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Generating functions of some products
of arithmetical functions

By P. J. McCARTHY (Lawrence, Kansas)

1. Introduction

The Dirichlet series generating function of the product of two divisor
sum functions was given by S. RAMANUJAN in a paper published in 1916
[10]):

¢(s)¢(s —a)((s —b){(s —a — b),

(1) Y ca(n)as(n)n™ = 5]

which holds for min(R(s), R(s — a),R(s — b),R(s — a — b)) > 1. Here,
and throughout the paper, the unadorned summation sign indicates the
sum as n runs over the set of positive integers, and R(s) denotes the real
part of s. A proof of (1) was given by B. M. WILSON [15]: it is the proof
which appears in [8, pp. 197-198]. Other proofs have been given by
R. VAIDYANATHASAMY (14, p. 611] and by P. BUNDSCHUH [2].

The generating functions of other products of arithmetical functions
have been obtained by several authors, notably S. CHowLrA ([3],
M. M. CruM [4], D. REDMOND and R. SIVARAMAKRISHNAN [11] and
A. MERCIER [9]. In Section 2 we will find the generating functions of prod-
ucts of two functions from a wide class of functions which includes Klee's
function and generalized Dedekind functions, and products in which one
factor is from this class and the other is a Gegenbauer function.

A Gegenbauer function g, , is defined by

0q.r(n) =the sum of the a ~th powers of the divisors d of n such that

n/d is an r-th power
(see [5, p. 298]). Thus g, = 0,. The generating function of the product

Qa,rOb,r 18
((rs)¢(r(s —a)){(r(s —b)){(s —a—b)
((r(2s —a—b)) ¢
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where the appropriate Dirichlet series converges absolutely to this function
in a suitable half-plane. This is equivalent to a result proved by CRUM
(4, p. 11], who considered another arithmetical function which is a Gegen-
bauer function in disguise. In Section 3 we will use a formula due to D. M.
KOTELYANSKII [7] to extend Crum'’s result by obtaining the generating
function of gq r0s,¢r, where t is a positive integer.

The Dirichlet product of two arithmetical functions f and g will be
denoted by f x g. The function (, is defined by (,(n) = n®, and we set
¢ = (o. The arithmetical function ¢ has the Riemann zeta function ( as
its generating function: there is little possibility of confusing the two uses

of the Greek letter zeta. _
We will make use of an identity due to R. D. von STERNECK

(see [5, pp. 151 - 152]) which, for two arithmetical functions f and g,
states that

(2) (f*C)(g * () = hx(, where
h(n)= > f(a)g(b) for all n.
[a,b]=n

[a,b] denotes the least common multiple of a and b, and the sum in (2)
is over all ordered pairs of positive integers a and b with [a,b] = n. The
function h in (2) will be denoted by [f, g]. Bundschuh used (2) in his proof
of (1).

2. The function ¢, 4,4

Let r and a be positive integers and let a be a complex number. The
arithmetical function ¢, 4,4 is defined by

br.a,a(n) = Z pr(d)*(n/d)* for all n,

dln

where

jizin) = J“("”r) if n is an r—th power
0 otherwise

The function p, is the r—th convolute of the Mébius function u. Con-
volutes of arithmetical functions, which were first studied systematically
by VAIDYANATHASWAMY [14], occur frequently and naturally (see [8, p.
53]). If a is odd then u® = u,, and if a is even then u® is the r-th

convolute of p?. Thus, we can restrict a to the values 1 and 2.
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The function ¢, 4, was introduced by B.C. BERNDT [1] as a conve-
nient device for considering simultaneously several well-known functions.
#1,1,1 is Euler’s function ¢ : ¢,1,, is the function ¢,, and therefore Jor-
dan’s function J, when a is a positive integer; ¢, is the function ®,,
generally referred to as Klee’s function because V. L. Klee gave a sum-
mary of its properties [6], but actually studied many years earlier (see |5,
p. 134]). @12, is Dedekind’s function ¥, and ¢, 2, and ¢,2; are the
generalizations ¢, and ¥, of ¢ introduced by D. SURYANARAYANA [12],
[13]. Definitions of all of these functions are given in (8] (see the index, p.
362).

Theorem 1. Ifr < t, then for min(R(s—a), R(s—b), R(s—a—b)) > 1,
Y braia(n)desp(n)n™

S RN DT Sagr Y | ik o e i
= (( 5)1;[(1+( 1) pn+( 1) o )

PROOF. Since ¢, q,0a = ¥ * (s, we have

¢’r,a‘a ¢t,ﬂ,b = Cn-l-b(c—aau:-' * C)(C—H‘tﬂ * C)
= Catb(h* () = C«_:+bh * Catby

where h = [(_opu®, (_pp?). For all primes p and all y > 1,
MpY)= Y pr@HL () u(p')P.
max(i,j)=v
Thus, h(p¥) =0 unless y =r or t. For r < t,
h(p") = (=1)"p™"", (Ca+sh)(P") = (-1)°P",

and
h(p') = (-1)Pp~* 4 (-1)>Hip=(ratth)

(Catsh)(P') = (=1)°p*® + (—1)*+Pplt—7)e,
For r =1,
h(p") = (=1)*p~"* + (—=1)Pp™ + (—1)>+Fp~r(ath),
(Catsh)(P") = (=1)°p"® + (=1)Pp™ + (-1)**2.

The proof is completed by noting that in the statement of the theorem, the
Dirichlet series on the left-hand side, and the series for the zeta function
and the infinite product on the right-hand side, converge absolutely in the
given half-plane.
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Several examples of special interest: if a is a positive integer then for
R(s) > a+ 2,

ta _ _(t—1)a
3" Ju(n)®i(n)n=* = (s —a - 1) ];[ (1 S %) ;

if r <t then for R(s) > 3,

r

S B W o R 1
> @, (n)@(n)n™* = ((s 2)1;1(1 - ot )

for R(s) > 3,

n2n—s= i 2P‘+'1
3 $(n)Pn=* = 2)IPI(1+ 1),

The next theorem is a generalization of a result of REDMOND and
SIVARAMAKRISHNAN [11].

Theorem 2. In a suitable half-plane and for t a positive integer,

Y 0ar(n)er,pp(n)n™" = ((s — a—b){(r(s — b))

i p(t—k)ra prb ti:l p(t—k]ra

B k=0 B k=0
1;[ L (=1) ptre =f=1) p(t+1)rs

PROOF. Recall the definition of a Gegenbauer function p, , from Sec-
tion 1,

Oar(n) = Z ve(d)(n/d)* for all n,
din

where
1 if n is an r-th power
v.(n)=
() { 0 otherwise.
The function v, is the r—th convolute of the arithmetical function (. Since

pr ! = v, the function g, , is related to ¢, 4 as the function o, = g, is
related to ¢ = ¢1,1,4.
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We have

93,r¢tr,ﬁ,b e Ca-HI(C—BVr * C)(C—bpfr * C) =
= Ca+s(h*¢) = Catsh * Cats,

where h = [C_,,V,.,C_;,,uﬂ.]. For all primes p and all v > 1,
Carsk)p) = Y p =Dy (o)l (p7).
max(1,))=7y

This is equal to zero unless 7 is a multiple of r. For 1 < k <
t —1,(Catsh)(p*") = p*™°,

t
(Catsh)(p™) =p'™ +(-1)P ) plt=Hire
k=0

and for k > t, (Casph)(p*") = p*~97(p'™® 4 (—=1)#). The Dirichlet series
of the function (,4+4h is therefore, equal to

t—1 ¢
H (1 x Zp—kr(a—b) 5 (ptrb 4 (_1)ﬂ Zp(t_k)ra)p_t“

P k=1 =0

Y +(—1)*’)p-*“)

k=t+1

The Dirichlet series of g, r¢¢r g, is (s —a — b) times this expression, and
after some manipulation, we obtain the right-hand side of the formula of
the theorem.

With r =1 and # = b = 1 we obtain
Y 0a(n)®y(n)n " =

Zt: p(t-k}a ‘i:l p(t—k)a-I-l

e By # _ k=0 k=0
=((s —a—1)((s 1)1;1 1 ot ¥ p(tH1)s '

and the generating function of o,V is obtained by changing the signs
before the two fractional terms on the right-hand side. In particular, with
r=1,t=1 f=2and b=1,

p0+1 pa+l)

Zan(n)w(n)n_’ =((s—a—-1){(s—1) l;[ (1 - = e
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3. Kotelyanskii’s theorem

Starting from a result of N. P. ROMANOV, which was obtained using
Hilbert space methods, D. KOTELYANSKII [7] obtained a result which can
be stated as follows.

Theorem 3. If f and g are arithmetical functions and h = (f, g|, then

3) D h(n)nT' =) 4y(n)n ‘“):f(m)J Zg(nk)k ;

j=l1

in any half plane in which the various Dirichlet series converge absolutely.

In fact, there is a short, simple proof of Theorem 3 which makes the
result accessible to students in a beginning course in the theory of numbers.

By (2), h = (f*()(g*()* pu. Hence, the left — hand side of (3) is equal to

A Ry (Z f(a)) (Zg(b)) u(n/d).

d|n ald b|d

As a and b run independently over the positive integers, for each pair of
values of a and b there is one term containing f(a)g(b) as a factor for each
divisor d of each multiple [a, bjm of the least common multiple [a, b] of a
and b such that [a, b]|d. Thus, the quadruple sum is equal to

Z Z f(a)g(b) 2 [a,6]7*m™* " p(m/e),
a=1 b=1 e|lm
and by the defining property of the Mébius function, this is equal to
oo oo
(4) > f(a)g(b)la,b]™",
a=1 b=1
On the other hand, the right-hand side of (3) is equal to

ZZ(f(a “)(g(0)b*) Y 4(d) =

a=1 b=1 d|(a,b)

Y f(a)g(b)a=*b™*(a,b)",

1b=1

Ma
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which is equal to (4).

There is an unfortunate misprint on page 457 of [7], where the expo-
nent on n in the right-hand side of (3) is s rather than 2s : it is corrected
in Mathematical Reviews, vol. 15, page 779.

KOTELYANSKII used (3) to give a proof of Ramanujan’s formula (1).
We will use it to obtain a generalization of (1), a result even more general
than the one due to Crum which is mentioned in Section 1.

When we began work on this paper, we used Kotelyanskii’s result
to prove Theorem 1 and 2. Then we noticed that the simple and direct
proofs given in Section 2 allowed us to side step Theorem 3. In those
proofs, ((a4+5h)(p*) has a bounded number of terms for k large. However,
if we set out to use the same method to find the generating function of
the product g, 08¢, we find that we must consider ((a4sh)(p*™), where

= [r,t] and h = [(~avy,(—pv¢], and that it has an increasing number of
terms for large, increasing values of k. This leads to a formidable problem
of manipulation in simplifying the generating function. It is much easier
to use Theorem 3 to prove the following theorem which, although it does
not give the generating function of g, 04, for all r and ¢, does generalize
Crum’s result.

Theorem 4. For min(R(s),R(s—a),R(s—b),R(s—a—>)) > 1, and
t a positive integer, -
2 car(m)eber(n)n™ = ((s — a = b)((r(s — b))(tr(s — a))((trs)

H £ (ptra o 1)pr(a+b) +pra(pra o ptra
(pra = 1)p(t+l)n

p

PRrROOF. Since

&;‘(ln) - Z V:i(ad) for all n,
o d|n
we have, from Theorem 3,
(5) Zé’a.r(n)Qb.tr(n)n_(8+a+b) =
Y - ¢a(n) Vr(nJ) vir(nk)
=((s) )_ n2sta+th jeta Z potb
n=1 =1

For a positive integer n, let Q,(n) be the smallest positive integer
such that nQ,(n) is an r-th power. If nj is an r-th power then Q.(n)|;
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and j/Q,(n) is an r-th power. Thus, v,(nj) = 1 when and only when
nj = nQ,(n):i" for some i. Therefore,

= vr(ny) = 1
j; W— o ; Q. (n)*+air(s+a)

1 i 1 ((r(s+a))

" Qi) IR T Q)

1=1

If we substitute for the two inner sums in the right-hand side of (5), and
replace s by s — a — b, we obtain

Y " 0a,r(n)eber(n)n

= C(s = a = G(r(s — B(tr(s - o)) 3 Lot o

which holds in the stated half-plane. If we denote the sum on the right—
hand side by S, then in that half plane,

- ¢'a—a—b(P‘i)
S = 1+ ‘ . : . .
II ( 2 HO )P QP
Let S, be the factor of S corresponding to the prime p. For
a=12..., (PPQe(p’))*® = p**"(*= for j in the interval (a—1)tr+1 <
j < atr, and for B = 1,...,t, (pPPQ.(p?))*~® = plla—Dt+A)r(s=}) for ; in
the subinterval ((a — 1)t + B8 - 1)r +1 < j < ((a = 1)t + B)r. If we sum

over the values of j in the subinterval, and then over the values of 3, we
find after some manipulation that

pr(s—a-b) g | ptra = oo )
pr(a—a—b) pre — 1 ; patra

" 1 . (ptra I l)pr(a+b) +pra(pru " ptra
o p—tra (pru et l)p(x+1)u '

Thus, we obtain the formula of the theorem.
When t = 1, Theorem 4 is Crum’s result, and with r = 1 we have

> Ga(n)es(n)n~* =
=((s — a — b)((s — B((t(s — @))((ts)

(™ =1t 1
l:I (1 : (p* —1)ple+De ) '

Sp=1+
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