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Invariant submanifolds of a trans—Sasakian manifold

By D. CHINEA and P. S. PERESTELO (Islas Canarias)

S. TANNO [T] and K. YANO and S. ISHIHARA [YI] have proved that
any invariant submanifold of a Sasakian manifold is minimal. The authors
[YI] have obtained conditions for an invariant submanifold of a normal
contact manifold to be totally geodesic in the case of codimension 2, and
M. Kon [K] have studied the case of codimension > 2. He also studied
invariant submanifolds satisfying the condition R(X,€&)h = 0.

The purpose of this paper is to show that similar results hold true
for a more general class of manifolds, namely the class of trans-Sasakian
manifolds, [O]. In §1 we recall definitions and some properties of almost
contact metric manifolds. In § we prove that any invariant submanifold of
a trans-Sasakian manifold is also trans-Sasakian and minimal. We obtain

conditions for an invariant submanifold of a trans-Sasakian manifold to be
totally geodesic. Finally, we study invariant submanifolds satisfying the

condition R(X,€)h = 0 in a trans-Sasakian manifold.

1. Preliminaries

A (2n + 1)-dimensional real differentiable manifold M of class C*°
is said to have a (y,&,n)-sructure, or an almost contact structure, if it
admits a field ¢ of endomorphisms of the tangent spaces, a vector field &,
and a 1-form 7 satisfying

n(§) =1,

992 =_I+n®fs

where I denotes the identity transformation, [B].
Denote by X' (M) the Lie algebra of C* vector fields on M. A (para-

compact) manifold M with a (p, €, n)-structure admits a Riemannian met-

ric g such that
9(pX,9Y) = g(X,Y) — n(X)n(Y),
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where X,Y € X(M). Then M is said to have a (p, £, 7, g) -structure or an
almost contact metric structure and g is called a compatible metric. The
2-form ® on M defined by

®(X,Y) = g(X,¢Y)

is called the fundamental 2-form of the almost contact metric structure. If
V is the Riemannian connection of g, then

(Vxn)Y = g(Y,Vx§),

(Vx®)Y,Z)=g(Y,(Vxyp)Z).

An almost contact metric structure (¢, £,7, ¢) is said to be
normal (|N]) if (Vx@)Y — (Veoxe)eY +n(Y)Vex§ = 0;
o -Sasakian (|aS|) if (Vx@)Y = a[g(X,Y)E - n(Y)X], o€ R;
a -Kenmotsu (|aS]) if (Vxe)Y = a[g(¢X,Y)é —n(Y)pX], a€ R;
Trans-Sasakian (|tS]) if (Vx®)(Y,2Z) = 5;((¢(X,Y)n(Z) - g(X, Z)n(Y))

69(£) + (9(X, Y )n(Z) — (X, o(Z)n(Y))én];

where é denotes the coderivative on M.

Remark. If (p,€,n,¢9) is trans-Sasakian and é6®(£) = én = 0 then
(¢,€,7m,9) is cosymplectic, [B].

The structure (¢, €,7n,¢) is said to be Kenmotsu if it is 1-Kenmotsu,
and Sasakian if it is 1-Sasakian. The relations among these structures are
represented in the following diagram ( where — denotes strict inclusion),

s
IlaaKlI >|t.5'[ — |N].

If M is a trans-Sasakian manifold, then it is a-Sasakian if a = %

and én = 0, and it is a -Kenmotsu if a = % and 6®(£) = 0. It follows
that if M is trans-Sasakian, then

(11) V€ =~ [(X —n(X)E)6n + pX62(E)].

Moreover, the Riemann curvature tensor R satisfies the following property,
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[ChG]:

(1.2)
R(X,Y,Z,W) =R(X,Y,¢Z,oW)

k) ((625))2 & (%)2) {-9(X,2)g(Y, W) + g(X, W)

9(Y,Z) + 9(X,0Z)g(Y,oW) — g(X,oW)g(Y,9Z)}
— 5= (X(En) (oY, 2)n(W) ~ o(¥, W)n(2)} -

~Y(En){a(X, 2)1(W) - (X, W)n(2)}] + 51X (53(6))
(oY, 0W)1(2) - 9(Y, 9Z)n(W)} - Y (58(€))
{9(X,oW)n(Z) — 9(X,Z)n(W)}].

For an extensive study of these structures we refer to [B], [ChG], [JV],
[O].

2. Invariant submanifolds of a trans—Sasakian
manifold

A (2r +1)-dimensional submanifold M of a (2n +1)-dimensional al-
most contact metric manifold M with structure ($,&,7,g) is said to be
invariant if X is tangent to M for any tangent vector field X to M,
and ¢ is always tangent to M. It is well known that any invariant sub-
manifold M of an almost contact metric manifold M is also an almost
contact metric manifold with the induced structure (p,&,7,¢9), where
pX = ¢X, X € A(M), €,n and g are the restrictions of £,7 and § to
M (see [YI]). Moreover, for any vector fields X,Y, Z on M, we have

(2.1) d(X,Y) = (X,Y),

(2.2) (Vx@)Y =(Vxe)Y + h(X,pY) - ¢(h(X,Y)),
(2.3) (Vx®)(Y,2) = (Vx®)(Y,2),

(2.4) (VxD)Y = (Vxn)Y,

where ® and V (resp. ® and V ) denote the fundamental 2-form and the

Riemannian connection in M (resp. M), and h is the second fundamental
form of M. o

Let 4 and § denote the coderivatives on M and M, respectively, and
let X(M)* denote the set of all vector fields orthogonal to M. Then from
(2.3) and (2.4) we have
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Lemma 2.1. If M is an invariant submanifold of a trans-Sasakian
manifold M, then,

(2.5) §8(X) = 2-5@():), X € X(M),
(2.6) = 267).

Now, from (2.3) and lemma 2.1 we obtain

Proposition 2.1. Any invariant submanifold M with induced struc-
ture (p,&,n,9) of a trans-Sasakian manifold M is also trans-Sasakian.

Proposition 2.2. Let M be an invariant submanifold of a
trans—Sasakian manifold M. Then we have

(2.7) h(X,¢Y) = ¢(h(X,Y)),
(2.8) h(pX,9Y) = —h(X,Y),
(2.9) h(X,€) =0,

for any vector fields X and Y on M.

PROOF. Making use of the definition of trans-Sasakian manifold we
obtain that §&(N) = 0 for any N € X(M)1, and moreover, from (2.2) we

have
J(TxP)Y, N) = (X, pY) - $(H(X,Y), N) = = 5-3(X, Y )58(N) =0,

for any X,Y € X(M) and N € X(M)*. Thus we obtain (2.7).

Also, from (2.7), we have h(X,9Y) = @¢(h(X,Y)) = h(Y,pX). Fi-
nally, using this relation we deduce (2.8) and (2.9).

From the identity (2.8) we conclude:

Theorem 2.1. Any invariant submanifold M of a trans-Sasakian
manifold M is minimal.

Corollary 2.1. Any invariant submanifold M of an a-Sasakian, or of
an a-Kenmotsu manifold M is minimal.

Let M be an invariant submanifold of a trans-Sasakian manifold M
and R and R be the Riemannian curvature tensors of M and M, respec-

tively. Then, using the equation of Gauss, [KN], and proposition 2.2, we
have

(2.10) R(X,¢X,X,pX)=R(X,pX,X,pX) - 2§(h(X,X)h(X, X)),

for any vector field X on M.

Let K (resp. K) be a ¢ (resp. ) -sectional curvature of M
(resp. M).
Then, from (2.10), we obtain
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Proposition 2.8. Let M be an invariant submanifold of ll:l . Then
the ¢o— and @—sectional curvatures satisfy the inequality K < K , with
equality holding if and only if M is totally geodesic.

Next, we shall give some conditions for an invariant submanifold of a
trans-Sasakian manifold to be totally geodesic.

Proposition 2.4. Le¢ M be an invariant submanifold of a
trans-Sasakian manifold M. Then M is totally geodesic if and only if
(VxVyh)(£,€&) =0 for any vector field X andY on M.

PROOF. From (1.1) we obtain that

2n

#X =5 6) + o7

(6@(£)VxE + eV, x§).

Thus, using the definition of the covariant derivative for the second fun-

damental form h of M, (see [KN], p.25), we have

2n =
~RTO T 620[5@(5)(Vyh)(wX ,€)

+ 6n(Vy h)(9X, £)].

Now, using this relation and definition of the covariant derivative of h we
obtain

2
me X o) = 3 (ggrrarmn ) B TxIrhNE +6n58(6)

(VexVyh)(&,€) + (VxVey h)(E,€)) + 6n°(Vex Vey h)(E, €))

which proves our assertion.

We now put
R(X,Y)a = [Vx,Vyla - V(xy)a,
for a normal a bundle valued symmetric 2-form a. Then we have
(2.11) (R(X,Y)h)(V,W) = RY(X,Y)(h(V,W))—

for any vector fields X,Y,V and W on M, where RY(X,Y) =
[Dx,Dy] = Dix,y], and D is the linear connection in the normal bun-

dle T(M)*.
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Proposition 2.5. Let M be an invariant submanifold of a
trans-Sasakian manifold M. Then M is totally geodesic if and only if
R(X,€)h = 0, for any vector field X on M.

Proor. If R(X,&)h =0, from (2.11), we have
RH(X, §)(h(V,W)) = h(R(X,€)V, W) + h(V, R(X, )W)
Then, if we put V = £, from (2.9),
(2.12) h(R(X, )¢, W) = 0.
On the other hand, since M is trans-Sasakian, using (1.2),

R(X,6,6,W) = ((55%) - (2—2)) {9(X —n(X)&, W ~n(W)6))

— 5 E(En)g(X — n(X)E, W — n(W)E) — 5-E(EH(E)g(X, W),

Then, we have

(2.13) RX. 5t = ((%)2 = (5—2)2 =~ %6(50))

(X = n(X)E) + 5-E(62(E)pX.
From (2.12) and (2.13), we obtain

§8(6)\* [6n\* 1 1 B
((-—2-—-) g (%) = %6(57:)) WX, W) + 5-E(6B(E)h(p X, W) =0,

and, replacing X by pX, we deduce that h(X,Y) = 0, which shows that
M is totally geodesic.

Finally, from propositions 2.4 and 2.5 we obtain

Theorem 2.2. Let M be an invariant submanifold of a trans-Sasakian
manifold M. Then, the following conditions are equivalent:

(i) M is totally geodesic;

(i) (IxVyh)(E, ) =0;

(i) R(X,&)h = 0;

(iv)] R(X,Y)h=0,

where X and Y are arbitrary vector fields on M.
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