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Non—convex perturbations of evolution equations
with m—dissipative operators in Banach spaces

E. P. AVGERINOS (Thessaloniki) and N. S. PAPAGEORGIOU (Davis)

Abstract. In this paper we establish the existence of integral solutions for a
nonlinear, multivalued evolution equation of the form z(t) ¢ Az(t) + F(t,z(t)), where
A: X — 2% is an m-dissipative operator and F(-,-) a nonconvex valued perturbation.
Our result generalizes a recent existence theorem of Cellina~Marchi (Israel J. Math 46
(1983), pp. 1-11).
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1. Introduction

Evolution equations of the form —z(t) € Az(t)+ f(¢) in a Hilbert space,
were first studied by BREZIS [4], with A a maximal monotone operator
and f(-) an integrable perturbation. The work of BREZIS was extended
by ATTOUCH-DAMLAMIAN [1], to systems of the form —z(t) ¢ Az(t) +
F(t,z(t)), with F(-,-) being a multivalued perturbation having convex
values. ATTOUCH-DAMLAMIAN [1] proved two existence results :
one with A being a general maximal monotone operator, but with the
underlying state space being R" and the other with A being a subdiffer-
ential (i.e. A = 0¢, with ¢ being a proper, closed, convex function) and
the underlying state space being any separable Hilbert space. Recently
CELLINA-MARCHI [6] proved an existence theorem for the case where the
multivalued perturbation has nonconvex values and the state spaces is
R". The study of those evolution equations in general Banach space (not
necessarily Hilbert), was initiated by PAzY [12], who considered the case
of A being a densely defined, linear, m-accretive operator and the per-
turbation was single valued. A nonlinear version of Pazy's theorem was
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proved by VRABIE [14], who also considered the case of multivalued per-
turbations with convex values, extending this way the work of ATTOUCH-
DAMLAMIAN [1]. Other interesting works in these or related issues were
done by GUTMAN [8], HARAUX [9] and SCHECHTER [13] (he studied the
dependence of the solutions on variations of the initial data).

In this note, we extend the result of CELLINA-MARCHI [6] to arbitrary
separable Banach spaces, weakening also the hypotheses on the multival-
ued perturbation F(t,z). Instead of assuming joint Hausdorff continuity
for F(t,z), we only require lower semicontinuity in the variable z, a more
natural hypothesis in the context of applications.

2. Preliminaries

Let (£2,Z) be a measurable space and X a separable banach space.
By Py(X) we will denote the collection of all nonempty, closed subsets of
X. A multifunction F' :  — P¢(X) is said to be graph measurable, if
GrF = {(w,z) e 2x X : 7z e F(w)} € £ x B(X), where B(X) is the Borel o
—field of X. Now let u(-) be a o—finite measure on £. By S} we will denote
the set of integrable selectors of F(-) i.e. Sp = {f e L'(X) : f(w) € F(w)u
- a.e. }. Using Aumann’s selection theorem, it is easy to check that if
w — |F(w)| = sup{||z]| : z € F(w)} is in L% (in which case we say that
F(-) is integrably bounded), then S} # 0. If Y, Z are Hausdorff topological
spaces and G : Y — 2%\ {#}, then we say that F(-) is lower semicontinuous
(Is.c.),if for all U C Z open, the set G™(U) = {y e Y : G(y)NU # 0} is
open in Y. If Y, Z are metric spaces, then the above definition is equwalent
to saying that for all y, — y we have G(y) C imG(y,) = {z € Z :
limz,,2, € G(yn)}-

Next let X be any Banach space. Let J : X — 2% be the duality
map of X i.e. J(z) = {z* ¢ X* : (z*,2) = ||z||*> = ||z*||*}. Clearly the
values of J(-) are closed, convex, bounded subsets of X *, which because of
the Hahn-Banach theorem are also nonempty. Recall that if X* is strictly
convex, then J(-) is single valued. Using J(-) we can define the upper
semi-inner product (denoted by (-,-)4+) and the lower semi-inner product
(denoted by (-,-)-) as follows:

(z,y)+ = sup{(z*,y) : 2" € J(2)}
and (z,y)- =inf{z*y): z* € J(z)}

for all z,y € X. An operator A : X — 2% is said to be dissipative (see
BARBU [2]), if (z — 2',y — y')- < 0 for any (z,y)(z',y') ¢ GrA. We say
that A is m-dissipative, if it is dissipative and in addition R(I — AA) =
for all A > 0. It is well known that an m-dissipative operator generates
? semilgroup {S(t)}+>0 of nonlinear contractions, via the Crandall-Liggett
ormula

S(t)r= lim (I-LtA)2" t>0, zeD(A).




Non-convex perturbations of evolution equations ... 95

Now let A be an m-dissipative operator, f ¢ L'(X) and zo ¢ D(A).
Consider the following Cauchy problem on T = [0, ] :

(lessent o

Following BENILAN [3], we say that a function z ¢ C(T,X) is an
"integral solution” of (*), if z(0) = z¢ and

t
lz(t) - vl < lz(s) - yI|® +2 / (F(r) + 2, 2(r) — y) 4 dr

for all (y,2) e GrAandall0<s<t<b.

It is well known that under the above hypotheses Cauchy problem
(*) has a unique integral solution. Moreover this unique integral solution
depends continuously on the data of the problem. In fact if z,(-) is the
solution of (*) with data (z¢1, f1) € D(A) x L'(X) and z3(-) the solution
of (*) with data (zg2, f2) € D(A) x L'(X), then we have

lz1(8) = z2(t)|1? < [|zon —-1'02||2+2/(f1(")—f2(f‘)s z1(r)—z2(r))4dr,teT,
0

or equivalently

l2a(8) — 22l < llzor — zozll + ] 1A(r) = Fo(r) .
0

If A is densely defined, linear, m—-accretive, then the notion of integral
solution coincides with that of mild solution. : !
Recall that a "strong solution” of (*) is a continuous function z : T —

X (i.e. z(+) e C(T, X)), for which we have that z(t) e D(A), is differentiable
a.e. on (0,b) and satisfies (*) a.e. with z(0) = z¢ € D(A).

Every strong solution is an integral solution. The converse is true only
if we impose additional hypotheses on X, A and f. We are not going to go
into the details of that problem. We only mention that if X = R" and A
is maximal monotone or if X is a Hilbert space and A = 3¢, with ¢ being
a proper, closed, convex function on X, then every integral solution is also
strong for any initial condition z¢ € D(A). For further details we refer to
BARBU (2], BREZIS [4] and SCHECHTER [13].
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3. The theorem

In this section we will establish the existence of an integral solution
for the following multivalued evolution equation:

z(t) € Az(t) + F(t,z(t)) A
{ z(0) = zo } .

By an integral solution of (**), we mean a function z € C(T, X'), which
is an integral solution (as defined in section 2) of z(t) € Az(t)+ f(t), z(0) =
zo for some f € S};‘(,,x(_)).

Let T = [0,b] and let X be a separable Banach space. We will need
the following hypotheses

H(A): A : X — 2% is an m-dissipative operator, which generates a
semigroup of compact nonlinear contractions
(i.e. S(t): D(A) — D(A) is compact for t > 0),

H(F): F:T x X — Py(X) is a multifunction s.t.
(1) (t,z) — F(t,z) is graph measurable,
(2) for every t € T,z — F(¢t,z) is ls.c.,
(3) |F(t,2)] = sup{llyll : y € F(t,2)} < a(t) + b(2) |z]| a-e. with

a(-),b(-) e LY.
Hy : zo e D(A).
We have the following existence result concerning (**).

Theorem. If hypotheses H(A), H(F') and Hy hold, then (**) admits

an integral solution.

PROOF. We will start by determining an a priori bound for the inte-
gral solutions of (**). So suppose z(-) € C(T, X) is such a solution of (**).
Recalling that S(t)zg is the integral solution of y(t) € Ay(t),y(0) = zy and
using the inequalities of section 2, we have :

t

llz(t) = S(t)zo|l < E)fllf(S)IIﬂfs

for all t ¢ T and some f € S_lp(,,r(,)). Since t — S(t)z¢ is continuous on T
and using hypothesis H(F) (3), we have

le(O)l < My + f'[a(s )+ b(s)ll2(s)[1ds

for some M; > 0. A plying Gronwall’s inequality, we get that

l2(t)]| < K exp ||b||1 = M,
where K = M, + ||a||;. Then define a new multlfunctlon Fare X o
P§(X) as follows:

A F(t,z)  if |zl < My
FihE) e F(t488) if |z > My
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Observe that F(t,z) = F(t, pu,(z)), where pyr,(+) is the M, -radial
retraction. We have GrF = {(t,z,y) e Tx X x X : (t,pm,(z),y) € GrF}.
Let r: T x X x X = T x X x X be defined by r(t,z,y) = (¢, pm,(z),y).
Recalling that pa,(-) is 2-Lipschitz, we have that r(-,-,-) is continuous,
hence measurable. So, since GrF ¢ £x B(X)x B(X), we have r~!(GrF) =
GrF ¢ ©x B(X)x B(X)i.e. F(-,-) is graph measurable. Also since F(t,-)
is the composition of the Lipschitz function pps,(-) with the l.s.c. multi-
function F(t,-), we have that F(t,-) is Ls.c.. Finally note that |F(t,z)| <
a(t) + Mab(t) = v(t) a.e. with y(-) e L}.

In the sequel we will consider the following multivalued Cauchy prob-

#(t) € Az(t) + F(t,z(t))
{ 0y } )

lem:

Let h ¢ L'(X) and consider the Cauchy problem

i) € Ax(O) O\ un
{ S{0ben e } =

We know (see section 2), that (***) has a unique integral solution.
Let r : L'(X) — C(T,X) be the map that to each L'(X)-perturbation
h(-) assigns the corresponding unique integral solution r(k)(-) € C(T, X)
of (***). Let B(y) = {h e L'(X) : ||h(?)]| < () a.e. }. Our claim is that
K = r(B(v)) is relatively compact in C(T, X).

To this end, first we will show that for every t € T, K(t) = r(B(7))(¢)
= {z(t) : z(-) = r(h)(*),h € B(v)} is compact in X. For t = 0, we have
K(0) = {z0} and so the claim is automatically verified. Hence let t >
0,t € T. Note that B(v) is a uniformly integrable subset of L!(X). So
given t € (0,b] and € > 0, we can find §(¢) € (0,t) s.t. for B C T Lebesgue
measurable with A(B) < é, we have:

g”h(s)”d‘s < €
for all h € B(y). Now consider the following Cauchy problem; on [t — é,1] :

{ #(8)(s) € Az(8)(s) }
z(8)(t — &) = r(h)(t - 6)

where h € B(7). From the inequalities of section 2, we have:

lz(6)(t) = r(R)B) < [ |Ih(s)llds < e

t—4

for all h € B(y). Also recall that



98 E. P. Avgerinos and N. S. Papageorgiou

z(6)(t) = S(8)r(h)(t — &) C S(8)K(t —9).
and the latter is relatively compact in X, since K(t — 6) = {y(t — é) :
y(-) € K} is bounded and S(§) is a compact contraction (see hypothesis
H(A)). Therefore S(6)K(t —é) is compact. So for every t e T, every
€ > 0 and every z e K(t), there exists an element z, in the compact
set S(8)K(t —6) s.t. ||z — 2z¢|]| < e => K(t) is compact.

Next, recall that since the semigroup S(t) is compact, for B C X
nonempty, bounded, we have that ¢t — {S(¢)z : z € B} is equicontinuous
on t > 0. Hence given € > 0, we can find é,(¢) > 0 s.t. for |[t' —t| < §; and
for all z € K(t — é) we have:

IS(t' —t+8)x — S(é)z|| <€
—IS(E = t + 8)r(R)(t — 8) — S(E)r(h)(t — )| < e
= ||z(6)(t") — z(8)(t)|| < e.

So finally for é; = min(4, é,) and for |t' — t| < 67, we have

lIr(R)(E") = r(R)(@)]
<lir(R)(#') = 2(8)(E)] + l=(6)(t") — (&)l + ll=(8)(t) — r(R)(B)]| <

< €+ e+ e=3¢e = K =r(B(v)) is equicontinuous at each ¢t > 0.
Finally for ¢t = 0 note that

I(R)(t) — S(t)xoll < [Ir(R)(2) — S(t)zol| + [|S(t)z0 — zol|

t

< / +(8)ds + [|S(8)s — ol

0

So we also have equicontinuity at ¢ = 0.

Invoking the Arzela-Ascoli theorem, we conclude that K is compact
in C(T,X). Thus by Mazur’s theorem K, = Gonvk is compact

Next let R : K. — 2L'(X) be defined by

R(z) ¥ Sﬁ‘(-,x{-))‘

Since F'(-,-) is graph measurable, it is easy to check as before, that
t — F(t,z(t)) is graph measurable and integrably bounded by ¥(-) and so
R(-) has nonempty values, in fact R(-) is Py(L'(X)) —valued. Also since
F(t,-) is Ls.c. and using theorem 4.1 of [11], we have that if 2, — z in
K., then R(z) C s — limR(z,), where s indicates the strong topology on
L'(X). So R() is Ls.c. (see section 2). Hence we can apply Fryszkowski’s
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selection theorem [7], to get v : K, — L'(X) contmuous s.t. v(z) € R(z)
for all z € K. Set p = rov. Clearly p : K. — K, is continuous. Apply

Schauder’s fixed point theorem to get # € K. s.t. & = p(&) = r(v(&)).
Hence we have that z(-) is an integral solution of

{i-(t) e Az(t) + v(;i-)(t)}
:E'(U) = Iy

with v(Z)(-) € S}?(-,i(-)}' So #(-) € C(T,X) is an integral solution of

(**)'. From the definition of F(t,z) and hypothesis H(F) (3), we see
easily that |F(t,z)| < a(t) + b(t)||z| a.e.. So as before, through Gron-
wall’s inequality, we get |2(t)|| < Ma,t e T = F(t,%(t)) = F(t,4(t)),
t € T = %(-) is the desired mtegra.l solution of (**). .E.D.

As we mentioned in section 2, when X = R", then every integral
solution is a strong solution. So we can state as a corolla.ry to our theorem,
an extension of the existence result of CELLINA-MARCHI [6].

So let T' = [0, b], X = R"™ and make the following hypothesis about A:

H(A)' : A: D(A) C R" — 2R" is a maximal monotone operator.
Then we get as a corollary to our theorem, the following extension of
the work of CELLINA-MARCHI [6].

Corollary. If hypotheses H(A)', H(F) and Hy hold, then (**) admits

a strong solution.

Remarks. (1) In CELLINA-MARCHI [6], the multivalued perturbation
F(t,z) was assumed to be jointly Hausdorff continuous.
(2) Hypotheses H(F') (1) and (2), cover the case where
t — F(t,z) is graph measurable and ¢ — F(t,z) is Hausdorff continuous
(see theorem 3.3 of [10]).

4. An example

Let Q2 be a bounded open domain in R" with smooth boundary
HNi=T.n>2

Let r > (n — 2)/n and consider the following multivalued, nonlinear,
parabolic partial differential equation on T' x Q :

) _ Aalt, ) ot ) € F(t,2,2(4,2))

z(t,2)=0onT xT WG
z(0,z) = zo(z) on {0} x Q
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Here F : T x 2 x R — Py(R) is a multifunction which is Ls.c. in the
third variable and (t,y) — Sg(,,. () i graph measurable on T x L'(22).
It is easy to check that this is the case if (¢,z) — F(t,z,r) is measurable
and r — F\(t,z,r) is Hausdorff continuous. Also assume that |F(¢,z,r)| =
sup{||v|| : v € F(t,z,7)} < a(t,z) + b(t, 2)|r| a.e. with a(-,-) e LL(T x Q)
and b(t,-) € L>°(§2) while t — ||b(t,-)||cc belongs in L) . Furthermore let
i’g = 370(') € LI(Q).

Take X = L'(f2). This is a separable Banach space. Consider the
nonlinear operator A : D(A) C X — X defined by Az = Az|z|"™! with
D(A) = {z € X : z|z|""! € Wy (), Az|z|"! € L}(Q)}. From BREZIS
(5] we know that the operator A defined above is m-dissipative and the
nonlinear semigroup it generates is compact for ¢ € (0,5]. Also let
F:T x X — Py(L'(X)) be defined by F(t,z) = Sk, (- Then F(-,")
is graph measurable, F(t,-) is L.s.c. (see theorem 4.1 of [11]) and

|F(t, z)| < a(t) + b(t)||z]l, a-e.
with a(t) = ||a(t,-)l, and b(t) = |[b(t, -)||o-

Rewrite the initial-boundary value problem (****) as the following

abstract multivalued evolution equation:

i(t) € Ax(t) + F(t,z(t)) e
{ 2(0) = %o } )

We see that all hypotheses of our theorem are satisifed and so we
know that (****)’ has an integral solution #(-) € C(T, L'(f2)). Set z(t,z) =
#(t)(z)z € Q. This is a generalized solution of (****).
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