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1. Introduction

In the algebra various direct decomposition theorems are known as-
serting that a certain kind of algebras decomposes into a direct sum of
two (or more) uniquely determined distinguished subalgebras of diverse
properties. Such theorems will be referred to as splitting theorems. In
section 2 we shall discuss the general theory of splitting theorems in terms

of Plotkin radicals. A natural Plotkin radical is introduced for alternative
rings in section 3 and a splitting theorem is proved for semiprime alterna-

tive MPR-rings which generalizes a result of SLATER [19] and ZHEVLAKOV
(24] (MPR means d.c.c. on principal right ideals). Section 4 is devoted to
the splitting of the maximal torsion ideal of a not necessarily associative
ring and two criteria are proved for the splitting. Applying the results of
section 4, in section 5 it is proved that every alternative MPR-ring splits
with respect to the torsion radical. This result generalizes the AYOUB -
HuyNH Theorem [1], [7] on the splitting of associative MPR-rings and
WIDIGER’S Theorem [23] of the splitting of alternative artinian rings. Fi-
nally a sufficient condition is given for the splitting of Jordan rings with
respect to the maximal torsion ideal.

Next, as a motivation for the investigations we present a sample of
splitting theorems.

1) If (T,F) is a centrally splitting torsion theory, then every module
is a direct sum of its maximal 7-module and F-module, (cf. for instance
(2], [12], [13]).

2) Every associative artinian ringis a direct sum of its maximal torsion
ideal and of a uniquely determined torsionfree ideal ([21]). This statement
is true also for associative MPR-rings ([1], [7]) and for alternative artinian
rings ([23]).
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3) Every right and left artinian ring is a direct sum of two uniquely
determined ideals I and K such that |I| < « and |A/K| < a where a is
an arbitrarily given infinite cardinal ([8]).

4) The Jacobson radical of every member of an associative ring variety
is a direct summand if and only if the variety satisfies the identities

Iky s 'yIk . Ikyn
for some integers k > 1 and n > 2 (see [22]). As M. V. VOLKOV has pointed
out, also the Jacobson semisimple summand is a uniquely determined ideal
(private communication).
5) Every autodistributive ring A (and algebra over the field of two
elements) is a direct sum of the ideals

I={a€ A:a® =a)

and

N={becA:b b =0}
(cf. [10], [11], [14]).

6) Every weakly distributive algebra decomposes into a direct sum of
three uniquely determined ideals which are a lattice ordered group (the
multiplication defines the meet in the lattice) a commutative regular ring
and an algebra of characteristic 3 (see [16]).

7) Let {P,Q} be a partition of the prime numbers. Every torsion
abelian group is a direct sum of its maximal P-subgroup and Q-subgroup,
and these subgroups are uniquely determined.

8) In the variety of complemented semigroups satisfying the identities
IR and IV of [4] every semigroup is a direct product of an idempotent
semigroup and of a cancellative semigroup, and the factors are uniquely
determined subsemigroups.

9) In the variety of complemented semigroups satisfying the identities
IR and BV (or IV and BV) of [4] every semigroup is a direct product of
two uniquely determined subsemigroups, one is a boolean ring, the other
the "positive cone of an £-group” (in German: Verbandsgruppenkern; cf.
(4] Korollar 2 and Satz 15).

10) A "divisibility semigroup” (in German: Teilbarkeitshalbgruppe)
satisfying the identity of [5] Satz 2, is a direct product of a distributive
lattice and of a lattice-ordered group.

Let us observe that in many cases of the above examples the decom-
position theorem holds only in a rather restricted subclass of the variety
considered (e.g. artinian rings, or torsion abelian groups). There are also
instances for decomposition theorems in which only one component is a
uniquely determined subalgebra, we mention here two such examples.

11) Every abelian group is a direct sum of its maximal divisible sub-
group and of a reduced subgroup.

12) Every right group is a direct product of its maximal right zero

subsemigroup and of a group ([6]).
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2. General theory

Let V be a variety of nonassociative rings (or {2—groups, etc.). A
subclass A of V is called a universal class, if A is closed under taking
homomorphic images and ideals. A subclass p of a universal class A is
called a Plotkin radical [17] (or pretorsion class in [3]), if p is homomorphi-
cally closed and every A € A has a unique largest p-ideal pA, called the
p-radical of A. The class

c={A€ A:pA=0}

is referred to the semisimple class of p. Clearly pNo =0. A class y C YV
is said to be hereditary, if it is closed under taking ideals. The Kurosh-
Amitsur radicals are precisely those Plotkin radicals p which are closed
under ezxtensions, that is, T« A € A, I € pand A/I € p imply A € p,
or equivalently, p(A/pA) = 0 for all A € A. The semisimple class o of a
Kurosh-Amitsur radical p is always regular, that is, if 0 # I 4« A € o, then
I has a nonzero homomorphic image in o.

Proposition 1. Let p be a hereditary Plotkin radical in a universal
class A C V and o its semisimple class. The p-radical pA of A is a direct
summand of A if and only if there exists an ideal K of A such that K € o
and A = pA + K.

The necessity is obvious. For the sufficiency we have to prove only
that pANK = 0. Since p is hereditary, pANK apA € p implies pANK € p.
Hence by pANK aK € o it follows pANK C pK =0,andso A = pAB K
is a direct sum.

We say that an object A € A splits with respect to the radical p if A
is a direct sum A = pA @ oA such that oA is the unique largest o-ideal
of A. In this case we also say that the p-radical pA of A splits off.

Theorem 1. Let p be a hereditary Plotkin radical in a universal class
A C V and o the corresponding semisimple class. An object A € A splits
with respect to p if and only if

1) there exists an ideal K of A such that K € 0 and A = pA+ K,

2) for any two maximal o-ideals ] and L of A I/(INL)€ o.

PROOF. Necessity. 1) follows from Proposition 1 and 2) becomes
trivial.

Sufficiency. First we prove that K is a maximal o-ideal of A. Suppose
that an ideal M properly contains K. Then in view of Proposition 1 we
have A = pA 8 K, and so it follows M = R 8 K with a suitable ideal 0 #
R C pA. Since p is hereditary, we have R € p, and therefore 0 # R C pM,
that is, M ¢ 0. Hence K is a maximal o—ideal of A. Let I be any other
maximal oc-ideal of A. Now we have

I/INK)~(I+ K)/K<A/K ~pA € p.
Hence condition 2), the hereditariness of p and pNo =0 yield I = K.
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Proposition 2. If p is a hereditary Plotkin radical in A with semisim-
ple class o, then every object A € A has maximal o—ideals .

PRrROOF. Let I; C ... C I, C ... be an ascending chain of ideals of
A € A such that I, € o for each index a. Putting I = UI,, we have

IoNpI C pI € p,
and so the hereditariness of p implies I, N pI € p for all indices a. Hence
(Ia N pI) C pI, = 0 for all a, yielding pI = 0, that is, I € . Now an
application of Zorn’s Lemma yields the assertion.

Proposition 3. The semisimple class o of a Plotkin radical p is closed
under extensions.

PROOF. Since p is homomorphically closed, for every ideal I of A € A

the relation
pPA/(pANT) >~ (pA+I)/IC p(A/T)

must be true. Hence, if A/I € o, we get pA C I. If also I € o holds, then
by pA € p it follows pA C pI = 0, that is, A € 0.

Proposition 4. Let p be a Plotkin radical with semisimple class o. If
every A € A is a direct sum A = pA 8 K with an ideal K € o, then p is
a Kurosh-Amitsur radical in A.

PROOF. For every A we have A/pA ~ K € o, and so p(A/pA) =0
holds.

Proposition 5. If o is a homomorphically closed class, then condition
2) of Theorem 1 is trivially fulfilled.

Proposition 6. If p is a hereditary Plotkin radical in A and its
semisimple class o is homomorphically closed, then every A € A has a
unique largest o-ideal, and o is a Kurosh-Amitsur radical class.

Let us observe that if o is a Plotkin semisimple class which is also a
Plotkin radical, then ¢ is a Kurosh-Amitsur radical.

PROOF. Let I be an arbitrary o—-ideal of A. By Proposition 2 A has
a maximal o-ideal K. Since o is homomorphically closed, by I € o we get

(I+K)/K ~I/(INK)€o.

Hence by Proposition 3 it follows (I+K) € o, and therefore the maximality
of K implies I C K.

Now the second assertion follows immediately from Proposition 3.

In his [11] Theorem 2.1 Gardner proved the equivalence of the follow-
ing statements:

1) in the variety Vp is a radical semisimple class such that its semisim-
ple class o is a radical class with semisimple class p,

2) p and o are subvarieties and every A € V can be decomposed as
a direct sum A = R# S where R € p and S € p are uniquely determined

ideals.
Our next result is a counterpart of Gardner’s Theorem for universal

classes.
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Theorem 2. Let p be a hereditary Plotkin radical with semisimple
class o in a universal class A C V. Then the following conditions are
equivalent:

I) o is a (Plotkin) radical with semisimple class p,

IT) o is homomorphically closed and every A € A splits with respect
to p.

PROOF. I = II. Since both p and ¢ are Kurosh-Amitsur radicals by
Proposition 3, and ¢ is homomorphically closed, we have

A/pA

A/(pA+cA) ~ TTERTIIT €

a

and
AjcA

(pPA+0oA)/cA

which implies A/(pA + 0 A) = 0, that is, A = pA + 0 A. Hence by Propo-
sition 5 we can apply Theorem 1 establishing I1.

II = I. By Proposition 6 o is a Kurosh-Amitsur radical class. If
oA = 0, then by the unique decomposition A = pA 8 oA it follows A =
pA € p, and conversely. Hence

p={A€A:0A=0}

A/(pA + 0 A) ~

€p

is the semisimple class of o.

In the variety V of all associative rings every radical semisimple class
p # V consists of idempotent rings and so only the radicals p = 0 and
p =V satisfy condition I in Theorem 2.

3. Alternative rings and the maximal nuclear ideal

In view of Proposition 4 one gets the impression that in the reasonable
cases the Plotkin radical p has to be a Kurosh—-Amitsur radical. This is,
however, not so, and in this section we shall give an example for a very
natural Plotkin radical in the variety V of all alternative rings which splits
off in the subclass B C V of semiprime MPR-rings. The class B is, of
course, not a universal class (cf. Proposition 2 and Theorem 2).

A not necessarily associative ring A will be called an MPR-ring, if A
satisfies the d.c.c. on principal right 1deals. As is well-known, a ring A is
alternative, if A satisfies

2’y = z(zy) and (zy)y = zy?

for all z,y € A. The associator (z,y,z) of the elements z,y,z € A is
defined by

(z,v,2) = (zy)z — z(y2).
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An element u € A is said to be nuclear, if the associator (u,z,y) vanishes
for all z,y € A. The set N(A) of all nuclear elements of A is the nucleus
of A. A has a unique maximal ideal A(A) in N(A) which is called the
mazimal nuclear ideal of A.

Every alternative ring A possesses another distinguished ideal, the
associator ideal D(A), which is the ideal of A generated by all associators.
As is well-known U(A)D(A) = D(A)U(A) = 0. For details we refer to [25].

As in the associative case, an alternative ring A is said to be sema-
prime, if I 4 A and I? = 0 imply I = 0.

Propositions 7. If M is a minimal right ideal of a semiprime alterna-
tive ring A, then M? # 0, M? = M and M = eA for a nuclear idempotent
e of A.

PROOF. The first assertion follows immediately from [18] Lemma
(3.3) which states that a trivial right ideal generates a trivial ideal. The
rest is [20] Proposition 3.3 (b) and (c¢).

The sum of all minimal right ideals of a ring A is called the right socle
of A and will be denoted by Soc A.

Proposition 8. If A is an alternative semiprime MPR-ring, then A =
Soc A.

PROOF. Let a # 0 be an arbitrary element of A. We shall prove that
a is contained in a finite sum of minimal right ideals. Since A is an MPR-
ring, there exists a minimal right ideal M; of A which is contained in
the principal right ideal [a) of A. By Proposition 7 there exists a nuclear
idempotent e; such that M; = e; A. Take the element a; = a — e;a. We

have obviously

[a) = M + [a2).
Let z € M, N [a;) be an arbitrary element. Now z has the forms

z = eb, be A

and
n
r = masz + Z( o ((agc,-l )C.‘g) sarly )Cika
=1
where m is an integer and ¢;;, € A, j; = 1,... ,k;. Since e, is a nuclear

idempotent, we have
erix =e(eb) =elb=12x

and
e1a; = €1a — e)(e1a) = eja — e2a = 0,
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furthermore, also

z = ez = e;(maz) + €; Z( vo((@2cis)cin) < .. Jein; =

=m(e1a2) + 3 _(-..(((e1a2)cir)cia) ... cir;) =0

§=1

Thus [a) is a direct sum
[a) = My @ [a2)

of the right ideals, and so [a) properly contains a;. Continuing this proce-
dure we get a decomposition

@) =M ®...0 Mn_; & [an)
and also a strictly descending chain
[@) D [az) D ... D [an)
of principal right ideals of A. Since A is an MPR-ring, this chain has to

terminate in finitely many steps. Thus [a) is a finite direct sum of minimal
right ideals, proving the assertion.

Proposition 9. (cf. [20] Proposition 4.15). If A is an alternative
semiprime ring, then

Soc A = Soc U(A) B Soc D(A)

where Soc U(A) and Soc D(A) are two-sided ideals in A.
Theorem 3. If A is an alternative semiprime MPR-ring, then the

maximal nuclear ideal U(A) splits off, in fact
A =U(A) 8 D(A).

PROOF. Since A is semiprime, (U(A) N D(A))? C U(A)D(A) =
implies U(A) N D(A) = 0. Hence Propositions 8 and 9 yield

A = Soc A =SocU(A)®BSoc D(A) CU(A)ED(A) C A.

Theorem 3 provides also a full description of the structure of any
alternative semiprime MPR-ring A inasmuch as it reduces the description
of A to that of an associative semiprime MPR-ring U/(A) and to that of

a purely alternative semiprime MPR-ring D(A). Hence U(A) is a discrete
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direct sum of simple rings of linear transformations of finite rank on vector
spaces over division rings (cf. e.g. [15] Theorems 77.4 and 78.2 or [20],
and D(A) is a discrete direct sum of Cayley-Dickson algebras (cf. [20]).
Moreover, the right socle of an alternative semiprime MPR-ring coincides
with its left socle. Thus Theorem 3 generalizes the ZHEVLAKOV — SLATER
Theorem describing the structure of alternative semiprime artinian rings
([24] Theorem 3 and [19] Theorem B, or [25] Theorem 12.2.3).

As is well-known, semiprimeness is a hereditary property (Slater [18]
or [25] Theorem 9.1. 4) Hence the class # = {A € V |A has only 0
semiprime homomorphic image } is a Kurosh-Amitsur radical class, called
the Baer radical class (cf. [25] p 162). Let us consider the class
a={A €V |A/B(A) is associative }. Since N(I) = I N N(A) holds for
every I4A (see [18] or [24] Theorem 9.1.1) by the heredity of semiprimeness
it follows that a 13 a hereditary Plotkin radical, but not a Kurosh-Amaitsur
radical in V. Furthermore, we have obviously

a(A)/B(A) = U(A/B(A)),

and hence a(A) = U(A) for every semiprime ring A. Thus Theorem 3
yields immediately the following reformulation.

Corollary 1. The Plotkin radical a splits off on the class B of all
alternative semiprime MPR-rings.

Let J denote the quasi-regular radical (or Zhevlakov radical in [25]
Theorem 10.4.5).

Corollary 2. If A is an alternative MPR-ring, then B(A) = J(A).

ProoOF. Clearly f(A) C J(A) always holds. Hence without loss of
generality we may assume that §(A) = 0. Since a quasi-regular ideal does
not contain nonzero idempotents, the assertion follows from Theorem 3.

4. Rings and the torsion radical

In this section we shall work in the variety V of all not necessarily
associative rings. It is well-known that in V the class of all torsion rings
forms a hereditary (Kurosh-Amitsur) radical class, and so we can speak
of the mazimal torsion ideal of a ring A. We know also that the maximal

divisible subgroup of any ring A € V forms an ideal, the mazimal divisible
tdeal of A.

Proposition 10. If Fy is a torsionfree divisible subgroup and T4 is a
torsion subgroup of the additive group Ay of aring A, then FT =TF = (.

For the proof, which uses only the distributivity, we refer to Kertész
[15] Proposition 57.7.
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Proposition 11. Let A be a ring such that Ay = B, @ D, is a group
direct sum of a reduced torsion group B4 and of the maximal divisible
subgroup D4. Then

1) Ay =Ty & Fy where T is the maximal torsion ideal of A and F4
is a torsionfree divisible subgroup of A4,

2) every quasi-cyclic subgroup of A4 is in the annihilator of A,

3) BD=DB =0,

4)D/(TND)~AJT.

PROOF. By Ay = B, ® D4y we have T, = B, & (T N D)4 and
Dy =(TND)y & Fy. Hence 1) is obviously true.

For the proof of 2) we refer to Kertész [15] Proposition 57.8. In view
of the decomposition Dy = (T N D)4 & F, statement 2) and Proposition
10 yield statement 3).

4) and its proof is Ayoub’s Theorem 2.(3) in [1] where no associativity
of the multiplication is used.

Theorem 4. The following conditions are equivalent:

I) A=TaK,
II)  D? is torsionfree,
III) F? is torsionfree.

PROOF. By the assumption on A; we have
D?*=((TND)+ F))=(TND)*+(TND)F + F(Tn D)+ F.

In view of Proposition 10 and Proposition 11, 2) the first three terms of the

right hand side are 0. Hence D? = F? always holds proving the equivalence

of II and II1I.
I = II. Let A=T 8 K where K is a torsionfree ideal of A. By the

structure of Ay it follows that Dy = (TND)4+@® K. Hence by the previous
consideration we have D? = K? C K, and therefore D? is torsionfree.

II = I. By the distributivity D? is clearly a divisible group, hence
Dy = (Tn D)4 & D% @& C4 holds with a suitable divisible torsionfree
subgroup C;. Moreover, also A4 = T & D3 @ C4 holds. By Proposition
10 we get

(D*+ C)A=D*B+D)+C(B+D)=D?B+D*D+CB+CDC D?,

and similarly also A(D? + C) C D?. Thus D? 4 C is an ideal in A, and so

in the direct decomposition of A4 both summands are ideals of A.
It may happen that in the direct decomposition A = T 8 F the ideal F
is not uniquely determined. For instance, let A be a ring such that 4> =0
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and A, = C(p™)® Q4+ where C(p™) is a quasi—cyclic group and Q4 is the

additive group of rational numbers. Let a;,...,an,... be generators of
C(p™) subjected to pa; = 0,pa; = ay,... ,pan = @n—1,.... Let us define
a mapping ¢ : Q4+ — Q4+ @ C(p*) by
N s : :
k. 7P if r > 0 (including k = 0)
¢ (EP ) o TR
-p"+-a_, ifr<0

£ ¢

where k,€ # 0, and p are mutually relatively prime. It is easy to check
that ¢ is an isomorphism onto a subgroup Q', # Q+,A4+ = C(p>) & Q',
and so the second direct component of A is not uniquely determined as an

ideal.
This example is typical, as we see it from the following

Proposition 12. Let A be a ring such that A, = B, ® D, where B,
is a reduced group and D, is a divisible group. If A, does not contain a
quasi—cyclic subgroup, then the maximal torsion ideal T of A splits off.

PRrRoOOF. By the assumption we have By = T,. Since both T and D
are uniquely determined ideals, the assertion follows.

The smallest nonzero ideal of a subdirectly irreducible ring A is called
the heart of A. Let M be a homomorphically closed subclass of M such
that for every A € M, it holds Ay = B, & D, where B, is a reduced
torsion group and Dy is the maximal divisible subgroup.

Theorem 5. The following conditions are equivalent:

I) for every ring A € M the maximal torsion ideal T splits off,
II) for every ring A€ M D? is torsionfree where D denotes the

maximal divisible ideal of A,
IIT) every subdirectly irreducible ring A € M having a torsion
heart, is a torsion ring.

PrROOF. Theorems 1 and 4 yield the equivalence of I and I1.
I = III. Let A be a subdirectly irreducible ring from the class M

with torsion heart H. By I we have
A=TH8F,

and hence also
FNHCFONT =0.

Thus F = 0 and A = T follows.
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IIT = II. Assume that there are elements a,,... ,a,, bl,... b, in

the maximal divisible ideal D of a ring A such that 0 # 2 a;b; € T.
=1
Using Zorn’s Lemma. we can choose an ideal I of A such that I is maximal

with respect to Ea,-b,; ¢ I. The ring A = A/I is clearly subdirectly
=1
irreducible, and its heart H contains the coset @;b; which is a torsion
=1
elément. Hence H has to be a torsion ring (in fact a p-torsion ring for some
prime p.) Thus by III also the ring A is a torsion ring, and consequently
its maximal divisible ideal D is the sum of quasi—cyclic groups and so
—_— — — — n —
D’ = 0. Since @i, ... ,dn and by,... ,b, are in D, it follows 3 @;b; = 0
i=1

which contradicts E @;b; ¢ I. Thus D? is torsionfree.
We shall make use of the following nearly trivial

Proposition 13. If [a,,... ,a,] is any product of n elements and 1 is
any of the integers 1,... ,n, then
k[als-" !an] = [a'l!"' 1kai," . 1au]

for every integer k. Moreover [ka) = k[a) holds for the principal right ideals
[ka) and [a),a € A.
PROOF. By the distributivity we have
(ka)b = k(ab) = a(kb)
for every element a,b € A € A, and the assertion follows by induction.
The rest is straightforward.

Proposition 14. If A is an MPR-ring, then its additive group A4 is
a direct sum Ay = B4 @ D4 where B, is a reduced torsion group and D4
is the maximal divisible subgroup of A.

PrOOF. The additive group of A can be surely decomposed as A, =
B4 & D4 where D, is the maximal divisible subgroup in A4 and By 1s a
reduced group. Let us observe that B, does not contain nonzero divisible
element. Since A is an MPR-ring, the set

{[b) : b € B and o(b) = oo}
of principal right ideals of A has a minimal element, say [¢). Now we have
[)=[2¢)=...=[nc) =
Since by Proposition 13
[¢) = [ne) = n[c),

the element c is divisible. Thus by ¢ € B we conclude that ¢ = 0, and so
B is a torsion group.
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Proposition 15. If A is a torsionfree MPR-ring, then every element
a € A is a finite sum

a= i(. .- ((@biz)biz) . .. )bis;

of products of at least two factors.

PROOF. Suppose that A is an MPR-ring. Then every descending
chain
4 o W 1 ™) o SO

terminates at an integer k > 1 for every prime number p. Hence

r
pka - e(pk+la) T Z[pk-naa Ci2y .- ,Ci,‘-]

=1

where £ is an integer s; > 2 and [z,,... ,z,] stands for
(...((z1x2)x3)...)z,. Further, for n = p* — €p*¥*! # 0 we have

g

na = Z:[pk'“a, Bes v il

i=1

Since by Proposition 14 the additive group A4 is divisible, to each ¢;; there
exists an element d;; € A4 such that ndi2 = ¢i2, (1 =1,...,r). Hence by
Proposition 13

.
- k+1
"a.-ﬂzu’ atdihcias“- scis.']
1=1

(if s; = 2, then the product is just p*¥*'a - d;3). Taking into account that
A is torsionfree, we get

r

k+1
a= Zl}) o atdi2sci3t°“ 1cis.']

i=1
and hence Proposition 13 yields the desired form
r
U Z[aapk+ldi21 Cidy-vny Cia.']
i=1

and also the parantheses are in the required order.
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Proposition 18. The class of all torsionfree MPR-rings is homomor-
phically closed.

PROOF. Let A be a torsionfree MPR-ring and I < A,a € A. Suppose
that there exists an integer k # 0 such that ka € I. By Proposition 15 we

have .
a= Z[atbﬂ) ey bia.']
=1

where s; > 2 for each i = 1,...,r. Since by Proposition 11, 1) and 14
A, is divisible, for every b;; there exists an element c¢;, such that ke¢;, =
bi2,(1 =1,...,r). Now by Proposition 13 we have

a= z[a, keiz, bizy ... bis] =
i=1

— Z[ka) Ciz:bial' .s ?biai] € I
i=]

Hence ka € I implies a € I. Thus the factor ring A/I is torsionfree, and
the assertion is proved.

Theorem 6. For a not necessarily associative MPR-ring A the fol-
lowing conditions are equivalent:
I) the maximal torsion ideal T of A splits off,
II) D? is torsionfree where D denotes the maximal divisible ideal of A,
III) if a subdirectly irreducible factor ring A of A
has a torsion heart, then A is a torsion ring.
PROOF. By Propositions 14 and 16 Theorem 5 is applicable yielding
the equivalences.

In the previous considerations we followed ideas of CHRISTINE W.
AYOUB who proved that every associative MPR-ring splits with respect
to the torsion ideal (cf. [1] Corollary 1). In fact, she proved in [1] Theorem

4 that D? is torsionfree.
5. Alternative rings and the torsion radical

In this section we shall work again in the variety V of all alternative
rings. The main goal of this section is to prove that every alternative
MPR-ring splits with respect to its maximal torsion ideal. In proving
this, we shall use Theorems 3 and 6 as well as several arguments from the
book [25].
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Proposition 17. ([9] Lemma 1). If M is a right ideal of an alternative
ring A, then AM + M « A.

Proposition 18. Let A be an alternative ring with maximal divisible
ideal D and maximal torsion ideal T such that A = D + T. Further, let

n
aj,...,a, € D and b,,... ,b, € A be elements such that Y a;b; € T. If
=1
there exists elements d € A and t,,... ,t, € T such that b; = b;d + t; for
n
t=1,...,n, then ) a;b; =0.

i=1
PROOF. We shall use the Moufang identity
(1) (zy)(22) = 2(yz)z

(see for instance [25] Lemma 2.3.7.).
In view of Propositions 10 and 11 it follows TD = DT = 0. Hence by
A =T+ D we have

(2) (TND)A=A(TND)=0,

and so also
a.-tg=0=(da,-)t,', i=1,...,ﬂ.

Using repeatedly (2) and finally (1) we get

Zab _Z (bd+t)_Za(bd)

i=1

= Z ai(bid) — (Z aib,-) d=— Z(a.-, biyd) = — Y (d,ai,b;) =

i=1 =] =1

= Zn:(da.-)bi +d (i aibi) = - i(dﬂi)(bid +t)=
i=1 i=1 i=1
- i(da.-)(b,-d) = —d (i aibi) d=0.
i=1 i=1

Proposition 19. Again, let A = D + T be an alternative ring, and
let M be a right ideal of A such that M C D. If for any finitely many
elements my,... ,m, € M there exists an idempotent ¢ € A such that

me=m;; 1=1,...,n, then (AM+ M)NT =0.

PROOF. Let m + Z a;m; be an arbitrary element of AM + M, and

suppose that this element is in 7. Now there exists an idempotent e € A



Splitting theorems for nonassociative rings 135

such that me = m and me =m; fori =2,... ,n. Since A =D + T, we
have e = ¢ + y where z € T and y € D. By (2) it follows mz € DT = 0,
and so

m = me = mI + my = my.

Putting a; = m and m; = y we get

m+Za,m. —Za m; = Z a;(mse) =

1=2 i=1

(z a,m.) & Z(a,-,m.»,e).

=1

Taking into account (2) and m+ ) a;m; € DNT, and (1) we may continue
1=2

m + Zaimi = Z(a;,m;,e) SRR Z(e,a;,mg) )

f=2 g=1 =1

=— Z(ea,—)mi + Z e(a;m;) = — z(ea,-)(m,-e) =

proving the assertion.

Proposition 20. Let A be an alternative MPR-ring with Baer radical
B(A).

1) Ife € A and € — e € B(A), then there exists an element v € A
such that v’ = v and v — e € B(A).

2) For any finitely many elements a,,... ,a, € A there exists an
1demp0tent e € A such that a;e — a; € ﬁ(A),ea, a; € B(A), for
$=1,.

3) I I is a prime ideal of A, then A/I is isomorphic to a direct
summand of A/B(A).

PROOF. 1) Let B denote the subring of A generated by e. The ring B
is clearly associative, and BN J3(A) is a nil-ideal of B. Since ¢* —e € $(A4),
the element e? — e is idempotent modulo B N B(A). Thus there exists an
idempotent v € B such that v—e € BN B(A), and so v — e € B(A).

2) By Theorem 3 A/B(A) is a direct sum of associative simple MPR-
rings and of Cayley-Dickson algebras, and so for a,,... ,a, € A there
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exists an element e such that e — e, ea; — a;, aje — a; € B(A) for every
t = 1,... ,n. Thus by 1) there exists an idempotent v € A such that
v—e € B(A). Clearly

va; — a; = (v - e)a,- 4+ ea; — a; € ﬁ(A)

holds, and also a;v — a; € #(A) is valid for every : = 1,... ,n.
3) The assertion is an immediate consequence of Theorem 3.

In proving the next Proposition we shall make use of the representa-
tion theory of alternative algebras as given in [25] Chapter 11. If M and
N -are right ideals of an alternative ring A, such that N C M, then the
canonical action of A on the factor group M /N defines an alternative right
A — module (cf. [25] Proposition 11.1.4).

Proposition 21. Let A be an alternative MPR-ring, M and N right
ideals of A such that N C M. Let us suppose that for every right ideal L
of A with NCL CM either L=N or L =M. Then

1) M/N is an indecomposable alternative right A ~module,

2) MJ(A) € N where J(A) is the quasi-regular radical of A,

3)if ={a€ A|[Ma C N}, then I « A and A/I is either a Cayley—
Dickson algebra or a simple associative ring with a minimal right ideal,

4) for every finitely many elements my,... ,m, € M there exists an
idempotent € € A such that mije —m; € N,i=1,... ,n.

PROOF. 1) By [25] Proposition 11.1.4 it follows that the canonical
mapping p : A — Endz(M/N) is an alternative right representation of the
ring A. Hence the assertion follows directly from the definitions (see [25]
Chapter 11).

2) The statement follows from [25] Theorems 10.4.5 and 11.3.4.

3) By [25] Corollary on p23 ¢ it follows that I « A. Moreover, [25]
Lemma 11.3.7 yields that A/I is a prime ring. Hence the statement follows
from our Proposition 20.3.

4) By [25] Theorem 11.3.2 there exists an element u € M such that
u + N generates M/N and either

(3) (ua)b+ N = u(ab) + N
or
(4) (ua)b+ N = u(ba) + N

for all a,b € A. Hence we conclude M = uA + N, and so there exist
elements a,,... ,a, € A such that

m; —ua; € N, R S
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By Proposition 20.2 there exists an idempotent e € A such that
a;e — a;, ea; —a; € B(A) ok Lo o000
Hence using the identities (3) and (4) we have

u(aje) + N

mie+ N = (ua;)e+ N = {u(ea,-)+N

} = ua; + uf(A) + N.

Applying statement 2 of this Proposition, it follows
mie+ N =ua;+ N=m;+ N, 5 T

Thus m;e —m; € N holdsfort =1,... ,n
Let us recall that the Loewy series of a right ideal M of a ring A is
defined as

Lo(M) = Soc M,
Lat1(M)/La(M) = Soc (M/La(M))

and

Lo(M) = | La(M)

aly
for limit ordinals +.

Proposition 22. Let A be an alternative subdirectly irreducible
MPR-ring with heart H. If H is a torsion ring, then so is A as well.

PRrROOF. We prove the Proposition in four steps.

1) If B(A) = 0, then the assertion is just that of [25] Theorem 8.3.12.

2) Let us suppose that #(A) # 0. In this case also J(A) # 0. Since
the heart H is a torsion ring, there exists a prime p such that pH = 0.
Consequently also the maximal torsion ideal T of A is a p-torsion ring.

We claim that A has no nonzero torsionfree right ideal. Let M # 0 be
a torsionfree right ideal of A and N be a minimal principal right ideal of
A such that N C M. Clearly also NN T = 0 holds, and by Proposition 14
also N C D where D is the maximal divisible ideal of A. By Proposition
17 we have AN + N 94 A, and so H C AN + N. Applying Proposition
21.4 and 19 for 0 and N, it follows that (AN 4+ N)NT = 0, contradicting
0#HC(AN+N)NT. Thus MNT # 0 for every right ideal M # 0
of A.

3) Let M be a principal right ideal of A minimal with verpect to the
properties M C D and M ¢ T. The right ideals N = MNT and M satisfy
clearly the conditions of Propositions 21, and hence M J(A) C N is valid.
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We claim that MJ = 0 for J = J(A). We prove this by induction on
a of the Loewy series L,(J).

By definition Ly(J) = Soc J. By step 2 we conclude SocJ C T and
by M C D Propositions 10 and 11 yield M Ly(J) = 0.

Suppose that ML,(J) = 0 for every ¥ < a. If a is a limit ordinal,
then ML,(J) = 0. Let us consider the case when a is not a limit ordinal,
and choose an arbitrary element a € L,(J) \ Lo-1(J). Now

a + Eu-——l(-}) e SOC(J/EQ—-](J))|
and therefore there exist elements ag,a,... ,a, € J such that
(@  a+La-1(J) =) ai+Laa(J),
1=0
(b) gag € L4—1(J) for some natural number ¢,

(¢) every element a; + L,-1(J) is contained in an
indecomposable submodule of L4(J)/La—-1(J).

By Proposition 21.4 there exist idempotents e;,... ,e, € A such that
a;e; —a; € Lo_1(J), 1=1,...,n. Now we have
Ma C Z Ma;
1=0

and by the minimality of M also ¢gM = M holds. Hence by (b) and the
hypothesis it follows

May ='(gM)ag = M(qag) € MLa-1(J)=0.
Let m € M be an arbitrary element. Then for every i = 1,... ,n we have
ma; = m(a;e;) — m(a;e; — a;) = m(a;e;),

because

m(aie; — a;) € mLq-1(J) = 0.
Since a; € J, it follows m(a;e;) € mJ C N = M NT. If b; = a;e;, then
bie; = (a;ei)e; = ai(e?) = aje; = b;.

Hence from Proposition 18 we conclude that mb; = 0 foreveryi = 1,... ,n.
Thus Ma; = 0 holds for every i = 1,... ,n. This together with May, = 0
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imply Ma = 0, and so ML,(J) = 0 is valid. Since A is an MPR-ring,
J = L.,(J) for an ordinal ¥ and by induction we get MJ = 0.

4) Let us consider elements a,,...,a, € A and m,y,... ,m, € M,
and suppose that ) m;a; € T. By Corollary 2 and Proposition 20.2 there

i=]

exist an idempotent e € A such that a;e —a; € J for: =1,... ,n. Since
MJ = 0, it follows that m;a; = m;(a;e) for every : = 1,... ,n. For the
element b; = a;e clearly

b,-e:(a,-e)e:a;ez:a,'e:b,‘, V=L.iieah

holds. Hence we have

In view of Proposition 14 for the MPR-ring A Proposition 18 is applicable
with my,... ,m, € D and by,...,b, € A and Y m;b; € T. Hence we

=1

obtain that 3% mb; = 0, and therefore MANT = 0. Since MA is a

gem]
right ideal of A, by step 2 of this proof we conclude M A = 0. Hence by
M C D, M; has d.c.c. on subgroups and so M C T. This contradicts

M € T, consequently D C T and A is a torsion ring, in fact a p-torsion
ring.

Theorem 7. Every alternative MPR-ring splits with respect to the
torsion radical.

PROOF. The statement is an immediate consequence of Theorem 6
and Proposition 22,

Remark. For associative MPR-rings the splitting of the maximal tor-
sion ideal was proved by CHRISTINE AYOUB [1] and DINH VAN HUYNH
[7]. In [23] Widiger proved the splitting of alternative artinian rings. Thus
Theorem 7 generalizes both of these results.

6. Jordan rings and the torsion radical

In this section we shall consider Jordan rings, that is, rings which
satisfy the identities

Iy =yzr

(2?y)z = 2%(yz)
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for all elements z and y. The second identity can be expressed also in the
form
(z%,y,2) =0,

and by linearization one gets the identity
(5) (zy,2,t) + (zt,2,y) + (yt,2,2) =0

for all elements z,y, 2z and t (cf. [25] Chapter 14, identity (22)).

Proposition 23. Let A be a Jordan ring such that Ay = By & Dy
where By is a reduced torsion subgroup and D is the maximal divisible
ideal of A. Further, let T denote the maximal torsion ideal of A. If for any
finitely many elements z,,... ,x, € A/T there exists an element e € A/T

such that r;e = z; = z;€%, i = 1,... ,n, then D? is torsionfree.
PROOF. Substituting z =y = €,z = a and t = b into the identity (5),
we get

(6) (e?,a,b) = —2(eb, a,e).

n
Let us assume that ) a;b; € T for some elements a;,b; € D;
=1
t = 1,...,n. Since by Proposition 11.4 it follows that there exists an
element ¢ € D such that

a.-c2 =a; +r;

a;e = a; + 8;

bie = b.‘ +t,

wher r;, 8;,t; ET fori =1,... ,n. Thus by TD = DT = 0 we have

n n

Za,-b,- = (ai +ri)bi =Y (2ai)b; = Z(ez(a.-b,) + (€2,a;,b)) =

= e? Zn: a;b; + i(e2, ai;, b,‘) = i(ez, a;, b;).
i=1 =] i=1

Applying (6) we get

Zaibi = -2 Z(ebi,ai,e) = -2 z:(((ebi)ﬂi)e — (eb)(aje)) =
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= -2 Z(((bi + ti)ai)e — (b; + ti)(aie)) = -2 Z((b.-a.—)e — bi(aie)) =

= -2 (zn: a,-b,-) e+ 2i:bg(ag +8;) = 2§:aibi-

i=1 i=1 i=1

Hence 2 i
Z a;b; =2 Z a;b;
1=1 1=1
holds implying

; =

and consequently D? is a torsionfree.
Let T(A) denote the maximal torsion ideal of the Jordan ring A, and
let M be the class of all Jordan rings such that
1) Ay = B4y @ D4 where By is a reduced torsion subgroup and D4 the
maximal divisible subgroup of A4,
ii) for any finitely many elements z,,... ,z, € A/T(A) there exists an
element e € A/T(A) with z;e = z; = z;e?.
Clearly, condition 1) is preserved under taking homomorphic images.
Let I be any ideal of a ring A € M. Now we have (T(A)+I)/I C T(A/I),

and therefore there is a homomorphism ¢ as given below:

AlT(A) S T&//II)
1 T
A(TA)+D) = o A“)‘{: A7

Let Ty,... ;T € ﬁ‘%ﬁﬂ- be arbitrary finitely many elements, and

Ty,... ,Zn € A/T(A) be elements such that ¢(z;) = Ti,i = 1,2,... ,n
Since A € M, there exists an element e € A/T(A) such that z;,e = z; =
z;e?, and so for € = ¢(e) we have 7;e = 7; = 7;€2. Thus also the factor ring
A/I satisfies condition ii), proving that the class M is homomorphically

closed. Hence Theorem 5 is applicable, and in view of Proposition 23 we
arrive at

Corollary 3. If a Jordan ring A satisfies the requirements of Propo-
sition 23, then the maximal torsion ideal of A splits off.
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