m-—-1for0 <i < p-1.1 e, there

are precisely p fewer summands C of BU™ than there are increasing words
of length m on the ordered letters ¢ < --- < z — p 4+ 1. The latter have
been enumerated [4; p.23] as [p]™/m! =p(p+1)---(p+m — 1)/m!. Since
m < p—1 then rB{™ = [p]™/m! — p = 0(mod p), so that deg Bi™ <
<(m-1p-(m+1).
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From this,

deg mE- BY < [deg B—(m —1)p]+[(m —1)p—(m+1)] < deg B—m
=1

and Y. p;B® = 0. Thus 7B™) = 0(mod p) since o(B) — B = 0. To

i+l=m
1<i<m

find k = |{i : N(i) = m}| and complete the proof, we determine 7B(™),
Suppose C is an arbitrary summand of B{(™), There are precisely (p — k)
summands C = B/(z — j)™ of B™), and all others are those previously
displayed for BY™. Hence 1B(™ = (p—k)+ [p]™/m! — p= —k (mod p).
Since 1 < k < p and 7B(™) =0 (modp), then k =p. O

By the opening remarks in the proof of Theorem 1, every perfect

splitting polynomial over GF(p) has the form A = ((z? _I)N_l)p"

«(zP — z)P" 1| displaying an analog of Euler’s characterization of the even
perfect numbers. More important, this form displays an equivalence re-
lation on the set of all splitting perfect polynomials over GF(p), whose
classes, 7(p — 1) in number, have minimal elements Cy = (z? — z)N~1.
I.e., call the splitting perfect polynomials A, B over GF(p) o-equivalent,
and write A ~, B, if there exist integers N|(p—1) and n,m > 0 such that

A=(Cn)" (2P —2z)?""' and B=(Cn)? (2P —z)" .

(This equivalence relation ~, should not be confused with that defined
for unitary perfect polynomials [2].) By Theorem 1 itself, an arbitrary
splitting perfect polynomial over GF(p) can be appropriately denoted

A(N,n) = ((z? - :z:)N_l)’" (z? — z)?" ', and our next result is evident.

Theorem 2. Let A(N,n), B(M,m) be splitting perfect polynomials
over GF(p). Then A(N,n) ~, B(M,m) if and only if N = M. Whenever
A(N,n) ~, B(M,m), then B|A if and only if m|n.

The concept of level-l divisors of polynomials becomes interesting in
its own right. Early on, we suspicioned our proof (Theorem 1) to be weak
that Y. p;B(® =0, now writing B = B(N,0) as just described. Using

i+i=N

1<I<N

iterated sums and formal derivatives to manipulate B for1 <1 <3< N
we established

(1) deg B(N,0)"" = deg B(N,0) —
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from

(-1)'B
B = rrs

(2)

which is equivalent to

1
(3) z
0<A <t

Ao+ +Ap 1=l Aol '\P‘l! .‘B'\ﬂ(:r o 1)'\l E (35 ot - B o 1)‘\?—1
0< X <1

by the multinomial expansion [4] of (yo + - -+ + yp—1)' with y; = 1/(z —1),
both sides of (3) yielding B when multiplied by B. Proofs of our conjec-
ture that (1)—(3) hold for 1 <! < N —1 have been given independently by
MARSHALL BUCK and the referee, to whom we acknowledge our appreci-
ation. The upcoming proof of (2) for 1 <1 < N — 1 < p succintly handles
the intricacies displayed when [ =3 < N :

@) — = =
LS I SR e 7 g

0<51<j2<jasp-1
p=1 p—1 p—1

=YY Y et

J1=0 j2=0 j3=0
-1 p-1

+3ZZ (z -5 (-‘"-—Jz Z:(ar—z)‘*':

11-0 J2=0 j=0

=55 = 3 e 3 =

n=0 J2=0 Jja=0

1

+3BZ(Jr

n=0

- 11) Z (z- Jz)2 "‘232(_,,_])3 &

J2=0 j=0
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4B e o 3
@ -y 2 (D‘ ,;z(z—j)?]) 3
4B 1
G oo 5
i 4B °2B
@ -2 (@-27
-B
~ (@ -ap

Notice that N|(p — 1) is not used in these arguments, only that 1 <[ <
SNEp—-1

The pertinent result for formal derivatives over GF(p) is this
Lemma. For any prime p and all integers [ > 1,

Sl D
sy )8 Y
27 @-2)
PROOF. We argue by induction on I. From the Product Rule, when
l =1 we have

r—1
= D: x_j
PZI 1 jl;-[ﬂ( )] B D,[z? — z] =1
(:!:—]) TP — T T zP—zx  zP-—zI

Assume the result is true for some integer ! > 1. Then

-1 " _1
E(,,_ &= ZD - ;] [z(x—z)*]"

j=0
" - (_1)1 % (_1)l+l
a5 TD | (zP — ::)'l T (zp =)

O
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Theorem 3. Let B = (2P — z)N~! € GF[p,z). Whenever 1 < I <
S Nomle P,

PROOF. Let M; denote the set of all non-increasing sequences
{11,...,1,} of positive integers which partition [/, and let < be any linear
order on M. Then whenever 1 <! < N — 1, there exist positive integers
such that I!B() has the common values

Ciyyennyip
@B Y I
Y Ty :zf\o(a: = I)Al vz —p+ 1,),\’__1 =
0<Ai <l
-1 p-—1 p—1 g
= B iy ki oo = 2 5o
{il;--u'ZJEMt : j,z=0hz=(] J-'Z=o (I _Ji)" (J: —32)'2 oid '(3: -Jr)"

where the left-most summation on the right-hand side is due to the ordering
r—-1
. P 1 -
< on M;. The coefficient of P = ,Z:o G=;7 0 the sum on the left-hand
side of (4) is I!. In the outermost sum on the right-hand side of (4), the

coefficient of P is 3 Ci,....i,, since we get P as a term in the
{31,-niv JEM,
iterated sum precisely when j; = --- = j,. Thus I! = 3 Ol s
{il,...,i,}EM;

Hence on rewriting the right-hand side of (4) and applying the Lemma:

r—-1 pr—1

1 1
8B =B Y Gt D — Y N
{in,rir JEM; fe E—n) = (5 —a)®
Jr=0 (I_} )"

e (_1)i:+iz+---+i, A
=B ’ Z}EM - e P — z)i:+iz+=--+i, -
L RO S 1

B(-1)!

= ooy ®-

Since I! # 0 (mod p) we are done. O
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In conclusion, the sum B(; of the distinct divisors of B having de-
grees equal to ! is also of interest. Here, at the suggestion of S. MULAY we
-1

have considered the generating function f(y) = '_];]0 1_—(31‘-7)? , which has
coefficients B(;) for B = B(N,0) and | < N — 1 < p. From the general
coefficient Py(z) of y* in f(y), one discovers that the elementary symmet-
ric functions aj(z) in the polynomials z — i taken j at the time satisfy
ai(z) = -+ = ap-2(z) = 0,ap_1(z) = —1 and ap(z) = z? — z. Hence
Bpy=0for1<I<p-2.

" It remains to be seen whether further study of the level divisors of
polynomials might eventually yield a (conjectured [3]) characterization of
those which are bi-unitary perfect.
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