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Partially ordered sets with self-complementary
comparability graphs

By GERHARD BEHRENDT (Tiibingen)

Abstract. A 2-poset (X, {P,Q}) is a pair consisting of a set X and a set {P,Q}
of two partial order relations on X such that any two distinct elements of X are com-
parable in exactly one of these relations. We consider 2-posets (X, {P,Q}) with the
property that there exists an order-isomorphism f : (X, P) — (X, Q). Thus the poset
(X, P) has the property that its comparability graph is self-complementary. We de-
rive results about the structure of such 2-posets, and we determine properties of the
order-isomorphism f.

1. Introduction.

A poset (X, P) is a pair consisting of a set X and a partial order
relation P on X. In [1], the author introduced the concept of a multiposet.
A multiposet (X, p) is a pair consisting of a set X and a set p of partial
order relations on X such that for every z,y € X with z # y there exists
one, and only one, relation P € p such that Py or yPr. A multiposet
(X,p) with |p| = n is also called an n-poset. An isomorphism f of two
posets (X, P) and (Y, Q) is a bijection f : X — Y such that for z,2' € X
we have z Pz' if and only if (z f)Q(z'f).

Self-complementary graphs were introduced by GERHARD RINGEL [3]
and HORST SAcCHS [4]. In this paper, we shall consider self-complementary
comparability graphs. Note that the comparability graph of a poset (X, P)
1s self-complementary if and only if there exists a non-trivial partial or-
der Q@ on X such that (X,{P,Q}) is a 2-poset and an isomorphism
f : (X,P) — (X,Q). Note that every such poset has to have dimen-
sion two, as a poset (X, P) has dimension 2 if and only if there exists
a non-trivial partial order @ such that (X, {P,Q}) is a 2-poset (see [2],
Theorem 3.61).
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2. Simple properties

We first ask if there are some conditions for the existence of 2-posets
with isomorphic partial orders.

Proposition 2.1. Let n > 1 be a natural number. Then there exists a
2-poset (X, {P,Q}) with an isomorphism f : (X,P) = (X,Q) and | X|=n
if and only if n = 0 (mod 4) orn =1 (mod 4

PROOF. If there exists such a 2-poset then n = 0 (mod 4)
orn =1 (mod4) by (A) in [4]. Conversely, let n = 0(mod4). Let m = n/4,
and X = {1,2,...,m} x {1,2,3,4}. We define P and @ as follows. Let
(z,y),(z',y') € X. We have (z,y)P(z',y') if and only if one of the follow-
ing holds.
(i) =z=z'andy=y' ,
(i) (y)€{(1,2),1,3),43)} ,
(ii1) y=y'=la.nd:r:5:c’ :
(iv) y=y=3andz>=2
Similarly, we have (z, y)Q(:r y') if and only if one of the following holds.
(1) c=z'andy=y¢y
() () € (1), (2,3),(2.4)) |
(i) y=y'=2andz <z ,
(iv)] yg=y=4andz>2' .
We define f by (z,y)f = (z,y + 1) for y < 4 and (z, 4)f (z,1). Then
it is easy to see that (X,{P,Q}) is a 2-poset and f is an isomorphism
(X,P) = (X, Q).

If n =1 (mod4) we take X as above with an additional element co.
We define P, Q, f as above with the additional relations coPoo, coQoo,
(z,1)Poo, ooP(z,3) , (2,2)Q00 , 00Q(x,4) for all z € {1,2,...,m}, and
ocof = oo. Again, with this definition the proposition follows. O

Proposition 2.2. Let (X,{P,Q}) be a 2-poset with an isomorphism
f:(X,P) > (X,Q).
(a) (X, P) is connected (and hence also (X,Q)).
(b)  There exists at most one ¢ € X withzf = .

Both result hold for self-complementary graphs in general [3], [4]. The
proof of the following lemma is easy and shall be left to the reader.

Lemma 2.3. Let (X,{P,Q}) be a 2-poset with an isomorphism
f + (X,P) = (X,Q) We define A = {2 € X | 2P(zf)},
B={ze X |2Q(=zf)},C ={z€ X | (zf)Pz), aad D = {2 € X |
(zf)Qz}. Then Af =B, Cf=D, Bf CAUC, Df C AUC. Further-
more either {A, B,C, D} is a partition of X or there exists a fixed point z
of f such that {{z}, A\ {z}, B\ {z}, C\ {z}, D\ {z}} is a partition
of X.
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3. Isomorphisms whose square is an automorphism

If (X,{P,Q}) is a 2-poset with an isomorphism f : (X, P) — (X, Q)
then it is clear that f? is an automorphism of the comparability graph of
(X, P), but in general it is not an automorphism of (X, P). We shall now

consider the case when it is.

Lemma 3.1. Let (X,{P,Q}) be a 2-poset with isomorphism
f:(X,P)— (X,Q). Then the following are equivalent.
(1) f is an isomorphism (X,Q) — (X, P).
(2) f? is an automorphism of (X, P).
(3) f? is an automorphism of (X, Q).

We leave the proof of this to the reader. We now can describe the
orbits of f.

Theorem 3.2. Let (X,{P,Q}) be a 2-poset and f an isomorphism
(X,P) - (X,Q) and (X,Q) — (X, P). If Z is an orbit of f on X with
|Z| > 1 then Z is infinite and there exists ¢ € Z such that exactly one of
the following holds for n,m € Z withn < m.

(1) If n=0 (mod2) then (zf")P(zf™), otherwise (zf")Q(zf™).
(2) If m=1(mod2) then (zf")P(zf™), otherwise (zf")Q(zf™).
(3) If n=0 (mod 2) then (zf™)P(zf"), otherwise (zf™)Q(zf").
(4) If m=1 (mod2) then (zf™)P(zf"), otherwise (zf™)Q(zf").

PROOF. There exists an element z € Z such that = and z f are P-
comparable. First suppose that zP(zf). Then we have (z f)Q(zf?), and
hence we can have neither (z f2)Pz nor (zf?)Qz. Assume that zP(z f?).
Using the fact that f? is an isomorphism of (X, P), we get zP(z f™) for all
n > 1, and by the same arguments it follows that we have (1). Similarly,
if zQ(z f*) then we get (2). If (z f)Pr then using the same arguments we
get (3) if (zf?)Pz and (4) if (zf?)Qz. We finally show that Z is infinite.
Note that as |Z| > 1, we have z f # z. But as z and z f are P-comparable,
we have zf and zf? being Q—comparable, hence z f* # z. Thus z and
zf? are either P-comparable or Q-comparable, and as f? € Aut(X,P)
and f? € Aut(X,Q), we get that zf2" # zf?>™ whenever, n,m € Z with
n # m, and hence Z is infinite. O

Thus we have seen that there are only 4 different possibilities for the
orbits of f on X. We remark that with methods similar to those used
in Theorem 3.2 one can also find restrictions for the relations between
elements of two distinct orbits. Finally note that if A, B,C, D are defined
as in Lemma 2.3 then we have Bf = A and Df = C.
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4. Finite 2—posets

The general theory of self-complementary graphs gives some informa-
tion about the action of f on X, for example, [4], (B) shows that the
lenght of its orbits is 1 or a multiple of 4. Using the sets A, B, C, D defined
in Lemma 2.3, we can give a more detailed description of the action of f.

Lemma 4.1. Let (X,{P,Q}) be a 2-poset with isomorphism
f:(X,P) - (X,Q). If zP(zf), zP(zf?) and (zf*)P(zf°) then (zf?)
P(zf*) fori 2 2.

PROOF. We prove this by induction on :. It is clear for 1 = 2 and
¢ = 3. Suppose that (zf2)P(zf*") and (z f2)P(z f2"*!). We have to show
that (zf2)P(zf2"*2) and (zf2)P(zf27+3).

By transitivity, we have zP(z f27) and zP(z f2"*+'). Therefore z f? is
P-related to both zf2™*2 and z f2"*3. If (zf2"*2)P(z f?) then by transi-
tivity, we get (z f2"+2?)P(z f*), which is a contradiction to (z f2)P(z f2™+1),
hence (z f2)P(z f27+2). It follows that (z f2)Q(z f2"+3).

If (zf**3)P(zf?) then we get (zf?"*+*)P(zf*) by transitivity, which is
contradiction again. Therefore (zf2)P(zf?"+3), which concludes the in-
duction and the proof. 0O

Lemma 4.2. Let (X,{P,Q}) be a 2-poset with isomorphism
f:(X,P) = (X,Q). If zP(zf), (zf?)P(zf*) and zQ(z f?) then for all
i < 0 we have (zf*)P(zf).

PROOF. First note that from zQ(z f?) it follows that (zf~')P(zf).
The elements zf and zf* must be P-related. If (zf*)P(zf) then by
transitivity, we have (zf2)P(z f) which is a contradiction to (zf)Q(zf?).
Therefore (z f) P(z f*). We prove the lemma by induction on :. It is clear for
¢ = 0 and ¢ = —1. Suppose we have (zf~2")P(zf) and (zf~2"~1)P(z f) for
some r > 0. We have to show that (zf~2"~2)P(zf) and (zf~2""3)P(zf).

By transitivity, we have (zf~2")P(zf?) and (zf~2""1)P(z f?), thus
both zf~2"=2 and zf~2"~3 must be P-related to zf. If (zf)P(zf~2""2)
then, by transitivity, we get (zf~2")P(zf~2"=2), which is a contradiction,
as zQ(z f?), and thus zf~2" and zf~2"~2 must be Q-related. Therefore
(zf~27=2)P(zf). If (zf)P(zf~2""3) then (zf~2"~2)P(zf~2"3%) by tran-
sitivity, which also gives a contradiction, as z f~2"~2 and z f~?"~2 must be
Q-related, because z f and z f? are Q-related. Therefore (z f~2"~3)P(zf),
which completes the proof. m

Theorem 4.3. Let (X, {P,Q}) be a finite 2-poset with isomorphism
f:(X,P) = (X,Q). Let A,B,C,D be defined as in Lemma 2.3. Then
Af=8:Bf=C; =Dy Df=4,
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PrOOF. Using Lemma 2.3 and counting, it is clear that it is sufficient
to prove that Bf C C and Df C A. Let y € B. Then there exists z € A
with zf = y. As X is finite, there exists n > 0 minimal with respect to
zf" = z. Note that n must be even if we suppose that z is not fixed
under f. Now we have zP(zf), and the elements z f* and z f**! are P-
comparable if and only if n is even. Let us assume that yf = zf? € A4,
which means that (zf?)P(zf?). Note that we must have either zP(z f?)
or zQ(zf?), as zP(zf) and (zf)Q(zf?). If zP(zf?), from Lemma 4.1
we get (zf?)P(zf™), thus (zf?)Pz, and hence z = zf2, thus z is fixed
under f2, and hence also under f. If zQ(z f?), from Lemma 4.2 we get
(zf~"*2)P(zf), and thus (zf2?)P(zf), from which it follows that z is
fixed under f, because also (zf)Q(zf?). Therefore, if yf € A then y is

fixed under f, and we also have yf € C. We thus have shown that Bf C C.
Dually, we have Df C A. 0

Note that Theorem 4.3 is a result which is particular to self-comple-
mentary comparability graphs. It is easy to construct examples to show
that a similar statement does not hold for self-complementary directed
graphs in general.

5. Extensions of 2—posets

We have already seen that if (X, {P,Q}) is a 2-poset with an isomor-
phism f: (X,P) — (X, Q) then f has at most one fixed point. Also, if z
is a fixed point of f then (X' \ {2z}, {P',Q'}) is a 2-poset (where P', Q' are
the induced orders), and the restriction of f to X \ {z} gives an isomor-
phism (X \ {2}, P') = (X \ {2}, Q"). In self-complementary graphs, there
are, in general, many ways in which this process can be reversed. We shall
see how this works for 2-posets. In the following, we shall take A, B,C, D
to be defined as in Lemma 2.3, and A’ = A if f has no fixed point and
A' = A\ {z} if f has the fixed point z, similarly B',C',D'.

Lemma 5.1. Let (X,{P,Q}) be a finite 2-poset with isomorphism
f:(X,P)—(X,Q).Letac A", be B', ce C', d € D'. Then we can not
have any of the following: bPa, cQb, cPd, dQa, cPa, cQa, bPd, dQb.
Furthermore, if f has a fixed point z, we can not have any of zPa, zQa,

cPz, cQz, bPz, zQb, zPd, dQz.

PRrOOF. If bPa then (bf)Q(af). As we also have aP(af) and bQ(bf),
we get bP(af) and bQ(af), which gives a contradiction. In the other cases,
contradictions can be obtained in similar ways. O

Lemma 5.2. Let (X,{P,Q}) be a finite 2-poset with isomorphism
f:(X,P)— (X,Q) which has a fixed point z. Let x € X \ {z}. Then the
following are equivalent.

(1) =z and zf* are P-comparable.
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(2) z and z are P-comparable.
(3) =z and zf* are P-comparable.

PROOF. Let z € A'. By Theorem 4.3, we then have z f2 € C". Suppose
(1) holds. By Lemma 5.1 we get zP(zf?), and we also must have z Pz
or zQz. If zQz then zf? and z are Q-comparable, and as zf? € C' by
Lemma 5.1 we have 2Q(z f?). Hence zQ(z f?), which is a contradiction.
Therefore (2) holds. The fact that (2) implies (3) is trivial. Next suppose
(3) holds. Using Lemma 5.1, we get zP(zf?), hence z and z are P-
comparable, therefore Pz, and thus zP(zf?), giving (1). For z € C'
the proof is dual. Note that then for z € A’ or z € C' we also have the
corresponding equivalences with Q—comparability. For ¢ € B' and z € D'
the results then follow by application of f and using the results for A’
and C'. O

Lemma 5.3. Let (X,{P,Q}) be a finite 2-poset with isomorphism
f:(X,P) = (X,Q). Let z,y be in the same set of A',B',C' and D'.
If z,z f* are P-comparable and y,yf? are P-comparable then z,yf? are
P-comparable. If z,z f? are Q-comparable and y,yf? are Q-comparable
then x,yf* are Q—comparable.

PROOF. Let r,y € A', and suppose that z,zf? are P-comparable
and y,yf? are P-comparable. By Lemma 5.1, we have zP(zf?) and
yP(yf?). It then follows that zf* and zf* are P-comparable, and as
zf? € C' and zf* € A' by Theorem 4.3, we get with Lemma 5.1 that
(zf*)P(z f?*). Similarly, we have (yf*)P(yf?). Now by Lemma 5.1 we get
zP(yf?) or zQ(yf?). Suppose zQ(yf?). Then z f? and y f* are Q- compa-
rable, hence we must have (yf*)Q(z f?). But now consider z f? and yf2. If
(zf?)P(yf?) then zP(yf?); if (zf*)Q(yf?) then (yf*)Q(yf?); if
(yf?)P(zf?) then (yf*)P(z f?), and if (yf?)Q(z f*) then 2Q(z f?). Hence
in any case we get a contradiction. Therefore we must have z P(yf?). The
other cases follow similarly. 0O

Lemma 5.4. Let (X,{P,Q}) be a finite 2-poset with isomorphism
f:(X,P)— (X,Q). Then we have the following.
(a) Ifa€ A', b€ B' such that aP(af?) and (bf?)Pb then aPb.
(b) Ifce C',d € D' such that (cf*)Pc and dP(df?) then dPc.
(c) Ifa€ A',d € D' such that aQ(af?) and (df?)Qd then aQd.
(d) Ifb€ B', c € C' such that bQ(bf?) and (cf?)Qc then bQc.

PRrROOF. We first prove (a). Note that we have aP(af), (af)Q(af?),
(af?)P(af?), bQ(bf), (bf?)P(bf). By Lemma 5.1, we can not have bPa.
Next suppose that aQb. We can have neither bQ(af?) (as then aQ(af?) ),
nor (af?)Pb (as then aPb ), nor bP(af?), as then (bf?)P(af?), but af?
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and bf? must be Q-comparable. Thus we have (af?)Qb in contradiction
to Lemma 5.1 (as af? € C, b € B). Therefore we can not have aQb.
Then let us suppose that bQa. We can have neither (af?)Pb (as then
aPb), nor (af?)Qb(asaf? € C, b€ B),nor bP(af?) (as then (bf%)P(af?),
but af? and bf? must be Q-comparable). Hence we have bQ(af?), and
thus (af?)P(bf), we also get (bf?)Q(af?) (if we had (af?)Q(bf?) then
bQ(bf?) ), and hence (bf)P(af). Now consider bf and af?. We can have
neither (bf)P(af?) (as then (bf?)P(af?) ), nor (af?)Q(bf) (as then
(bf2)Q(bf) ), mor (af?)P(bf) (as then (af*)Q(bf?), and hence
(af?*)Q(af?) ). Therefore we must have (bf)Q(af?). As (bf)P(af), we
also get (bf%)P(af), hence a and bf must be Q-comparable. Thus we have
aQ(bf), but then aQ(af?), which gives the final contradiction. Therefore

we must have aPb.
The assertion (b) follows from (a) by duality, and furthermore (c¢) and

(d) follow from (a) and (b) by application of f. 0

Theorem 5.5. Let (X, {P,Q}) be a finite 2-poset with isomorphism
fi:(X,P)— (X,Q). If f has a fixed point z then (X \ {z}, {P',Q'}) is a
2-poset (where P' and Q' are the induced orders), and the restriction of
f to X\ {z} is an isomorphism (X \ {2}, P') = (X \ {2}, Q'). Conversely,
if f does not have a fixed point, and z & X then there exist unique partial
orders Pand Q on X = X U {z} such that P and Q are induced by P and
Q respectively, such that (X,{P,Q}) is a 2-poset and f X — X defined
by 2f =z and 2f =z f for z € X is an isomorphism (X, P) = (X, Q).

ProoF. If f has a fixed point then the assertion is obvious. Let us
assume that f has no fixed point. From Lemma 5.1 and Lemma 5.2 it

follows that there is at most one way of defining partial orders P, Q on X
with the required conditions ( for example, if z € A then Pz if z and z f?
are P-comparable and zQz if z and = f? are Q-comparable). On the other
hand, if we define relations P, Q in this way, then from Lemmas 5.1 — 5.4
it follows that the relations are partial orders (one has to show transitivity
via z ), and that f is an isomorphism. O

We can also construct extensions by more than one element.

Theorem 5.8. Let (X, {P,Q}) be a finite 2-poset with isomorphism
f:(X,P) = (X,Q). Let {a,b,c,d} be a 4-element set disjoint from X.
Then on X = X U {a,b,c,d} there exist partial orders P, Q such that P
and Q are induced by P and Q respectively, such that (X {P,Q}) is a 2-
poset, and there exists an isomorphism f : (X,P) — (X,Q) withzf =z f
for all z € X.

PROOF. First assume that f has no fixed point. Define all rela-
tions between elements z € X and a,b,c,d the same as the relations in
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the construction of the fixed point in Theorem 5.5. Furthermore, define
aPb, aPc, aQd, bQc, de dPc. Define f by zf = zf for all z € X and
af_ bf = ¢, cf = d and df = a. Thus using Lemmas 5.1 - 5.4 as in
Theorem 5.5 we get the result. If f has a fixed point, then we can remove
it, add the points a, b, ¢, d as above, and then add the fixed point again by
Theorem 5.5. It is clear that the relations between the fixed point and the
other elements of X are the same as before, which concludes the proof of
the theorem. O

6. Extremal elements

We finally want to identify some elements of A, B,C and D. First
note that for any 2-poset (X, {P,Q}) we can define linear orders T and S
on X by zTy if z Py or zQy, and zSy if z Py or yQz. It is now natural to
look at the maximal and minimal elements of these orders (which exist, if
X is finite). If (X, P) is a poset and ¢ € X we say that  is P-minimal
(P-maximal) if z is a minimal (maximal) element of (X, P). Note that by
what we said above in a finite 2-poset (X, {P,Q}) there exists a unique
element which is P-minimal and Q-minimal, and similarly for the other
combinations.

Proposition 6.1. Let (X,{P,Q}) be a finite 2-poset with isomor-
phism f : (X, P) — (X,Q). Let A, B,C, D be defined as in Lemma 2.3, let
a be P-minimal and @QQ-minimal, let b be P-maximal and Q-minimal, let ¢
be P-maximal and Q-maximal, and let d be P-minimal and QQ-maximal.
Thena€ A,be B,ce C,de D.

PROOF. By minimality of a, we must have aP(af) or aQ(af). If
aQ(af) then (af~!)Pa in contradiction to P-minimility of a, hence
aP(af), and a € A. Similarly, we must have (bf)Pb or bQ(bf). But if
(bf)Pb then b € C, and bf~! € B, hence (bf ~!)Qb in contradiction to
@-minimality of b. Therefore bQ(bf) and b € B. By duality, we get c € C
and d € D. O

Proposition 8.2. Let X, P,Q, f,A,B,C,D,a,b,c,d be as in Proposi-

tion 6.1. Suppose |X| > 5, and let a’ be P'-minimal and Q'-minimal in
= X'\ {a,b,c,d}, where P' and Q' are induced by P and Q respectively,
and let b',c',d' be defined similarly. Thena' € A, ' € B, ¢ € C, d' € D.

PROOF. First consider the different possibilities for a’. First suppose
a' € C. Choose z € A\ {a}. By Lemma 5.1, we must have zPa’ or zQd',
which is a contradiction to minimality of a’. Next suppose a’ € D. Then
(a' f)Qa', thus by minimality of a’, we have a'f = a. We also have aQd,
and, by minimality of a’, we must have a’ P(df). Now we can not have dPa’,
as then (df)Qa, and hence df = a, which is a contradiction. Thus we get
a'Qd, and we must have aP(df). But from a’' P(df) it follows that aQ(df?),
but aP(df) and (df )P(df?), hence aP(df?), which is a contradiction. Next
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we suppose that @’ € B. As then (a’'f~!)Pa’, we must have a' f~! = a, and
by minimality of a’, we get a’Q(bf’). As (bf~!)Pb we can not have bQa’ (as
then would follow bQ(bf~1)), therefore we get a' Pb, and hence aQ(bf™?).
From a'Q(bf~!) it follows that aP(bf~2). But as (bf~1)Q(bf~2), we also
have aQ(bf~2), which is a contradiction, thus we are only left with a’ € A.
Next consider the possibilities for b’. First suppose ' € D. We have
(b'f)Qb' and b'P(¥' f~!). By P-maximality of b', we have ¢ = b'f~!, and
Q-minimality of b', we get b'f = a. We also have aQb and dPec. If
dPb' then (df)Q(V f), hence (df )QV', giving a contradiction. We thus have
b'Qd. But then (b'f~1)P(df ') and b' P(df ~!), giving also a contradiction.
Next suppose b' € A. Then b'P(b'f), and hence b'f = b. We then must
have b'Q(af), and as aP(af), we get aPb, hence (af)Qb. But then b'Qb,
which is a contradiction. Now suppose b’ € C. We then have (b'f~1)QV’,
and hence o' f~! = b. We then must have (cf~1)P¥. Now if b'Qc then
bP(cf~1'), and hence bPV', giving a contradiction, therefore b’ Pc. But then
also (¢f~!)Pec, which is a contradiction as we must have (¢f~!)Qec. There-

fore we are left with ' € B. Finally by duality, we get ¢/ € C and d' € D.
O

We finally remark that although a € A, b € B,c € C,d € D, these
extremal elements do not seem to be connected with the isomorphism f
in any closer way. For example, the set {a,b, c,d} does not need to be an
orbit of f, in fact, it is not hard to construct a 2-poset (X, {P, Q}) with
isomorphism f : (X, P) — (X, Q) such that {a,b,c,d} is not an orbit of
any isomorphism ¢ : (X,P) — (X,Q). -
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