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Distributions of Finite Order in the Operational Calculus

By HUBERT WYSOCKI (Gdynia)

This paper generalizes on the basis of the Bittner operational calcu-
lus the algebraic - differential definition of a distribution of finite order
introduced by SIKORSKI in [11].

1. Operational Calculus
The operational calculus [4] is referred to as the system
CO(L01 L]:S: Tqasqa‘b Q)a

where L% and L! are linear spaces over the same field I' of real or com-
plex numbers; the linear operation S : L' — L% (which is denoted
S € L(L',L%), called derivative, is a surjection. The elements of the

kernel of S, i.e. of the set KerS := {c € L' : Sc = 0} are called constants
for the derivative S. Moreover, @ is an arbitrary set of indices g for the

operations T, € L(L°, L") such that ST,y = y, y € L°, called integrals,
and for the operations s, € L(L', L') such that s,z = ¢ — T, Sz, z € L',
called limit conditions.

By induction a sequence of spaces L¥ such that L* := {z € L¥-! : Sz €

I* 2Lk € N is defined.. Then; therd is...; - I* € I¥Y € . €
L' c L and y = S(S(...(S2)...)) =: S*z, where y € L°,z € L*,S* ¢
———

k-times
L(L"' L°) Sk¥(L*) = L°, k € N. It is also assumed that S° := idy e and
L% = ﬂ L*. It can be shown that for the element z € L¥, k € N, the

followmg Taylor formula holds

(1) .r=sq:c+Tq395x+...+T:"’sqSk'lm+T:Ska:, q€ Q.
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If 5,5%"1z # 0, then the expression
(2) sq:z:+quqS.1:+...+T:'lsqSk'l:c

is called the Taylor polynomial of (k—1) ~th degree for the element z € L*
(at the point ¢ € Q).
The Taylor polynomial (2) can be rewritten in the form

g+, +...+ Tq""lck_l,

where ¢; = 5,5'z € KerS, i € Z;:={0,1,... ,k—1}.

The element of the form
wg.e := co + Ty +...+T;cg, g€ Q, L€ No:=NU {0},

where ¢g,¢1,... ,¢¢ € KerS,c¢ # 0, is called a polynomial of the £ -th
degree (at the point ¢ € Q).
It is evident that w,, € L™ and S"wq,g =0forle 2, keN.

2. Distributions of Finite Order

In what follows, the set KerS* := {z € L* : S*z = 0},k € Ny will
be denoted by Wi. Hence we have in particular Wy = {0}, W; = KerS. It
follows from the Taylor formula (1) that W} is the set of all polynomials
of degree lower than k, i.e. Wi = {w,¢: ¢ € Q,€ € Zi}, k € N. Moreover,
WoCWiC...CWiCL*®, k€N,

We will define, on the cartesian product Ny x L°, an equality relation

(3) {[m,x] = [n,y]}<“=°‘>{(m >nAz€L™"AS™ "z —y € W,V
Vim<nAyeL" ™MAS" My—z€ Wm)},m,n € No;z,y € L°

which is of equivalence type.
Reflexivity and symmetry of the relation (3) are evident. We will show
that the relation (3) is transitive, i.e.

([m,z] = [n,y]) A ([n, y] = [k, 2]) = ([m, 2] = [k, 2]),
m,n,k € No;z,y,2 € 1,
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On the basis of the symmetry of the relation (3) we may assume m >
n > k. Then it follows from the condition [m,z] = [n,y] that z € L™™"
and S™ "z —y € W,. By way of analogy from the equality [n,y] =
[k, z] we obtain y € L™ * and S"~*y — 2 € W;. Since y € L"* and
Sm-ng —y € W, C L*, s0 S "z € L™ *, Hence z € L™ *. We also
have S*~¥(S™~"z — y) € W}, that is S™*z — S"~*y € W}. From this
and from the condition S" %y — z € W it follows that S™~*z — z € Wj.
Finally [m,z] = [k, z]. Thus the set

D = ND b_ ¢ LD/” =”,

where ” = " is the equality relation (3), is composed of equivalence classes,
which are called distributions of finite order (in short - distributions).

It follows from this that the representation of the distribution f in the
form of an ordered pair [m, z] is not unique. In fact, due to (3) we obtain

(4) [m + k,y] = [m, 2],
if
(5) y€ L* and z = S*y, keN.

Further on the distribution f will be identified with an arbitrary repre-
sentative [m, z] of the class which determines that distribution. Therefore

(6) f= [m:x]'

The least number m € Ny such that, for some element z € L°, the equality
(6) holds is called an order of the distribution f and is denoted by the
symbol r( f).

It follows from (4) that the distribution f = [m, z] of the m —th order
can be written in the form

(7) f=[n,y],

if n > m.
To this end it will be enough to assume

(8) y=co+Tyer + oot TP " teg oy + T ™z,

where ¢ € Q and ¢p,¢1,... ,€n—m—-1 € KerS are arbitrary, which follows
from (5) and the Taylor formula (1).

Directly from the definition (3) we obtain the following properties of
distributions :
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(@) ([m,z]=[m,y]) = (z —y € Wn)
(a1) ([1,z] =[1,y]) &= (z —y = c € KerS5)
(a2) ([0,2] =[0,y]) <= (z =1y)
(6) ([m,z]=[n,y]) = (m +k,z] =[n+k,y])
(b1) ([m,z]=[n,y]) = ([m +1,2] = [n+1,y])
(¢) ([m,z:1] = [n,y1] A [m,22] = [n,y2]) = ([m, azy + Bzs] =
= [n,ay: +By2]), @, BET
(Cl) ([mix] o [nsy]) = ([m,cz:c] e, [nsay])! a€l
(c2) ([m,z1] = [n, 1] A [m, 22] = [n,y2]) = ([m, 21 + 22] = [n, 91 + y2]).

Let f,g € D. It follows from (7) that the distributions f and g can
be written in the form

(9) f=1[kz], g=I[ky]

where k > max(r(f),r(g)). This fact allows us to determine addition in
the set D :

(10) f+g:=[kz+y]

The relation (3) of the equality of distributions is consistent with the
operation (10). It follows from the property (cz) that the sum (10) of the
distributions f, g does not depend on the way they are exhibited in the
form (9).

The product of the distribution (6) by the element a@ € T is called a
distribution defined by the form

(11) af := [m,az].

It follows from the property (¢;) that the multiplication (11) of the
distribution f by the number a does not depend on the way the distribu-
tion f is exhibited in the form (6). Thus the relation (3) of the equality of
distributions is consistent with the operation (11).

The distribution 0 := [0, 0] is called zero distribution.

It is easy to verify that ([m,z] = 0) <= (z € Wp,).

i Corollary 1. The set of distributions D is a linear space over the
eld I.

The elements of the space L° can be identified with the zero order
distributions since the map z — [0,z], where z € L% [0,z] € D, is an
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isomorphism. In this sense L° is a linear subspace of the space D and the
elements of the space L? are distributions, i.e.

(12) z = [0, 2].

It should be noticed that the space D is significantly richer in elements

than the space L°.
The element

(13) f=[,z]

does not belong to L?, for z € L® — L!, since for f € L°, there would be
[1,z] = [0, f], hence z € L?, what contradicts the assumption.

The operation D : D — D defined by the formula

(14) D[m,z] := [m+1,z]

is called a distributional derivative.
The distributional derivative D is an endomorphism of the space D.

It follows from the property (b;) that the relation (3) of the equlity of
distributions is consistent with the distributional differentation (14).
Distributional derivatives of higher orders are determined by induction:

D':=D, D**' .= DD*, keN.

In addition, we assume D° := I, where I is the identity operation deter-
mined over the space D.

Corollary 2. Each distribution has a distributional derivative of an
arbitrarily high order.

Corollary 3. Each distribution f = [m,z] is an m —th distributional
derivative of the zero order distribution [0, z], i.e. of the element = € L°.

Corollary 4. For each distribution f € L* k € Ny we have
(15) D*f = S*f.

PROOF. Since f € L* and S*f — S*f € Wy, k € Ny, thus [k, f] =
[0, S* f], which means the equality (15).

Theorem 1. KerD* = Wi, k € Ny.

PROOF. For k = 0 the theorem is evident. Let, then, f = [m,z] €
Ker D* for the fixed k € N. Hence we obtain [m + k,z] = [0,0], thus
z € L™tk and S™tkz = (. Therefore S™z € Wi which means that S™z
can be an arbitrarily fixed polynomial of at most the (kK — 1) —th degree.
Let S™z = wgy ¢, where ¢ € Q and £ € Z; are fixed. Thus S™z—w,, € Wj.
Hence, since € L™, we obtain f = [m,z] = [0, w, ¢ = wy¢, which, due
to the arbitrariness of f, corresponds to KerD¥ C Wj. Inclusion Wy C

KerD* follows from the Corollary 4.
The distribution F is called a primitive distribution of the distribution
fifDF = f,
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Theorem 2. 1° For each distribution f there exists a primitive dis-

tribution F.
2% The distribution

(16) ®=F+c, c € KerS

is also a primitive distribution of f.
3% Each primitive distribution ® of f can be written in the form (16).

PROOF. 1° Let f = [m,z] and y = ¢ + T,z, where ¢ € KerS and
q € Q are arbitrarily fixed. It should be noticed that [m + 1,y] = [m, z],
since y € L' and Sy — z € Wy C W,,. Assuming F := [m, y] we have then
DF = f.
2% From the Theorem 1 we obtain Dec = 0, ¢ € KerS. Therefore D$ =
DF + Dc = f{.
3% Since ® — F € KerD, we have ® — F = ¢, ¢ € KerS on the basis of the

Theorem 1. : y ) s
The set of all primitive distributions of f is called an indefinite integral

of the distribution f and is denoted by the symbol T¥.

It follows from the last theorem on primitive distributions that
(17) Tf = {F + c: c € KerS},
where F' is an arbitrary primitive distribution of f. We write
(18) DIf=f
bearing in mind that the distributional derivative of each primitive distri-

bution of f is equal to f.
The equality (17) can be written briefly as

(19) Tf=F +c,
where F' designates any primitive distribution of f, whereas ¢ is an arbi-
trary constant called an integration constant.
Taking into account the formulas (18) and (19) we can write
(20) TDF = F +c.
The map T : D — D defined by the formula
Jfedy

1s called an indefinite integration operation.
It is a linear operation, i.e.

(21) T(af +Bg) =aTf+ BTy, f,9€D; a,B€T.
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The equality (21), which has symbols of some primitive distribution sets
on both sides, is considered true if and only if the distributional derivatives

on its two sides are identical.
Due to formula (18), the equality (21) follows from the linearity of the

operation D.
The element X € L' is called a primitive element of the element z € L? if
A B,

It follows from the axiom ST, = idy0,q € Q of the operational calculus

that the primitive elements corresponding to z have the form
1.z, q € Q.
It can easily be verified that, for arbitrary ¢;,¢; € Q,

To 2 — 1o, % € KexS.

Hence, it follows that if we know at least one integral T, corresponding to

S then we know one primitive element of z. All other primitive elements
corresponding to the element = are obtained by the addition of a constant.
The set of all primitive elemets of z is called an indefinite integral of the
element z and is denoted by the symbol T'z.

Therefore we have

(22) Tz = {Tyx + c: c € KerS},

where T, is an arbitrary integral corresponding to S.
We write here

(23) STz = x.

The map T : L° — L° given by the formula
z— Tz

is called an indefinite integration operation.

The identification (12) of the elements of L? with the zero order dis-
tributions preserves the indefinite integration operation. In fact, if T'z is
an indefinite integral of the element z the distribution [0,Tz] is then an
indefinite integral of the distribution [0, z], i.e. T[0,z] = [0, T'z]. Thus, on
the basis of (23) we have

(24) DT[0,z] = [1,Tz]) = [0, z].

It follows from (22) and (24) that each zero order distribution can be
written in the form

(25) [0,z] =[1,¢c + T,z],
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where ¢ € KerS and ¢ € Q are arbitrary.
The dependence (25) is a specific case of the equality (7) if we assume
m =0,n=11in (8).

Let L D L° be a linear space over the field I'. Moreover, let T, be an
integral corresponding to S such that T,(L — L°) ¢ L° — L.
The equality (25) suggests an extension of the notion of distribution over
the e[lfmt]ants of L. The element f € L will be identified with the distribu-
tion (1,y] :

(26) Ff=yl & y=c+I,f; c € KerS.

It is not difficult to verify that this identification preserves algebraic
operations determined on L.

In the case when f € L° the identification (26) corresponds to (12). The

element f € L is called a regular distribution. The element f € D — L is
called a singular distribution.

Let L° be a commutative algebra and L*, k € N its subalgebra. It is
said that, for the derivative S, the Leibniz formula holds if

(27) S(z-y)=Sz-y+z-Sy, z,y € L.

Theorem 3. If the derivative S satisfies the Leibniz condition (27),
then the following Schwartz formula holds:

@) 25" =52 = Y (-1 ()5S v, 2 e L% n e Mo

1=0

PROOF. For n = 0 the equality (28) is evident. Assuming the validity
of the formula (28) for a fixed n we have

r- ™y = S(z- S"y) - Sz - Sy = Z(—l)" (") SISz - y)+

+Z( 1) ( )Sn-l-l—t(stm y) Sn+l(I y)+

(AR e —

= Y (-1 ("“)s"“ i(Siz-y), =y €IMM.

1=0
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An application of the induction principle finishes the proof for n > 0.

If S satisfies the Leibniz condition, the equality (28) then suggests
the following definition of the product of the element z € L° by the
distribution f = [n,y] € D:

n

(29) e f= g Y1 (}) DS )

1=0

Using the definition of the distributional derivative D equality (29)
can be rewritten in the form

(30) z-f=f- x-Z( 1)‘( )n—zS'x y).

Theorem 4. The relation (3) of the equality of distributions is con-
sistent with the multiplication (29).

PROOF. It must be shown that the distribution (29) does not depend
on the way the distribution f is presented in the form of an ordered pair.
In other words, it must be proved that if

(31) f=1[nyl=nz],

then

(32) _Z(-nf (’;‘) D" i(S'z - y) = Z(-—n* (’:)D"-"(s‘x . 2).
Moreover, if

(33) ue L', Su=y

that is

= [n+1,u] = [n,y],
then

n+1

(34) 2( 1)t ( )D“ i(S'z-y) = Z( 1) (”“)D"“ i(S'z - u).

It follows from (31) that y — 2 € Wy, i.e. the difference y — 2 can be an
arbitrarily fixed polynomial of at most (n—1) ~th degree. Let y —z = wyg ¢,



58 Hubert Wysocki

where ¢ € Q and £ € Z,, are fixed. Using the linearity of the operation D
we infer that the difference R between the left and the right sides of the
formula (32) is equal to

R= Z( 1)*( )D“"(S'x - wg,e).

Since z,wg,¢ € L, thus $'z - wy¢ € L"*,1 = 0,1,... ,n. From this and
from the Corollary 4 we obtain

D™=i(8' - Wq ) = S*=4(S's - wg.e), sl oo n,
which means that
R= Z( 1)'( )s" Sz - wg,e).
=0

Thus R = z - S"w, ¢ on the basis of the Schwartz formula (28). Hence
R=0.IfueL! then S’z-u€e L,i=0,1,... ,n. Thus

D(S'z-u) = §(S'z - u), t=0,1,.:. ,n

on the basis of Corollary 4. Hence, from the Leibniz formula (27) and from
(33) we obtain

Z( 1) ( )D" (S'z-y) = Z( 1)'( )D" i[S(S’z - u) — Sz - u]

_é( 1)’ ( )D"“ ‘(S - u): g( 1)'*‘(5)D“"‘(5‘+‘r-u)=

n+1

_Z( iy ( )D"“ (S'z-ou)+ Y (- 1)( & )D"+1—=‘(s‘z-u)=

=]

=Dz -u) + ;(—1)* () + (2| prormies=- s

3 (_1)n+lsn+lx ‘y =
n+1

=5 (-1 (”H)D"“-'(s'x w)

1=0
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that is the equality (34).
For n = 0 the equalities (28) and (29) are identical and consistent

with the multiplication in the algebra L°.
It should be noticed, that for z € L*°,y € L™, n € N we have

D"y = 8™y, D"(S'z-y) = S"(S'z - ), % =T g

which follows from Corollary 4.
In this case the product (28) also represents the multiplication (29) of the

regular distributions z and S™y.
It 1s not difficult to prove that

+y)f=z-f+y-f,z(f+9)=z-f+z-g,

(z-y)f ==(y- f),

where z,y € L* and f,g € D.
From (30) we obtain the formula for the product of the constant ¢ € KerS
by the distribution f = [n,y] € D:

(35) c-f=ln,c-yl.

If L° is an algebra with the unity e belonging to KerS and

K Al e,

ceéKerS o€l

i.e. dimKerS = 1, then the product (35) is identical with the previously
defined product (11) of the element a € I' by the distribution f.

Theorem 5. For the distributional derivative D the Leibniz formula
(36) D(z-f)=Dz-f+z-Df

holds, where z € L™, f € D.

PROOF. Since z € L™, on the basis of Corollary 4 we have Dz = Sz.
Using formula (29) we see that the following must be proved

3 () preiste: L 1 (7) pris i)+

i=0 =0

n+1

+3 (-1 ("+ I)D“‘” i(S'z - y).

=0
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The proof of this equality runs as follows:

n+1

Z( 1y () ormisia )+ 3 (1) (i oreigte =

=3 (1) ¥ )D““"(s'x y)+ D™ (z )

=1

_Z( 1)1 ](n+1)D“+l_'(S'$ y) Dn+I(I y)+

1i=1

+_Z(—1)“l [(131) - ("Tl)] D™H-i(Siz . y) =
< Sy () prmicsiay)

=0

Theorem 6. If z € L*™ and f € D, then the following formula holds
for partial integration:

(37) T(z-Df)=z- f —T(Dz- f).

ProoF. Formula (37) should be understood just as the equality (21).
Since

Dig-f-T(Dz:f)l=De-f4+z-Df =Da-f=2-Df =DT(a:Df),

which follows from the Leibniz formula (36), therefore the equality (37) is
true.

3. Convergence in a Distribution Space

Let us assume the following definition of a partially ordered linear
space, which BITTNER in [4] calls Mikusinski space.
By a Mikusinski space we mean a real linear space Z, where we distinguish
a cone K of the following properties:
0e K
if 27,20 € K then z; + 2 € K
ifz€ K,a>0thenaz e K
if z; € K and there exists zo € K such that for each n € N
29 —nz; € K then z; =0
for each z € Z there exist z;,29 € K such that z = 2; — z,.
f 21,22 € Z then we assume by definition

RS N

zy <2 ifandonlyif 2, -2 € K.
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The notation 2z, > z; is also used.
In addition, for each element z € Z we define a modulus |z| € K satisfying
the following conditions:
6. l=ziex210
1. #|z|=0thenzs=0
8. |z1 + 22| £ |z1] + |22]
9. |az|=lallz|, z,z1,22 € Z;a € R.
The notion of regular convergence (convergence with a regulator f)
(4] can be introduced in a Mikusiniski space Z (cf [7, 8]).
It is said that a sequence of elements zx € Z,k € Ny converges to the
element z € Z, written (zx) = z, if and only if

(38) VAV Ala-z<e-f.

fEK >0 n€N, k>n

In [4], the convergence (38) has also been called Mikusiriski conver-
gence.

The convergence in L° can be introduced as the convergence in a space
normed by elements belonging to the cone K in the Mikusinski space Z.

It is said that in the space L° a norm ||z|| € Z,z € L° is determined, i.e.
a norm of values from the Mikusinski space Z, if

1. ||z]| = 0; if ||z|| = 0 then z =0

2. |lzy + z2|| < [l + |22

3. Izl = blllzll, z,21,z2 € L%7€T (4]

It is said that the sequence (z4)ren, of elements from L° converges
to the element = € L, written (zx) = z, if ||zx — z|| => 0 in the space
Z (4].

The space L? together with the norm || - ||, i.e. the pair (L°,|| - ||), is
called a normed space.

The (commutative), algebra L°, which is the normed space, is called
a (commutative) quasi-normed algebra.

Henceforth we will be assuming that L° is a quasi-normed commuta-
tive algebra, in which multiplication is sequentially—continuous, i.e.

if xx,yx,z,y € L°, k € Ny and (22) = 2z, {yp) =y
then (zx-yx) =z - y.

We also require that the integrals T, ¢ € Q be continuous operations
and the sets

Wee:={wge:wge=co+Teer +... + T;chci € KerS,3=0,1,... ,£},
g€ Q;f €Ny
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be closed in LY. P o
It is said that the sequence of distributions fi € D,k € Ny converges to

the distribution f € D, written

(39) (fx) = 1,

if and only if there exists a number m € Ny, a sequence zx € L° k € Nj
and an element z € L° such that

f‘::[markli f=[m,3:], kENO

and (zx) = z.

If (39) holds we also say that the sequence ( fx )keN, is distributionally
convergent to f.
Each sequence (z4)reN, of elements from L° convergent according to the
norm || - || is distributionally convergent, since

{@ =<} ={0.20) - 0.2}

Theorem 7. 1° The convergence in the space D is determined uni-
quely.
2% The operations of addition of distributions and of multiplication of a
distribution by a number from the field I' are distributionally sequentially—

continuous.

PROOF. 1° Let us assume that (fix) — f and (fi) — ¢. Then there
exist m,n € No; zk, Yk, T,y € L°, k € Np such that

fe=[m,zi], f=[m,z], (zx) = =,
fk:[n!yk]v g=[nay]1 (yx) =>y, k€ No.

We put, say m < n. Assuming ¥y := T;“’“:ck,k € Np, where ¢ € Q is
fixed, we have (Zx) = Tj'"™z =: 7 and

fk = [n,:'i‘k] = [m,:ck], f = [n,:i?] = [m,.r], ke No.

Now fr = [n,%x] = [n,yk),k € Ng so Zx — yx = w;‘,e,k € Ny, where
w:'t, k € Ny iian arbitrarily fixed polynomial of degree ¢ € Z,,. In addi-
tion, Wy ¢ = W ¢. Thus (Zx — yx) => & —y = wy ¢, where (w:,,) => Wy,

Hence
f=[Mnz]=[nyl=g
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29 Let us assume that (fy) — f and (gx) — ¢. Then there exist m,n
€ No; zk, Y&, Z,y € L%, k € Ny such that

Ji =[m,z), f=[m,z], (z2) = 2,

g9k = [ﬂ,yk}, g= [n! y]r (yk) =Y, ke NO-
For each k € Ny the distributions f; and gx can be written in the form
fx = [v, %], 9% = [v, k], where v > max(r(fi),r(gx)). Let m < n. Then
v = n can be assumed, as well as Zx = Tg' " ™zk, Yk = yr,k € No,

where ¢ € @ is fixed. Thus we have fi = [n,Zi] = [m, 2],k € Ny and
f = [n,%] = [m, 2], where & := T)'"™z,(%x) => Z. Therefore

(fi)+ (gx) = ([, 2 +yx)) = [0, 3+ y] = f + 9,

since (Tx + yx) =%> T + y.

If klim ar = a, ag,a €',k € Ny, then the condition (zx) = z implies
—00

(agzr) => az. Thus from the condition (fi) = ([m,zk]) — [m,z] = f we
obtain
(axfi) = ([m, axzi]) = [m, az] = af.
Theorem 8. If 4,z € L*®; fi, f € D,k € Ny and (S'z)) = S'z,
t € No,(fx) — f, then (zx - fx) = = - f.
PROOF. Let (fx) — f. Then there exists a number n € Ny, a sequence
yk € L° k € Ny and an element y € L° such that

fe =, f=1[ny], () =y, k€ No.
Since, for each i € Ny, we have (S*zj - yx) => S’z -y, we get
([n=1i,S'zr - yx]) = [n -, S'z - y), 1 <n.
From this and from definition (30) we obtain the proposition.

Corollary 5. If r € L*; fi,f € D,k € Ny and (fx) — f, then
(z-fi)—z-f.

Theorem 9. The derivative D is distributionally sequentially—conti-
nuous, 1.e.

(fe) = f implies (Dfy) — Df, fx,f € D,k € No.
PROOF. If (fx) — f, then there exists a number m € Ny, a sequence
zx € L% k € Ny and an element z € L° such that
Ji = [mka]a f= [mrI]r (zx) = z, k € No.

Since, for each k € Ny, we have Dfy = [m+ 1,2;),Df = [m + 1,z], by
substituting the number m + 1 for m in the distributional convergence
(fx) — f we obtain the proposition.
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Let us consider the sequence of distributions fy € D,k € Nj,. The
sequence (0, )neN, of partial sums

oni=) fa

k=0
is called a distributional series and is denoted by the symbol ) fi. We

k=0

write f = Y fi if and only if (0,) — f.
k=0

o0 o0
Theorem 10. If f = Y fi, then Df = Y Df;.
k=0 k=0

ProOOF. It follows from the last theorem that the condition (o,) — f
implies (Do,,) — Df, which means the proposition.

n
Theorem 11. If y, := Y z4; zk,y € L=, k,n € Ny;f € D and
k=
4 g 003 o0
(S'yn) => S'y, t € Ny, then (2 :ck) Fe= Y wps ki
k=0 k=0

PROOF. The proposition of the theorem follows from the Theorem 8.
Theorem 12. If f = 5 fi, z € L™, thenz-f= ) z- f;.
k=0 k=0

PROOF. The proposition of the theorem follows from the Corollary 5.

The normed space (L°,|| - ||) is called a Weierstrass space if, for each
element z € L°, there exists a sequence of polynomials (w, x)ren, such
that (wqx) = =.

Theorem 13. If L° is a Weierstrass space then, for each distribu-
tion f € D, there exists a sequence of polynomials (wq x )keN, such that

(wq.k) = f.

PROOF. Let f = [m,z] € D. Since L° is a Weierstrass space, for
z € L there exists a sequence of polynomials (vq x)keN, such that

(40) (Uq.k) = T.

Let wg i := S™vgk, k € Ng. Thus [m,vgx] = [0,wg,x] = wg i,k € No.
From this and from (40) it follows that (wqx) — f.
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4. Examples

A. Let Q C R! be a fixed bounded or unbounded interval. More-
over, let there be given the classical model of operational calculus, in which

L' :=C°%Q,R"), L!':=CYQ,R")

and

Sz :={d3£t)},'f,y:= j y(r)dr }, sez = {z(a)},

q

where ¢ € Q,z = {a(t)} € L',y = {y(t)} € L°.

In this case the definition of distributions of finite order presented in the pa-
per agrees with the algebraico-differential definition formulated by S1KO-
RSKI in [11]. It follows from the assumed operational calculus and from
(12) that all the continuous functions on @ are distributions. If we denote
by L the space of functions locally integrable on @ (in the Lebesg;ue sense)
then we obtain L C D from (26). In addition, the element (13), i.e. the
pair 1, {z(t)}], where {x(¢)} is a continuous function on @ which has no
derivative at least at one point, is a distribution which is not a function.
Let us assign to each element z = {z(¢)} € L° a sequence of real quasi-

norms
llle == sup{ |=(t)| : t € Q¢ },  k € No,

where (Q)ren, i1s a sequence of closed, bounded intervals such that
U Q=@

keN,

The set C(Ng) of real sequences z = (zx)reN, is a real linear space with

the usual addition of sequences and the multiplication of a sequence by a

real number. It is a Mikusinski space for the ordering:

220 ifandonlyif 2 >0 foreach k € Njp

and for the modulus
|z| := (|2k]) ke, -

L° is a normed space if
(41) lzll := (llzllx)xen, € C(No),  z € L.

The convergence induced by the norm (41) is an almost uniform conver-
gence on the interval Q. With the help of this convergence the convergence
(39) of distributions in the Sikorski sense is determined.

The development of the theory of distributions based on the Sikorski
definition is presented in [12].
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It can be shown (see [1]) that the notion of distributions in the
Sikorski sense is equivalent to the sequential approach to distributions
in the Mikusinski sense. This equivalence is established by identification
of the distribution determined by the pair [m, {z(t)}] with the distribution

{z(™)(#)} (in sequential approach), i.e. with the distribution which is an
m —th order distributional derivative of the continuous function {z(t)}.

B.  In the Euler model for operational calculus, in which ¢ € Q :=
(0,400), L® and L' are determined as previously, the norm (41) is given
in L° as well as

sei= {0} 7y { j Ma} )

q

where z = {z(t)} € L',y = {y(t)} € L°, the sequence of regular distribu-
tions
fi = {(k + 1)t cos(k + 1)*t}, k € No

is divergent in the space L° and convergent in the space D. Hence we have

(fx) = ([1{2%)—2{}]) — [1,0] = 0.

C. Letz=(zx), y=(yx) € C(Ny). We write z = y if and only if
(42) Ty =y foreach k € Ny.

In the discrete model for operational calculus, in which L° = L! := C(Nj)
and

S = (2p41 = 21), 35 E = (x5 ),
[ ko—1
- > z; fork<k
i=k
Ipzi=x 0 fork=Iky, a=ks €Q : =Ny
k-1
32 for k > ko
X 1=ko

each distribution of the form (13) is a sequence from C(INy ). In this case the
relation (3) different from (42) must be used in comparing the sequences.
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D. In the models for operational calculus, in which derivatives
have, for example, the form

d d G,
5 = a(t)a, LA 5 +b3_n (see [6]),

where {a(t)} is a continuous function determined on the interval [a, f]
such that a(t) # 0, for each t € [a, 8] and b € R' — {0}, the multiplication
of the distributions defined by the formula (29) can be introduced since
these operations satisfy the Leibniz condition (27) for the usual function
multiplication.

E.  The abstract definition of distributions discussed in the paper
permits forming a space of random distributions (so called generalized
stochastic processes, cf [14]). To this end the space of the second order
stochastic processes (Hilbert processes), continuous in the quadratic mean

sense, should be assumed as L° while as operations

the quadratic mean derivative and the Riemann quadratic mean integral
of the second order stochastic process respectively (see [13]).
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