Invariant submanifolds of a trans-Sasakian manifold

By D. CHINEA and P. S. PERESTELO (Islas Canarias)

S. TANNO [T] and K. YANO and S. ISHIHARA [YI] have proved that any invariant submanifold of a Sasakian manifold is minimal. The authors [YI] have obtained conditions for an invariant submanifold of a normal contact manifold to be totally geodesic in the case of codimension 2, and M. KON [K] have studied the case of codimension ≥ 2 . He also studied invariant submanifolds satisfying the condition $\tilde{R}(X,\xi)h=0$.

The purpose of this paper is to show that similar results hold true for a more general class of manifolds, namely the class of trans-Sasakian manifolds, [O]. In §1 we recall definitions and some properties of almost contact metric manifolds. In §2 we prove that any invariant submanifold of a trans-Sasakian manifold is also trans-Sasakian and minimal. We obtain conditions for an invariant submanifold of a trans-Sasakian manifold to be totally geodesic. Finally, we study invariant submanifolds satisfying the condition $\tilde{R}(X,\xi)h=0$ in a trans-Sasakian manifold.

1. Preliminaries

A (2n+1)-dimensional real differentiable manifold M of class C^{∞} is said to have a (φ, ξ, η) -sructure, or an almost contact structure, if it admits a field φ of endomorphisms of the tangent spaces, a vector field ξ , and a 1-form η satisfying

$$\eta(\xi) = 1,$$

$$\varphi^2 = -I + \eta \otimes \xi,$$

where I denotes the identity transformation, [B].

Denote by $\mathcal{X}(M)$ the Lie algebra of C^{∞} vector fields on M. A (paracompact) manifold M with a (φ, ξ, η) -structure admits a Riemannian metric g such that

 $g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y),$

This work was supported by the "Consejería de Educación del Gobierno de Canarias".

where $X, Y \in \mathcal{X}(M)$. Then M is said to have a (φ, ξ, η, g) -structure or an almost contact metric structure and g is called a compatible metric. The 2-form Φ on M defined by

$$\Phi(X,Y) = g(X,\varphi Y)$$

is called the fundamental 2-form of the almost contact metric structure. If ∇ is the Riemannian connection of g, then

$$(\nabla_X \eta) Y = g(Y, \nabla_X \xi),$$

$$(\nabla_X \Phi)(Y, Z) = g(Y, (\nabla_X \varphi)Z).$$

An almost contact metric structure (φ, ξ, η, g) is said to be normal (|N|) if $(\nabla_X \varphi)Y - (\nabla_{\varphi X} \varphi)\varphi Y + \eta(Y)\nabla_{\varphi X} \xi = 0$; α -Sasakian $(|\alpha S|)$ if $(\nabla_X \varphi)Y = \alpha[g(X,Y)\xi - \eta(Y)X], \quad \alpha \in R$; α -Kenmotsu $(|\alpha S|)$ if $(\nabla_X \varphi)Y = \alpha[g(\varphi X,Y)\xi - \eta(Y)\varphi X], \quad \alpha \in R$; Trans-Sasakian (|tS|) if $(\nabla_X \Phi)(Y,Z) = \frac{1}{2n}[(g(X,Y)\eta(Z) - g(X,Z)\eta(Y))\delta \Phi(\xi) + (g(X,\varphi Y)\eta(Z) - g(X,\varphi(Z)\eta(Y))\delta \eta)]$; where δ denotes the coderivative on M.

Remark. If (φ, ξ, η, g) is trans-Sasakian and $\delta \Phi(\xi) = \delta \eta = 0$ then (φ, ξ, η, g) is cosymplectic, [B].

The structure (φ, ξ, η, g) is said to be Kenmotsu if it is 1-Kenmotsu, and Sasakian if it is 1-Sasakian. The relations among these structures are represented in the following diagram (where \rightarrow denotes strict inclusion),

$$\frac{|\alpha S|}{|\alpha K|} > |tS| \to |N|.$$

If M is a trans-Sasakian manifold, then it is α -Sasakian if $\alpha = \frac{\delta \Phi(\xi)}{2n}$ and $\delta \eta = 0$, and it is α -Kenmotsu if $\alpha = \frac{\delta \eta}{2n}$ and $\delta \Phi(\xi) = 0$. It follows that if M is trans-Sasakian, then

(1.1)
$$\nabla_X \xi = -\frac{1}{2n} [(X - \eta(X)\xi)\delta\eta + \varphi X \delta\Phi(\xi)].$$

Moreover, the Riemann curvature tensor R satisfies the following property,

[ChG]:

(1.2)

$$R(X,Y,Z,W) = R(X,Y,\varphi Z,\varphi W)$$

$$+ \left(\left(\frac{\delta \Phi(\xi)}{2n} \right)^2 - \left(\frac{\delta \eta}{2n} \right)^2 \right) \left\{ -g(X,Z)g(Y,W) + g(X,W) \right\}$$

$$= g(Y,Z) + g(X,\varphi Z)g(Y,\varphi W) - g(X,\varphi W)g(Y,\varphi Z) \right\}$$

$$- \frac{1}{2n} [X(\delta \eta) \{g(Y,Z)\eta(W) - g(Y,W)\eta(Z)\} -$$

$$- Y(\delta \eta) \{g(X,Z)\eta(W) - g(X,W)\eta(Z)\}] + \frac{1}{2n} [X(\delta \Phi(\xi))$$

$$= \{g(Y,\varphi W)\eta(Z) - g(Y,\varphi Z)\eta(W)\} - Y(\delta \Phi(\xi))$$

$$= \{g(X,\varphi W)\eta(Z) - g(X,\varphi Z)\eta(W)\} .$$

For an extensive study of these structures we refer to [B], [ChG], [JV], [O].

2. Invariant submanifolds of a trans-Sasakian manifold

A (2r + 1)-dimensional submanifold M of a (2n + 1)-dimensional almost contact metric manifold \tilde{M} with structure $(\tilde{\varphi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ is said to be invariant if $\tilde{\varphi}X$ is tangent to M for any tangent vector field X to M, and $\tilde{\xi}$ is always tangent to M. It is well known that any invariant submanifold M of an almost contact metric manifold \tilde{M} is also an almost contact metric manifold with the induced structure (φ, ξ, η, g) , where $\varphi X = \tilde{\varphi}X, \ X \in \mathcal{X}(M), \ \xi, \eta \$ and g are the restrictions of $\tilde{\xi}, \tilde{\eta}$ and \tilde{g} to M (see [YI]). Moreover, for any vector fields X, Y, Z on M, we have

(2.1)
$$\Phi(X,Y) = \tilde{\Phi}(X,Y),$$

(2.2)
$$(\tilde{\nabla}_X \tilde{\varphi})Y = (\nabla_X \varphi)Y + h(X, \varphi Y) - \tilde{\varphi}(h(X, Y)),$$

(2.3)
$$(\tilde{\nabla}_X \tilde{\Phi})(Y, Z) = (\nabla_X \Phi)(Y, Z),$$

$$(2.4) \qquad (\tilde{\nabla}_X \tilde{\eta}) Y = (\nabla_X \eta) Y,$$

where $\tilde{\Phi}$ and $\tilde{\nabla}$ (resp. Φ and ∇) denote the fundamental 2-form and the Riemannian connection in \tilde{M} (resp. M), and h is the second fundamental form of M.

Let $\tilde{\delta}$ and δ denote the coderivatives on \tilde{M} and M, respectively, and let $\mathcal{X}(M)^{\perp}$ denote the set of all vector fields orthogonal to M. Then from (2.3) and (2.4) we have

Lemma 2.1. If M is an invariant submanifold of a trans-Sasakian manifold \tilde{M} , then,

(2.5)
$$\tilde{\delta}\tilde{\Phi}(X) = -\frac{n}{r}\delta\Phi(X), \qquad X \in \mathcal{X}(M),$$

(2.6)
$$\tilde{\delta}\tilde{\eta} = -\frac{n}{r}\delta\eta.$$

Now, from (2.3) and lemma 2.1 we obtain

Proposition 2.1. Any invariant submanifold M with induced structure (φ, ξ, η, g) of a trans-Sasakian manifold \tilde{M} is also trans-Sasakian.

Proposition 2.2. Let M be an invariant submanifold of a trans-Sasakian manifold \tilde{M} . Then we have

(2.7)
$$h(X, \varphi Y) = \tilde{\varphi}(h(X, Y)),$$

(2.8)
$$h(\varphi X, \varphi Y) = -h(X, Y),$$

$$(2.9) h(X,\xi) = 0,$$

for any vector fields X and Y on M.

PROOF. Making use of the definition of trans-Sasakian manifold we obtain that $\tilde{\delta}\tilde{\Phi}(N) = 0$ for any $N \in \mathcal{X}(M)^{\perp}$, and moreover, from (2.2) we have

$$\tilde{g}((\tilde{\nabla}_X \tilde{\varphi})Y, N) = \tilde{g}(h(X, \varphi Y) - \tilde{\varphi}(h(X, Y), N)) = -\frac{1}{2n} \tilde{g}(X, Y) \tilde{\delta} \tilde{\Phi}(N) = 0,$$

for any $X, Y \in \mathcal{X}(M)$ and $N \in \mathcal{X}(M)^{\perp}$. Thus we obtain (2.7).

Also, from (2.7), we have $h(X, \varphi Y) = \tilde{\varphi}(h(X, Y)) = h(Y, \varphi X)$. Finally, using this relation we deduce (2.8) and (2.9).

From the identity (2.8) we conclude:

Theorem 2.1. Any invariant submanifold M of a trans-Sasakian manifold \tilde{M} is minimal.

Corollary 2.1. Any invariant submanifold M of an α -Sasakian, or of an α -Kenmotsu manifold \tilde{M} is minimal.

Let M be an invariant submanifold of a trans-Sasakian manifold \tilde{M} and R and \tilde{R} be the Riemannian curvature tensors of M and \tilde{M} , respectively. Then, using the equation of Gauss, [KN], and proposition 2.2, we have

(2.10)
$$R(X, \varphi X, X, \varphi X) = \tilde{R}(X, \varphi X, X, \varphi X) - 2\tilde{g}(h(X, X)h(X, X)),$$
 for any vector field X on M .

Let K (resp. \tilde{K}) be a φ (resp. $\tilde{\varphi}$) –sectional curvature of M (resp. \tilde{M}).

Then, from (2.10), we obtain

Proposition 2.3. Let M be an invariant submanifold of \tilde{M} . Then the $\varphi-$ and $\tilde{\varphi}-$ sectional curvatures satisfy the inequality $K \leq \tilde{K}$, with equality holding if and only if M is totally geodesic.

Next, we shall give some conditions for an invariant submanifold of a trans-Sasakian manifold to be totally geodesic.

Proposition 2.4. Let M be an invariant submanifold of a trans-Sasakian manifold \tilde{M} . Then M is totally geodesic if and only if $(\tilde{\nabla}_X \tilde{\nabla}_Y h)(\xi, \xi) = 0$ for any vector field X and Y on M.

PROOF. From (1.1) we obtain that

$$\varphi X = -\frac{2n}{\delta \Phi^2(\xi) + \delta^2 \eta} \left(\delta \Phi(\xi) \nabla_X \xi + \delta \eta \nabla_{\varphi X} \xi \right).$$

Thus, using the definition of the covariant derivative for the second fundamental form h of M, (see [KN], p.25), we have

$$\begin{split} h(X,Y) &= -h(\varphi X, \varphi Y) = -\frac{2n}{\delta \Phi^2(\xi) + \delta^2 \eta} [\delta \Phi(\xi)(\tilde{\nabla}_Y h)(\varphi X, \xi) \\ &+ \delta \eta(\tilde{\nabla}_{\varphi^Y} h)(\varphi X, \xi)]. \end{split}$$

Now, using this relation and definition of the covariant derivative of h we obtain

$$\begin{split} h(\varphi X, \varphi Y) &= \frac{1}{2} \bigg(\frac{2n}{\delta \Phi^2(\xi) + \delta^2 \eta} \bigg)^2 [\delta \Phi(\xi)^2 (\tilde{\nabla}_X \tilde{\nabla}_Y h)(\xi, \xi) + \delta \eta \delta \Phi(\xi) \\ &\quad ((\tilde{\nabla}_{\varphi X} \tilde{\nabla}_Y h)(\xi, \xi) + (\tilde{\nabla}_X \tilde{\nabla}_{\varphi Y} h)(\xi, \xi)) + \delta \eta^2 (\tilde{\nabla}_{\varphi X} \tilde{\nabla}_{\varphi Y} h)(\xi, \xi)] \end{split}$$

which proves our assertion.

We now put

$$\tilde{R}(X,Y)\alpha = [\tilde{\nabla}_X, \tilde{\nabla}_Y]\alpha - \tilde{\nabla}_{[X,Y]}\alpha,$$

for a normal a bundle valued symmetric 2-form α . Then we have

(2.11)
$$(\tilde{R}(X,Y)h)(V,W) = R^{\perp}(X,Y)(h(V,W)) - h((R(X,Y)V,W) - h(V,R(X,Y)W),$$

for any vector fields X, Y, V and W on M, where $R^{\perp}(X, Y) = [D_X, D_Y] - D_{[X,Y]}$, and D is the linear connection in the normal bundle $T(M)^{\perp}$.

Proposition 2.5. Let M be an invariant submanifold of a trans-Sasakian manifold \tilde{M} . Then M is totally geodesic if and only if $\tilde{R}(X,\xi)h=0$, for any vector field X on M.

PROOF. If $\tilde{R}(X,\xi)h=0$, from (2.11), we have

$$R^{\perp}(X,\xi)(h(V,W)) = h(R(X,\xi)V,W) + h(V,R(X,\xi)W)$$

Then, if we put $V = \xi$, from (2.9),

$$(2.12) h(R(X,\xi)\xi,W) = 0.$$

On the other hand, since M is trans-Sasakian, using (1.2),

$$R(X,\xi,\xi,W) = \left(\left(\frac{\delta\Phi(\xi)}{2n}\right)^2 - \left(\frac{\delta\eta}{2n}\right)^2\right) \left\{g(X - \eta(X)\xi, W - \eta(W)\xi)\right\}$$
$$-\frac{1}{2n}\xi(\delta\eta)g(X - \eta(X)\xi, W - \eta(W)\xi) - \frac{1}{2n}\xi(\delta\Phi(\xi))g(X,\varphi W).$$

Then, we have

(2.13)
$$R(X,\xi)\xi = \left(\left(\frac{\delta\Phi(\xi)}{2n}\right)^2 - \left(\frac{\delta\eta}{2n}\right)^2 - \frac{1}{2n}\xi(\delta\eta)\right)$$
$$(X - \eta(X)\xi) + \frac{1}{2n}\xi(\delta\Phi(\xi))\varphi X.$$

From (2.12) and (2.13), we obtain

$$\left(\left(\frac{\delta\Phi(\xi)}{2n}\right)^2 - \left(\frac{\delta\eta}{2n}\right)^2 - \frac{1}{2n}\xi(\delta\eta)\right)h(X,W) + \frac{1}{2n}\xi(\delta\Phi(\xi))h(\varphi X,W) = 0,$$

and, replacing X by φX , we deduce that h(X,Y) = 0, which shows that M is totally geodesic.

Finally, from propositions 2.4 and 2.5 we obtain

Theorem 2.2. Let M be an invariant submanifold of a trans-Sasakian manifold \tilde{M} . Then, the following conditions are equivalent:

- (i) M is totally geodesic;
- (ii) $(\tilde{\nabla}_X \tilde{\nabla}_Y h)(\xi, \xi) = 0;$
- (iii) $\tilde{R}(X,\xi)h = 0;$
- (iv) $\tilde{R}(X,Y)h = 0$,

where X and Y are arbitrary vector fields on M.

References

- [B] D. E. BLAIR, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509 (1976), Springer.
- [ChG] D. CHINEA and C. GONZALEZ, Relaciones de curvatura en las variedades trans-Sasakianas, XII Jornadas Luso-Espanholas de Matemática, Braga, 1987.
 - [JV] D. JANSSENS and L. VANHECKE, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), 1-27.
 - [Ke] K. KENMOTSU, A class of almost contact Riemannian manifolds, Tôhoku Math. J. 24 (1972), 93-103.
- [KN] S. KOBAYASHI and K. NOMIZU, Foundations of differential geometry, vol. II., John Wiley and Sons, New York, 1969.
 - [K] M. Kon, Invariant submanifolds of normal contact metric manifolds, Kodai Math. Sem. Rep. 25 (1973), 330-336.
 - [O] J. Oubiña, New classes of almost contact metric structures, Publicationes Mathematicae 32 (1985), 187-193, Debrecen.
 - [T] S. TANNO, Isometric inmersion of Sasakian manifolds in spheres, Kodai Math. Sem. Rep. 21 (1969), 448-458.
- [YI] K. YANO and S. ISHIHARA, Invariant submanifolds of an almost contact manifold, Kodai Math. Sem. Rep. 21 (1969), 350-364.

DEPARTAMENTO DE MATEMÁTICA FUNDAMENTAL FACULTAD DE MATEMÁTICAS UNIVERSIDAD DE LA LAGUNA ISLAS CANARIAS — ESPAÑA

(Received January 3, 1988)