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Reflections of Riemannian manifolds

By L. VERHOCZKI (Budapest)

1. Introduction

In the present paper we discuss mainly reflections of Riemannian man-
ifolds. An isometry mapping of a connected Riemannian manifold onto
itself is said to be a reflection if the fixed point set separates the mani-
fold. The properties of such special involutive isometries can be applied in
studies dealing with transformation groups of Riemannian manifolds.

As we shall see below, the notion of reflection can be introduced in
the more general context of differentiable manifolds in similar form. At
first the groups generated by such reflections were studied by J. L. KoszuL
(see [11; p. 45-50]). He proved that if a group acts properly on a simply
connected manifold, then it is a Coxeter group. Later on M. W. DAVIS has
generalized this theorem in Riemannian manifolds omitting the assumption
that the manifold is simply connected (see [4]). The previously mentioned
transformation groups have been discussed also by E. STRAUME (see [14]).

The purpose of this paper is to give a characterization of these reflec-
tions. In the second chapter we study topological aspects of reflections.
We shall show that considering a reflection in a symmetric space, the set of
fixed points, which is always a 1-codimensional submanifold, has at most
two components, furthermore, if the fixed point set is not connected, then
the components are homeomorphic to each other. Later on we shall prove
that for any reflection the cardinal number of the components of the fixed
point set is not greater than the order of the fundamental group of the Rie-
mannian manifold. In the third chapter we shall characterize Riemannian
manifolds admitting reflections by their Ricci tensor.

In this paper M (respectively N ) denotes an n—dimensional connected
Riemannian (respectively differentiable) manifold where n > 0. The tan-
gent space of M at a point g will be denoted by T, M. Furthermore, <, >,
will denote the metric tensor of M at ¢q. Let p : M x M — R be the
distance function of M where R is the set of all real numbers.

If  : N — N is a differentiable map, let N(3) denote the set of points
which are left fixed by ¥, that is, N(¢) = {p € N |¢¥(p) = p}. The tangent
linear map of ¢ will be denoted by T'.

At first let us consider the notion of reflection in differentiable mani-

folds.
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Definition 1. Let N be a connected differentiable manifold. A diffeo-
morphism 3 : N — N is called a reflection if N \ N(¢) is disconnected
and ¥? = idy. (Clearly, idy denotes the identical map of N.)

We shall essentially use the following result concerning reflections (see
[11; p. 45]).

If y : N = N is a reflection, then N(%) is a closed submanifold of
codimension one, and N \ N(%) has exactly two components which are
carried onto each other by .

We can easily show that if 1 : N — N is a reflection, then there exists
a Riemannian metric on N such that i is an isometry with respect to this

metric.
Let us consider a metric ( , ) on N. We can define a new Riemannian

metric < , >¢: TyN x T,N — R where

<v,w >,= (v.w)q 4 (Tq’\b(v)i qu{’(w))d’(q)

for any vectors v, w € T, N. Clearly, ¢ is an isometry with respect to <, > .

Let ¢ : M — M be an isometry such that M(yp) is not empty. It is
known that each connected component of M(y) is a closed totally geodesic
submanifold of M (see [10; p. 59]). Consider a point p € M () and an open
ball Us in T, M of radius é around the zero vector such that the restriction
of the exponential map at p to this ball exp,|Us is a diffeomorphism. The
image of Us by exp, is the open ball Bs(p) of radius é around p. It is well-
known that the restriction of ¢ to Bs(p) can be expressed in the following
form (see [7; p. 61])

(1) #|Bs(p) = expp o Tpp o (exPpluﬁ)_l'

Definition 2. An isometry ¢ : M — M mapping a connected Rieman-
nian manifold M onto itself is said to be a reflection if M \ M(yp) is not
connected.

It can be easily seen that a reflection ¢ is always involutive. Since
M \ M(yp) is not connected, M(y) has a 1-codimensional component F.
Hence, regarding a point p of F, T,y is equal to the orthogonal reflection on
the hyperplane T, F. Thus the equality (1) given above implies p? = idps.
Threfore ¢ is also a reflection in the sense of diffeomorphisms. It follows
from this that M(y) is a closed 1-codimensional submanifold of M (see
[11; p. 45]). Obviously, for any point ¢ left fixed by ¢ the tangent linear
map T,y is equal to the orthogonal reflection on the hyperplane T, M(yp).
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2. Upper bounds for the number of the components of the
fixed point set

Taking a submanifold F' of a Riemannian manifold M, the normal
vector bundle of F in M will be denoted by L (F'). Let O : F - L(F) be
the zero cross section of L (F). It is well-known that O(F’) is a submanifold
of L (F') diffeomorphic to F. Regarding the fixed point set of a reflection
the following statement is true.

Proposition 1. Let ¢ : M — M be a reflection of a Riemannian
manifold M. Then the normal vector bundle of M(yp) is trivial.

PROOF. Let us consider a component F' of M(¢). As we have men-
tioned above F' is a (connected) closed 1-codimensional submanifold of M.
Hence there is a connected open neighborhood V' of O(F) in the normal
bundle L (F') such that the restriction of the exponential map to V Exp |V
is a diffeomorphism (see [5; p. 114-115]) and Exp (V)N M(y¢) = F holds.

Let us take a point p of F and an open ball Bs(p) of radius é around p
such that Bjs(p) is included in Exp (V') and the equality (1) holds. Clearly,
F separates Bs(p). It follows from (1) that the two components of Bs(p)\ F
are contained in distinct components of M \ M(p). Hence, it can be easily
seen that Exp (V') \ F has also exactly two components.

Since Exp |V is a diffeomorphism, O(F') separates V. Therefore
1 (F)\ O(F) has exactly two components. Fixing one of them, a map
X : F =1 (F) can be defined by assigning to any point ¢ € F the unit
vector X(g) included in this component. It can be shown that X is a
differentiable normal vector field on F. This implies that L (F) is a trivial
vector bundle which completes the proof. a

Later on we shall apply the following simple statement.

Lemma 1. Let ¢ : M — M be an isometry such that M(y) is not
connected. If p;, p; are two pomts belongmg to distinct components F, F,
of M(y) and 7 : [0, 1] — M is a minimizing geodesic between these points,
then vy has no point in M(y) apart from p, and p,.

PROOF. It 1s clear that o+ is another geodesic connecting py, p, the
arc length of which is equal to g(p;,p2). This fact implies that p; is a cut
point of p; along v (see [10; p. 60]).

Assuming that there is a real number s € (0,1) having the property
v(s) € M(p), we obtain immediately that v(s) is also a cut point of p,
along <, but this is impossible. 0

It is known that if M is a symmetric space, then M has no geodesic
intersecting itself (see [9; p. 144]). The following theorem characterizes
reflections of Riemannian manifolds having the property given above.
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Theorem 1. Let M be a connected complete Riemannian manifold
such that M has no geodesic intersecting itself and let ¢ : M — M be
a reflection. Then M(y) has at most two components. Furthermore, if
M(p) is disconnected, then the components are homeomorphic to each
other.

PROOF. Let us assume that M(yp) is not connected. At first we shall
prove that M(p) has exactly two components. Let Fy, F; be distinct com-
ponents of M(y) and let p; be a point of F;. Since M is complete and F,
is a closed submanifold, applying the Hopf*Rjnow theorem it can be easily
seen that there is a geodesic 4 : [0 : 1] = M joining F, and p; the arc
length of which is equal to o( F2,p;). Let p; denote the initial point of ¥
and consider the geodesm v : R — M obtained by infinitely extending +.

Since 7 is a minimizing geodesic between F; and p,, the tangent vector
of 4 at 0, denoted by 4(0), is normal to F; (see [1; p. 151]). Tp,¢ is equal
to the orthogonal reflection on Ty, F;, hence Tp,¢(7(0)) = —+4(0) holds.
Therefore ¢ 0% is a geodesic such that ¢ o ¥(t) = 5(—t) for any t € R.
Considering the point p; = 3(1) left fixed by ¢, we obtain (1) = 5(-1).
M has no geodesic intersecting itself, thus ¥ is a periodic geodesic such
that 5(t) = 5(t + 2) for any t € R. Fmally, notice that the tangent vector
4(1) is normal to Fj.

Suppose that there is a further component F3 different from Fi, F;.
Let us regard a minimizing geodesic ¢ : [0,1] — M joining F3 and
p1(o(0) € F3). As we have seen above, by infinitely extending o we obtain
a periodic geodesic & and the tangent vector (1) is also orthogonal to
T, Fi. Therefore & differs from ¥ only in parametrization, since (1) is
parallel to 5(1). But & includes a point of F3,5 includes a point of F;,
thus by Lemma 1 our supposition is impossible.

At last we shall prove that the components Fy, F; of M(y) are homeo-
morphic to each other. Applying Proposition 1, let us take a differentiable
normal unit vector field on F; denoted by X and the continuous func-
tion u: F, - R, q € F; — u(q) = o(q, F1). Considering an arbitrary
point p; € F,, take the geodesic 7 : [0, u(p2)] = M having the properties
7(0) = p2,%(0) = X(p2). The endpoint of « is included in F, therefore
we can define a map ¢ : F; — F) by assigning the endpoint y(u(p2)) to
p2. It is clear that ¢ is a bijective map. Since pX is a continuous normal
vector field on F, and ¢ = Exp o uX holds, ¥ is continuous. Similarly,
we can see that the inverse map of v is also continuous which verifies our
assertion. O

Since a symmetric space is always complete, our assertions given in
Theorem 1 are valid in symmetric spaces.

Later on we shall apply the known result that a closed 1-codimensi-
onal connected submanifold separates a simply connected manifold. This
fact can be proved as follows. Let N be a connected differentiable manifold

and F be a closed 1-codimensional submanifold of N. If v : [0,1] = N
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is a differentiable curve which is transversal to F, then we can see that

the number of elements of the set [0,1] N 4~!(F) is finite. This number
is called the intersection number of vy with respect to F. We need the
following statement concerning homotopic curves.

Theorem. (see [6; p. 78]). If v,0 : [0,1] — N are homotopic differen-
tiable curves which are transversal to F, then the parity of the intersection
number of 4 is equal to the parity of the intersection number of o (with
respect to F' ).

‘Corollary 1. Let N be a simply connected differentiable manifold
and F be a connected closed 1-codimensional submanifold of N. Then F
separates N and F is orientable.

PROOF. Let us consider a local coordinate system in N which is
adapted to the submanifold F. Using this coordinate system, we can define
a differentiable curve 7 : [-1,1] — N such that « is transversal to F, the
intersection number of 4 with respect to F is equal to 1 and the points
p=7(-=1), ¢ =+(1) are not contained in F.

Suppose that there exists a smooth curve o : [-1,1] — N joining p and
g such that o has no point in F. It follows from this that o is transversal to
F. Since N is simply connected, v and o are homotopic curves. However,
by the Theorem given above the intersection number of & with respect to
F' is uneven, therefore our supposition is impossible.

Since p and ¢ cannot be connected by a curve in N \ F, F separates
N. (It is clear that N \ F has exactly two components.) It follows from

this that F' is an orientiable submanifold (see [8; p. 107]). O

Proposition 2. Let ¢ : N — N be a reflection of a simply connected
manifold N. Then N(¢) is a connected orientable submanifold.

PROOF. The previous results imly that N(¢) is orientable. It re-
mained only to prove that N(¢) is connected.

Let us suppose that N(y) has two distinct components Fy, F3. In this
case we can take a smooth curve v : [0,3] — N such that v is transversal
to Fy and F,, (1) € F;, ¥(2) € F, and for any ¢ € [0,1)U(1,2)U(2,3] the
point 4(t) is included in N \ (F; U F3). If we fix arbitrary two points from
7(0), 7 (3) » 7(8), then as in the proof of Corollary 1 we can see that they
cannot be joined by a curve in N\ (F; U F;). Hence, N \ N() has at least
three components. Howeover, in the Introduction we have mentioned that
N \ N(¢) has exactly two components (see [11; p. 45]), therefore the
supposition is impossible. 0
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Reflections in universal covering spaces
of Riemannian manifolds

If M is a connected Riemannian manifold, then later on M will denote
the universal Riemannian covering space of M, which is unique up to

isometries. Furthermore, let w : M — M denote an universal covering

map of this simply connected Riemannian manifold M onto M.
Let us recall some notions which are important in the theory of cov-
ering spaces.

Definition 3. Let v : [0,1] —» M, 5:[0,1] — M be continuous curves.
7 is said to be a curve lying over v if w 0 5 = # is satisfied.

Definition 4. Lety : M - M, ¢ M - M be isometries of M and
M. w is called an isometry lying over ¢ if wo ¢‘ % ow holds.

Later on we shall use the following basic results concerning the notions
given above.

Lemma 2. Let v : [0,1] — M be a continuous curve in M (y(0) =
p). Fixing a point p of the set w™'(p), there exists exactly one curve
¥ : [0,1] = M lying over v such that 5(0) = p (see [12; p. 131]).

Let 4,0 : [0,1] — M be homotopic continuous curves in M. If
¥,0 : [0,1] = M are curves lying over v, respectively o such that 5(0) =
a(0), then 5 and o are also homotopic (see [12; p. 131-132)).

Lemma 3. All the isometries of M lying over idps form a group F
which is isomorphic with the fundamental group of M (see [13; p. 197]).

__Furthermore, if G is a group of isometries in M, then all the isometries
of M lying over the elements of G form a group G such that F is a normal

subgroup of 9' and the quotient group G|F is isomorphic with G (see
[2; p. 179-180]).

We shall prove that among the isometries lying over a reflection there
exists at least one reflection.
Let ¢ : M — M be a reflection. Since w is a local isometry, the com-

ponents of w™ (M (¢)) are closed 1-codimensional totally geodesic sub-
manifolds in M. Let us fix a point p of w=!(M(p)). We can define a map
@: M — M attached to t this point p.

Take a point q of M and consider a continuous curve ¥ : (0,1] — M

such that 5(0) = p and (1) = ¢. Obviously, the initial point of powo¥
coincides with w(p) = p. By Lemma 2 there exists exactly one curve

o : [0,1] —» M lying over ¢ ow o ¥ such that 5(0) = p is satisfied. We
assign the endpoint of & to ¢ by @, that is, ¢(q) = a(1).
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Applying the second assertion of Lemma 2, it can be easily seen that
¢ is well-defined, that is, the assignment given above does not depend on
the choice of the curve ¥ joining p and g.

Proposition 3. The previously constructed map ¢ (attached to a
fixed point 5 of w"l(M (¢)) ) is a reflection of M lying over the reflec-

tion ¢, and M(tp) F where F denotes the component of w='(M(yp))
including p.

PROOF. a) At first we show that ¢ is a local isometry. Take an

arbitrary point ¢ of M. Let us regard a positive number é such that the
restriction of exp; to the open ball in T;M with radius é around the
zero vector O; (respectively the restriction of expg;) to the open ball

in T3y M with radius § around Og;)) is a diffeomorphism. Obviously,
the ranges of these restricted maps are open balls of radius § around q
and ¢(q). Moreover, choosing §, we require that w|p, (5 and w|g,(z) are
isometries.

Let us consider the restriction of ¢ to Bs(q). It is clear that a curve
in M lying over a geodesic in M is always a geodesic. Hence, if in order
to determine the map ¢|g,(;) We use minimizing geodesics starting at g,
then we obtain that

Ply@ = (@lBaa@n) ™" 09 owln, ()
is satisfied. It follows from this that @|p,(;) is an isometry, thus our first
statement is true. P

b) We shall now prove that ¢? = idy. Take a point § of M, and
apply the notations given in the deﬁmtxon of 2 In order to assign ¢ (&')
let us consider & from continuous curves joining p and ¢(g). Since ¢ is
a reflection, we have ¢? = idys. Therefore the equality wo & = pow oy
implies powod = wo?. According to this fact, the curve lying over powoo
and starting at p coincides with ¥, thus $?(g) = (1) = ¢.

Since ¢ is involutive, it follows from the assertion a) that ¢ is an
isometry of M. 3

c) Finally, we show that ¢ is a reflection lying over ¢ and M(g) =
Using again the equality p ow 05 = w 07, for the points ¢ = "if'(l)
@(7) = 5(1) we obtain that w o $(g) = ¢ o w(g) holds. Hence, @ is an
isometry lying over ¢.

It is clear that M($) C w"l(M(tp)) If ¢ is a point of F, to assign
©(q) we can take a curve ¥ in Fj joining p and g. Therefore ¢(g) = g wich
means that F is a component of M (fﬁ) M is simply connected, thus by
Corollary 1 F separates M, that is, @ is a reflection. Applying Proposition

2, we obtain that M((p) F wich completes the proof. O
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It is known that if ¢ : M — M is an isometry of a connected Rieman-
nian manifold M and p is a fixpoint of ¥, then Ty uniquely determines
Y (see [7; p. 62]).

Hence, considering Proposition 3, it can be easily seen that if p;,p;
are two points of the same component F of w™1(M(y)), and @,,p; are
the reflections lying over ¢ which are constructed to p;,p; (respectively)
as above, then @; = @,.

The previous results immediately imply the following assertion.

Corollary 2. The number of all reflections in M lying over a reflection
¢ of M is equal to the number of all components of w=!(M(y)).

Applying the statements written above, we can give an upper bound
for the number of the components of the fixed point set. The theorem
given below is a genaralization of Proposition 2.

Theorem 2. Let ¢ : M — M be a reflection. Then the cardinal
number of the components of M(y) is not greater than the order of the
fundamental group of M.

PROOF. Let us regard a reflection ¢ of M lying over ¢. It can be
easily seen that if z is an element of F, where F denotes the group of
isometries in M lying over idps, then @ o i (respectively o ¢ ) is also an
isometry in M lying over . By Lemma 3 the set of all isometries in M
lying over ¢ coincides with the coset ¢ o F. Since the fundamental group
of M is isomorphic with F, the number of reflections included in @ o F is
not greater than the order of the fundamental group of M.

By Corollary 2 it follows from this that the number of all components
of w™!(M(y)) is not greater than the order of . w is a continuous map,
therefore it is clear that the cardinal number of the components of M(y)
is not greater than the cardinal number of the components of w=1(M(yp)).
This implies that our theorem is true. 0

Concerning Theorem 2, it can be easily shown that this theorem is
not true in general for involutive isometries. Furthermore, we can find
a 2-dimensional Riemannian manifold M and a reflection ¢ : M — M
such that the cardinality of the components of M(¢y) is equal to countable
infinite.

3. Characterization of reflections by the Ricci tensor

In this chapter we shall study reflections of Riemannian manifolds
by using their Ricci tensor. Considering a Riemannian manifold M, let
VM denote the vector space of all differentiable vector fields on M and
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V denote the Levi-Civita connection of M. Denoting the curvature tensor
of M by R, for any elements X,Y,Z € VM we have

R(X,Y)Z =VxVyZ - VyVxZ - Vix.v)2

where [X, Y] is the Lie bracket of X and Y.
The introduction of the following notion seems to be useful for us.

Definition 5. An isometry ¢ : M — M mapping a connected Rieman-
nian manifold M onto itself is said to be a symmetry if ¢ is involutive and
M(yp) is not empty.

Obviously, reflections investigated in the second chapter are special
symmetries. Later on we say that M is symmetric to a closed connected
totally geodesic submanifold F, if there exists a symmetry ¢ in M such that
F is a component of M(¢). It is well-known that a Riemannian manifold
is (locally) symmetric to every point if and only if the covariant derivative
of the curvature tensor vanishes everywhere (see [7; p. 163]).

Let ¢ : M — M be a symmetry of a complete Riemannian manifold
M. Let us consider a component F' of M(¢) and an arbitrary point p of
F. Since @? = idpy, by the chain rule of tangent linear maps Ty is also
involutive. Hence, T,¢ is equal to the orthogonal reflection on the subspace
T,F.

Take a point ¢ of M \ F. The image of ¢ by ¢ can be obtained in the
following way. Since F is closed and M is complete, using Hopf-Rinow
theorem it can be seen that there exists a point p of F' having the property
o(p,q) = o(F,q).

Let us regard a geodesic v : [0,1] — M joining a p and ¢ the arc
length of which is equal to o(p,¢) . < is a minimizing geodesic between
F and g, therefore the initial tangent vector 4(0) of v is normal to T, F
(see [1; p. 151]). Infinitely extending v, we obtain a geodesic ¥ : R — M.
Applying the facts written above, we can see that ¢ o 5(t) = 5(—t) holds
for every t € R, in particular ¢(q) = 3(—1).

Let us consider the Ricci tensor Ric : T,M x T,M — R of a Rieman-

nian manifold M at a point p. Clearly, there exists exactly one linear map
(called Ricci endomorphism) A, : T,M — T, M such that

(2) Ric(v,w) =< Ap(v),w >

holds for any vectors v, w of T, M. Since the Ricci tensor is a symmetric
bilinear form, A, is a self-adjoint map. Hence there exists an orthonormal
basis €;,...,e, of T, M including characteristic vectors of the Ricci endo-
morphism A,. Denoting the suitable characteristic values by Aq,...,A,,
we have

3) Ap(e) =Xei  (i=1,...,n).
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Note that if A, has n different characteristic values, then the orthonormal
basis e;,..., e, is unique apart from sign.

Let v be a vector of T, M different from the zero vector. It is well-
known that the value of the Ricci curvature in the direction of v by defi-

nition is )
Ric(v,v)

<v,v>

r(v) =

Let a; denote the angle between v and the i-th basis element e;. Applying
(2) and (3), r(v) can be expressed in the following form

r(v) = Z A cos? a;,
i=1

which is the Euler equation for the Ricci curvature.

According to the sentences written above, the following notions can
be introduced.

Definition 6. The characteristic values of the Ricci endomorphism are
called the principal values of the Ricci curvature.

Definition 7. Considering a principal value, the dimension of the sub-
space consisting of the characteristic vectors belonging to it is said to be
the multiplicity of this value.

If all the principal values are of multiplicity one, the invariant
1-dimensional subspaces of the Ricci endomorphism are called the princi-
pal directions of the Ricci curvature.

Later on we shall mainly study those Riemannian manifolds where the
principal values of the Ricci curvature at some point are of multiplicity one.
Obviously, the manifolds mentioned above are not Einstein manifolds.

Proposition 4. Let ¢ : M — M be an isometry of a Riemannian
manifold M different from idy . If M(yp) has a point p such that the prin-

cipal values of the Ricci curvature at p are of multiplicity one, then ¢ is a
symmetry.

PROOF. Suppose that M(y) is not empty and it has a point p where
the Ricci endomorphism A, has n different eigenvalues. Let ey,...,e, be
an orthonormal basis of T,M determining the principal directions of the
Ricci curvature. Since ¢ is an isometry, it is clear that Tp¢ maps any
principal direction onto itself. Hence we have T,p(e;) = *e; for any index
t(t=1,...,n)

Let F denote the component of M(y) including p. Obviously, T, F is
spanned by some elements of the basis ey,...,e, and T,y is equal to the
orthogonal reflection of T,M on T,F. Therefore we obtain that T,p? =
idr, M- Applying (1), it follows from this that p? = idy; which verifies our
assertion. O
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Corollary 8. Let M be a Riemannian manifold such that at any point
of M the principal values of the Ricci curvature are of multiplicity one and
let ¢ : M — M be an isometry different from idy. If M () is not empty,
then ¢ 1s a symmetry.

Let F' be a submanifold of a Riemannian manifold M. Consider the
real-valued function h : FF — R where for any p € F' h(p) is equal to the
mean curvature of F' at p. The submanifold F' is said to be of constant mean
curvature if h is a constant function. It is known that totally umbilical
submanifolds play an important role in the theory of submanifolds (see
[3]). According to them we can state the following theorem.

Theorem 3. Let F' be a 1-codimensional totally umbilical submani-
fold with constant mean curvature, furthermore, let v be a vector at a point
p of F which is normal to the hyperplane T,F. Then v is a characteristic

vector of the Ricci endomorphism A,.

PROOF. Let us consider a unit normal vector v at a point p of F. Let
€1,...,€n be an orthonormal basis of the tangent space T, M such that
en = v. It is clear that for any vectors w;,w; the equation

Ric(wy,wy) = Z < R(ei,w1)wa, e; >

i=]

holds. It follows from this that for every vector w of T, M we have

Ap(w) = Zn: R(w,€;)e;.

Hence, in order to prove the theorem we have to show

(4) Z < R(v,e;)e;,ex >=0
i=1
where k runs the values 1,...,n — 1.

By a symmetric property of the curvature tensor (4) is equivalent to

(5) Y < R(ei,ex)v,e; >=0.

=1

Regarding a local coordinate system (U,z) in M adapted to F such
that p is included in U, we can consider differentiable vector fields
Xi,...,Xn=1,€ on U N F having the following properties:
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a) X;,...,Xp,-; are tangential local vector fields to F and X(p) = e
holds for any index k;
b) £ is a normal unit vector field on UN F such that £(p) = v and —hé(p)
is the mean curvature vector at p.
It can easily be shown that for any Y € V(U N F) the vector field Vy{
is tangential to F (see [5; p. 106]). Hence, since F is a totally umbilical
submanifold in M with constant mean curvature h, the equation

Vyt = hY

hlc:lds for every tangential vector field Y on U N F. Therefore we obtain
that

Vx:Vx.€ = Vx,Vx.& = Vix, x, € = M(Vx, X — Vx, X — [X;, Xi])
Since the torsion tensor of V vanishes, we have
(6) R(X;, Xy)€ = 0.

Obviously, (6) immediately implies the equation (5) which verifies our
theorem.

Since a submanifold is totally geodesic if and only if it is totally umbil-
ical and its mean curvature vector at any point is equal to the zero vector,
Theorem 3 implies the following assertion.

Corollary 4. Let ¢ : M — M be a reflection of a Riemannian man-
ifold M and let F' be a component of M(p). If v is a vector at a point p
of F which is normal to T, F, then v is a characteristic vector of the Ricci
endomorphism A,.

Proposition 5. Let 1,92 : M — M be reflections such that M(yp1)
and M(p,) are different 1-codimensional submanifolds. If M(p,)NM(y2)
has a point p where the principal values of Ricci curvature are of mul-
tiplicity one, then for any point ¢ € M(yp,) N M(p2) the hyperplanes
T,M(p1), TyM(y2) are orthogonal to each other.

PROOF. Using the exponential map in M, it can easily be seen that
if M(p;) and M(p2) have a point in common, then their intersection is a
2-codimensional totally geodesic submanifold in M. Let us suppose that
M(py) N M(¢2) has a point p such that the Ricci endomorphism A, has
n different eigenvalues.
Considering the proof of Proposition 4, it can easily be seen that the
hyperplanes T,M(yp,;), TpM(p2) are orthogonal to each other, therefore
Ty(1 © p2)* = idr, pr. This immediately implies that (; 0 @2)? = idp.

Let us consider an arbitrary point ¢ of M(¢;) N M(yp2). Applying the
chain rule of tangent linear maps, we obtain from the equality given above
that the orthogonal reflections Typ;, Ty, are commutable. It follows
from this that our proposition is true. O
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