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Lower bounds for P(z* + k), an elementary approach

By J. BUCHMANN, K. GYORY, M. MIGNOTTE and N. TZANAKIS

As usual, for a non-zero integer n, P(n) denotes the largest prime
factor of n.

This paper continues some work of the third author who considered
P(z? + 1) and of MARINA MUREDDU about P(z* + 1), [Mi 1] and [Mul].
The method used goes back to STORMER [S] and has been applied to
some other exponential diophantine equations, for example to Ramanujan-
Nagell equation in [Mi 2], see also [Mi 3]. In those papers the key step is to
use some suitable Pell-Fermat equations and to study some linear recursive
sequences coming from this equation. But this method can be extended
to more general cases: we don’t really need a reduction to Pell-Fermat
equation, but only linear recursive sequences. Such sequences appear in
the study of norm form equations when the group of units of the number
field K associated with this form has rank one.

This allows us to get lower bounds for P(z® + k). There are two cases:

(i) k is a perfect cube in Z ; then K is a real quadratic field;

(i1) k is not a perfect cube in Z ; then K is cubic field with a
non-real embedding in the complex field.

Here, we consider an example of each case : k =1 for case (i), k = 2
for case (i1). In practice these two cases lead to quite different difficulties:
for case (i) the main question is to find all the values of a linear recur-
sive sequence which are only composed of some fixed prime numbers, for
case (ii) most of the work consists in the resolution of some norm form
equations.

This paper is also related to several works of A. PETHO and
B. de WEGER: [Pe|, [Pe-W] and [W1].

Other methods can be used for finding effective lower bounds of
P(z® 4 k). They are based on estimates on linear forms of logarithms, see
[W2] for example.
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1. Solution of P(z® +1) <19

Since
B+1l=(a+1)(z2-z+1),

we have
Pz} +1)>P(z* -z +1),

and we shall only consider the right hand side expression.

Suppose that p is a prime number which divides 22 — z + 1 for some
integer z, then this number p is odd and —3 is a square mod p; so that
p=3or p=1mod6. Thus

P(z? -z +41)>31

or
2—z4+1=37"13"19"; K. I'm' n'€N.

Since 9 never divides z? — z + 1, this equation is equivalent to the 16
systems of equations

2 —z+1=3"7713"19%2, y=7"13"19™",

for (a, B8,7,96) € {0,1}4.
The first equation of this system is of the type

(E.) 22—z +1=ay?

where a = 327713719, By the change of variables X = 2z — 1, Y = 2y,
this equation is transformed in

(E!) X*-a¥?=-3, Y>0.

In the field Q(y/a), for all values of a > 1 that we study in this section,
we have one of the following two types of prime ideal factorization:

B)=p% B)=p ¢, p#¢,

depending on whether 3 divides a or not. From this, it becomes obvious
that in the order Z[\/a], a complete set of non-associated elements of
norm —3, if non-empty, is of the form

{Xo + Yov/a, Xo — Yp\/a} (in case that 3 does not divide a),
or {Xo + Yov/a} (in case that 3 divides a),
where, in both cases, we may suppose Yy > 0.
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Let n > 0 be a fundamental unit in Z[\/a]. In both cases, equation (E})
implies

(1) X+YVa=%(Xo+Yova) 0", neZ
or
(2) X+YvVa=+(Xo-Yova)-n", nel.

We claim now that every value of Y obtained from (2), can be obtained
from (1) as well. Indeed, suppose first that Norm(n) = +1. Since
(X4+Ya)(X-Ya)=-3and Y > 0, it follows that X +Y/a > 0 and
X -Y/a < 0; in the same way, Xo+Yp+/a > 0 and X, —Yp+/a < 0. There-
fore (1) must hold with the plus sign and (2) with the minus sign. Then, on
taking the conjugate relation of (2) we get — X +Y/a = (X, + Yy /a)p™",
from which we see that Y can also be obtained from relation (1) if we re-
place n by —n. If Norm(n) = —1 (in this section this is the case only when
a = 13 ) then, by taking norms in (1) and (2), we see that n must be even.
Therefore, we replace n by 7% in (1) and (2) ; and since Norm(n?) = 1, the
previous argument applies.

Thus, we conclude that we have only to consider a relation of the form

(3) X+YvVa=(Xo+Yova)", neZ

where X + Yp+/a is any element in Z[\/a] of norm —3 with Yy > 0 and
€ = u 4 vy/a is either a positive fundamental unit or the square of such a
unit. The second alternative is forced either by the fact that Norm(n) =
—1 (a = 13) or by the fact that an odd exponent in (1) or (2) furnishes an
odd Y (a = 3,7,19,21) which is not compatible with Y = 2y. Note that,
in view of the above discussion, one has always Norm (¢) = +1.

For the computation of the integers (Xy,Yy) and (u,v) the following
result is very useful (see [Lev], v. 1, Theorem 9.8).

Lemma 1. — If a and b are rational integers, a > 0 and |b| < /a,
a not a perfect square, all the positive solutions of the Pell-Fermat equation

2t —ay’=b

are such that z/y is a convergent of the continued fraction expansion
of \/a.

Now, from (3) and its conjugate we get

Xo+Yova , Xo "Yox/Ee_n

Y =
e 2/a

e
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(notice that for n = 0 our definition is compatible with the up to now
used notation Yj). Thus, ¥ must be searched among the values of a linear
second-order recurrence sequence (Y3 ).ez, defined as follows:

Yy as already defined, Y; = uYy +vXp and Y, = 2uY,_1 — Ya—2

(as it is well-known, the recursive relation comes from the equation of
£: €2 = 2ue — 1). Therefore, y must be equal to some y, (n € Z), where

vo = Yy/2, y1 = (uYo +vXy)/2, and yn = 2uypn—1 — Yn—2.

We have reduced our problem to the following: find all the elements of
a given binary recursive sequence which are only composed of some fixed
primes. To solve this problem, we consider this recursive sequence modulo
"well-chosen” numbers M. Modulo any integer M, this recursive sequence
is periodical and the set of its values can be easily computed. To conclude,
we gather the information obtained for suitable moduli M.

1. The case (0,0,0,0): a=1.

The quadratic equation is z2 — z + 1 = y?, and it is easy to prove
that the only solutions are z = 0,1, y = 1 (recall that we always suppose
y > 0 ), so that

2 +1=1lor2.

2. The case (1,0,0,0): a=3.

Wehave Xo =3, Yo=2,u=T,v=4,
and, therefore, the recursive sequence is defined by

Yo=1, y1 =13, yn = 14yn—1 — Yn-2.
One verifies immediately that 7 and 19 never divide y, and that
13|y, = n=1 (mod3), 13%|ly, = n =19 (mod 39).
Modulo 17 we have
13™ € {1,13,16,4} andy,, = 13™ = n=1,7 (mod9)andm =1 (mod4).

Modulo 233 : n = 19 (mod39) = y, = 13 x 121, 13 x 224, but
m =1 (mod4) = 13™ mod 233 ¢ {13 x 121, 13 x 224}.

This proves that there is no solution with m > 1. The only solutions
are

y=1and y =13,

which correspond to z = —1,2,23, —22 and
3 +1=0,9,12168(= 2% - 32 . 13%), —10647 (= —32 - 7 - 132).
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3. The case (0,1,0,0): a=T.
We have Xo =37, Yp = 14, u = 127, v = 48,

and the recursive sequence is defined by
Yo =T, y1 = 1777, yn = 254Yn—1 — Yn-2.

One verifies that 7|y, = n = 0(mod7) and 13|y, = n = 5(mod 7); this
shows that the study splits into two cases:

() y=7"-19"", (i) y=13".19™".
Consider first the case when m" = 0, that is to say:
(i0) y=7", (i.0) y=13".

In the case (i.0) the scheme is the following,

M=127T=n=0,3 (mod4) and m = 1,0(mod6),

M=49and m >1=n=7T (mod49),

M =97and n =7 (mod49) = y = 39 (mod 97) and
m = 65 (mod 96),

so that the only solution is m = 1, which corresponds to y = 7 and
r = —18,19 and

3 4+1=-5831=-72-17 or =680=2-5-7°.

In the case (i1.0), we argue as follows,

M=8=n=1 (mod2) and m' = 0(mod2),
M =127 and n =1 (mod2) = n = 3 (mod4) and m' = 0 (mod 3),
M =T7and m' =0 (mod6) = n =6 (mod7) = y, =1 (mod 13),

sothat m' =0, y=1,z=-2andz=3, 2 +1=-7and 23 + 1 = 28.
Now suppose m" > 0. Taking M = 19, we see that n =1 (mod 3) so that

y =2 (mod 5) and m or m' is odd.

The choice M = 17 shows that there is no solution in case (i), since
n=1(mod3) =y =9 (mod17) and m = 0 (mod 2).

In case (i1), we argue as follows:
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19 and m" > 0= n =1 (mod 3),

5and n =1 (mod3) = y, =2 (mod5) = m' =1 (mod 2),

17and n =1 (mod3) = y, =9 (mod 17) = m" =1 (mod 2),

132 and m' > 2 = n = 40 (mod 91),

192 and m" > 2 = n = 34 (mod 171) = n = 15 (mod 19),

4 and m" =1 (mod2) = y, = -1 (mod4) = n =0 (mod 2),

M =53, n =15 (mod19) and n =0 (mod 2) = y, = 25 (mod 53)
= m" =0 (mod 2) : contradiction. Therefore m' € {0,1}.

M =151, n =40 (mod91) and n =0 (mod 2) = y, = 72 (mod 151)

= m' = 0 (mod 2) : contradiction. Therefore m" € {0,1}.

Now, one verifies that the only solution is y_, = 13 - 19, which gives
z = 654, —653 and

22 4+1=5-7-132.19%2-131, —22.7-13%-19? . 163 respectively .
4. The case (0,0,1,0) : a = 13.

Then Xe =T, Ya=2 u=049 n= 180,
and the recursive sequence is defined by

I I | I | A

IR

Yo =1, y1 = 1279, yn = 1208yn—1 — yn-2-
If 7 divides y, then n = 2 (mod4) but if 19 divides y, then

n = 9 (mod 10), so that there are two cases
() va=7"-13" and (i) yo=13"-19™" with m" > 0.

In the first case the argument is the following,

M =5= m=m' (mod2),

M =8 and m = m' (mod2) = n = 0,3 (mod4),

M =7and n=0,3 (mod4) = m =0,

M=9and m=0= m'=0 (mod3),

M =13 and m' > 0 = n = 11 (mod 13),

M =79 and n =11 (mod 13) = y, = 13 (mod 79) and
m' =1 (mod 3),

SO tb&at the only solution is m = m' = 0, which gives y = 1, z = —3 and
z =4,
z® +1=-26 and z° + 1 = 65.

In the second case, we have n = 9 (mod 10), so that M = 5 implies
that m' is even. Then, a glance at M = 59 shows that n = 3 (mod4). On
the other hand,

M =11 and n =3 (mod4) = m" =1 (mod 2),
M=13and m' > 0= y, =0 (mod13) = n = 11 (mod 13),
M =53 and n =11 (mod 13) = y, = 16(mod 53) = m" even,
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a contradiction. Thus, m' = 0.
M =109 and n =9 (mod 10) and m' = 0 = m" = 1 (mod 36),
M =19 and m" > 2 = y, =0 (mod 19?) = n = 11 (mod 38)
= yn = 13 (mod 37) = m" = 25 (mod 36), a contradiction.
This shows that the only possibilities are m' = 0 and m" = 1, so that
y = 19, z = —68 and z = 69, which gives
2 +1=-314431 = —13-19? .67 and 2* + 1 = 328510 = 2-5-7- 13 - 19%.
5. The case (0,0,0,1): a = 19.
In this case Xy = 61,Yy = 14, u = 57799, v = —13260 and the
recursive sequence is given by
Yo =17, y1 = 163, yn = 115598ypn—1 — Yn.

It follows that y, = 7 (mod 13) and we have only to consider the equation
Yn =T™-19™" with m+7m” =1 (mod 12).

If 19 divides y,, then n = 3 (mod 19) and y, = 9 (mod 37), which
implies m+m" = 2 (mod 3); this contradicts m 4+ 7m" = 1 (mod 12). Thus
m'" = 0.

Now, our solution goes as follows,

M =T7and m # 0= n=0(mod2),

M =9and m =1 (mod3) = n =0 (mod3),

M =11 and n =0 (mod6) = m = 1 (mod 10),

M =17 and n =0 (mod2) = m = 1 (mod 16),
m =1 (mod40) = y, = 7" =7 (mod41) = n = 0,4 (mod 21)
= n =0 (mod7) [since 3 divides n]
M=499andm>2=n=8,22 (mod28) = n # 0 (mod7),

a contradiction. Then m € {0,1}, so that the only solution is
y =7, r = —=30 and z = 31, which gives
22 4+1=-26999 = -72-19-29 and z®+1=29792=2%.7%.19.
6. The case (1,1,0,0): a = 21.

In this case Xy = 9, Yy = 2, u = 55, v = 12 and the linear recursive
sequence 1s

LTI

yo=1, y1 =109, yp = 110ypn-1 — yn.
If 7 or 13 divides y,, then n = 3 (mod 7) and 43 divides y,. Thus, we

have only to consider the equation y, = 19™" . Since y, = 1 (mod4) for
every n, we see that m" is even.

Now, if 19 divides y, then n = 2 (mod 5) and y, = 12 (mod 29), which
is got a square mod 29. This shows that m" = 0. Weget y =1,z = —4
and r = 9,

241=-63=-32-7 and z°+1=126=2-32.7.
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7. The case (1,0,1,0): a = 39.

In this case Xo = 306, Yo = 49, u = 25, v = 4 and we see that Y, is
odd for every n. There is no solution.

8. The case (1,0,0,1): a = 57.
Here, Xo =15, Y5 =2, u = 151, v = 20 and
Yo = 11 hn= 301, Yn= 302yn—1 = Yn-2.

It is easy to verify that
19 divides y,, = 37 divides y,, 7 divides y, = 43 divides y,,

so that we only have to consider the equation y, = 13™ . We notice that

Vn,yn = £1 (mod 151), so that m' = 0(mod 75).

Then,
m' =0 (mod 3) = y, =1,10,19 (mod 27) = n = 0,2 (mod 3),
but since y_(n41) = yn We may suppose n = 0 (mod 3),

m' = 0 (mod5) and n = 0 (mod 3)
=yn = 1 (mod 11) and n = 0 (mod 6),
n=0(mod6) =y, =1 (mod43) = m’' =0 (mod 7)
m' > 0 and n =0 (mod2) = n = 10 (mod 14)
=Yn = 5,24 (mod 29),

and the last congruences are impossible since m' = 0 (mod 7). This proves
that y=1and z = -7 or z = 8§,

2 4+1=-2-32.19 or z2*+1=3%.19.

9. The case (0,1,1,0): a=091.
Then, X =19, ¥, = 2, u = 4954951, v = 519420 and

Yo = 1, 9 = 9889441, Un = 9909902 Un=1 — Yn-2,

and it is easy to verify that 19 never divides y,, so that we only have to
consider

o = 7™ 18™.
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Since y, = 1 (mod 44) for all n, we see that the exponents m and m'
must be even. This implies y, = 1 (mod 8) and n = 0,1 (mod 4).
Modulo 31, the period is 8 and y, is not a square for n = 4,5, so that
n=0,1(mod8), y, =1 (mod16) and m' = 0 (mod 4).
But y, must be a square modulo 787, and we have indeed n = 0 (mod 8).
Notice that

m > 0 and n =0 (mod2) =n = 6 (mod 14) = y, = 13 (mod 29) =
=m' =1 (mod 2),

which contradicts the fact that m' is even: necessarily m = 0, y, = 13™ .

Now

m' >0and n =0 (mod2) =n =6 (mod26) = y, = 4 (mod 53) =
=m' # 0 (mod4),

again a contradiction: m' = 0 too. We get y =1, z = =9 or z = 10,
2’ +1=-2-7-13 or 2°+1=7-11-13

10. The case (0,1,0,1): a=133.
Then X, = 23, Yy = 2, u = 2588599, v = 224460 and

yo =1, y; = 5169889, y, = 5177198 yn—1 — Yn-2,

and y, is always a non-zero square modulo 13, so that
Yn = T™-19™" with m = m" (mod 2).

Since m and m" are of the same parity, y, must be a square modulo
43, and this implies that n is even. Now

n=0(mod2) =y, =1 (mod5) = m" =0 (mod?2) and m = 0 (mod 4).

& Since m, m" and n are even, a glance at M = 8 shows that 4 divides n,
an

n=0(mod4) = y, =1 (mod13) = m + Tm" = 0 (mod 12),

so that m and m" are both multiples of 4.
Now we see that m" = 0, because

m" > 0= n=8(mod19) = y, =9 (mod 113),
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which contradicts the fact that m and m' are both multiples of 4. It
follows that m is a multiple of 12.
The conclusion is easy:

M=11:n=m=0 (mod2) = n=0,1 (mod5),

M =31:n=0,1(mod5) and m =0 (mod3) = n = 0 (mod 5),

M =139:m>0and n =0 (mod10) = n = 10 (mod 70) =
=yn = 108 (mod 139),

but 108 is not a square modulo 139. Thus, m = 0 and we obtain y = 1,
z=-11,12 and

22 +1=-2-5-7-19 or z°41=7-13-19.
11. Tha case (0,0,1,1) : a = 247.

One verifies that X = 1163, Yy = 74, u = 14549450527,
v = —925759368 so that the linear recursive sequence is defined by

yo = 37, y1 = 597007, yn = 29098901054 yn-1 — Yn—-2-

Since for all n,y, = 37 (mod 67) the exponents m and m' are of the same
parity, and

m = m' (mod2) = y, is a square modulo 5 = n = 2 (mod 3),
n=2(mod3) =y, =58 (mod 109) = m' £ m"” (mod 2),
m=m' #m" (mod2) = y, = 3 (mod8),
which is impossible: there is no solution.
12. The case (1,1,1,0): a = 273.
Here, X =33, Y3 =2, u = 727, v=44 and
Yo =1, y1 = 1433, yn = 1454 yn-1 — Yn-2.
When 7 divides y,, then y, is a multiple of 43, therefore

yn = 13"‘, y lgm”.

Since y, = 1 (mod 44) for all n, the exponents m' and m'' are both even.
We remark that

m'>0=n=6(mod13) = y, = 85 (mod 103),

and 85 is not a square modulo 103; hence m' = 0. Moreover,
m">0=>n=1(mod3) = y, =3 (mod5),

and 3 is not a square modulo 5; hence m" = 0. Weget y =1, z = —16 or
z =17 and

P b lw=-32.5:7-18 or 2°+1=2-3%-7-18.
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18. The case (1,1,0,1): a = 399.

There is no element in Z [\/399] of norm —3 (apply e.g. Theorem
108 a of [Na]) and thus no solution.

14. The case (1,1,1,1): a = T41.

Here X, = 3321, Yp = 122, u = 7352695, v = 270108.
Since 122 and 270108 are both divisible by 61 one sees that y, is
always a multiple of 61, and consequently there is no solution.

15. The case (0,1,1,1): a =1729.
Here X, = 122831, Y, = 2054, u = 44611924489705,
v = 1072885712316.
As usually, yo = Y5/2, y1 = (uYy + vX()/2 and yn = 2uyp—1 — Yn—2. We
notice that,
M =5:Vn,y, =+2=>m+m' =1 (mod2),
M=11:Vn,y, =3=>m+m' + m" =0 (mod 2),
(so that m" is odd),

M =49:m >1=n =21 (mod49) = y, = 13 (mod 97)
=>m+m'+m" =1 (mod2): contradiction (m < 1),
M=4:m=m"=1(mod2) =y, =1 (mod4) = n =0 (mod?2),

M =109:n=0 (mod2) = m'+ m" =0 (mod2) = m' =0 (mod 2).

Thus, m = 1 (mod2) = m' = 1 (mod2) which contradicts the relation

m' + m" =1 (mod 2). It follows that m is even and, since m < 1, m = 0.
Thus m = 0 and m' =m" =1 (mod 2).
We have,

M=8:m'=m"=1(mod2) = n=1(mod4),
M =109:n =1 (mod4) and m' =m"” =1 (mod2) = n = 5 (mod 12),
M =17:n=5 (mod12) = y, =6,8,13
= 4m' + 14m" =15,10,1 (mod 16) = 4m' + 14m" = 10 (mod 16)
= n =29 (mod 36) and m" = 3 (mod 4),
M =37:n =29 (mod36) = y, =12 (mod 37) = m' + m"” = 2 (mod 3)
M =73 : n = 29 (mod36) = yn = 34,39 (mod 73)
= m'+m" =1 (mod3),

which contradicts the relation m’' + m" = 2 (mod 3) obtained just above.
There is no solution.
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16. The case (1,1,1,1): a = 5187.

Then Xy = 72, Yy = 1, u = 3457, v = 48. There is no solution since
Y is always odd.
We gather our results in a table where we give all the solutions of the
equation
2 4+1=42*3"5°7"11*13/ 177 19",

T z* +1 a b c d e ¥ g h
-22 —10647 0 2 0 3 0 v 0 0
-18 —5831 0 0 0 3 0 0 1 0
-16 —4095 0 2 1 1 0 1 0 0
-11 —-1330 1 0 1 1 0 0 0 1

-9 —T28 3 0 0 1 0 1 0 0
-7 —-342 1 2 0 0 0 0 0 1
—4 —63 0 2 0 1 0 0 0 0
-3 —-26 1 0 0 0 0 1 0 0
-2 -7 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0

1 2 1 0 0 0 0 0 0 0

2 9 0 2 0 0 0 0 0 0

3 28 2 0 0 1 0 0 0 0

4 65 0 0 | 0 0 1 0 0

5 126 1 Y 0 1 0 0 0 0

8 513 0 3 0 0 0 0 0 1

10 1001 0 0 0 1 1 1 0 0
12 1729 0 0 0 1 0 1 0 1
17 4914 1 3 0 1 0 1 0 0
19 6810 2 0 1 3 0 0 0 0
23 12168 3 2 0 0 0 2 0 0
31 29792 5 0 0 2 0 0 0 1
69 328510 1 0 1 1 0 1 0 2
Consequence:

Pz +1)>31 if z>69 or z < —22.
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2. A lower bound for P(z? + 2)

In this section we want to find all the integer solutions of P(z3+2) < 7.
Since the prime 7 never divides z* + 2 this condition is equivalent to the
set of systems

z* - Dy* = -2, P(y)<5,

where D is cube-free and P(D) < 5.

Looking modulo 4, one sees that 4 does not divide D and that y
must be odd. Modulo 9 the cubes are 0,41, so that D mod 9 is dif-
ferént from 0, 4 and 5. We have only to consider the ten cases D =
1,2,3,6,10,15, 25, 30, 75, 150.

We work in the fields Q(©), where © = 3/D and we replace each of
the previous systems by the unique equation Norm(z + y©) = —2. It is
well known that the group of units of any order of such a field is of rank
one and we shall choose a fundamental unit € with norm equal to 1.

We put € = u + vO + wO?, where ¢ is a fundamental unit of Z[O)] or,
sometimes, of the maximal order of Q(©), if this makes the computations
simpler.

The following lemma (proved in [Bo & Sh], chap. III, §7.1.) will also
be used.

Lemma 2. — Let Ok be the ring of integers of a number field K.
Suppose that p is a prime number, and that p;,...,px are the prime
ideals of Ok of norm p. Then each element of Ok of norm equal to +p
belongs to some p; and each p; contains at most one class of associate
elements of Ok of norm +p.

When D is odd, the polynomial X3 — D has only one linear factor
modulo 2, and there is one ideal of the field Q(©) of norm 2. When D
is even, then 2 is totally ramified and there is again only one ideal of
norm 2. Lemma 2 implies that the set of the solutions of the equation
Norm(f) = —2 in integers § of Q(©) is either empty or equal to the

set of values ae™, where a is fixed with norm equal to —2 and n runs
through Z.
We put @ = a + b0 + cO? and

ac™ =z, + yn© + 2,02, for every n € Z,

so that (z,) is a linear recursive sequence and we want to find all its zeroes.
We notice that

20 =c¢, 21 =aw+ bv+ cu,

29 =cu? + av? 4+ Dbw? + 2buv + 2auw + 2Dcvw,
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and since € = 3u - &% 4+ 3(Dvw — u?) - £ + 1, the z,'s satisfy the following
linear relation

Zp43 = U- Znt2 + V. Zn4+1 + Zp, withU=3uand V = 3(Dvw =— uz).

Remark. If ¢ = 1 (mod2) then 2, = 2z (mod2) for all n, so that in
that case z, is never zero when the first term zy is odd.

To find all n € Z for which z, = 0 (these n’s will be called the zeroes
of this sequence) we propose the following method which, in general, can
be adaptated to linear sequences of arbitrary order.

Suppose that some preliminary computations furnish us a set I of
zeroes 1 € Z of the sequence and that we want to prove that these are the
only zeroes. Then we can apply the following theorem.

Theorem. — Let p be an odd prime and k a positive integer such
that e¥* = N (modp) with a rational integer N. Let M € Z such that
M- N =1 (modp?). Put €* = N + p), where ) is an algebraic integer.
Suppose that the following conditions hold:

(c1) p does not divide Norm()) (this is the norm from Q(©) to Q),

(c2) z, =0 (modp) = n =1 (mod k) for some i € I,

(c3) M - 295 4i = 2244; (mod p?) for every i € I,

(c4) for every i € I, p* does not divide zj4;.

Then, z, =0=>necl

PROOF. Suppose that z, = 0. In view of (¢2), n = m - k + ¢ for some
1 € I and m € Z, and it suffices to prove that m = 0.

Write M -e* = 1 + pB for some algebraic integer § € Q(©). We have

7€km+i +7£lkm+s +7H nkm-4i

Zkm4i = 3

where 7 is some algebraic number and 4',4" are its conjugates. Therefore,
(1) M™ - zimpi = w(1+ pB)™ +w'(1+ pB')™ +w"(1 + pB")™ =: f(m)

for suitable algebraic numbers w,w’,w".
We can view (1) as a relation in the p-adic field C,. On expanding
the binomials in the right-hand side of (1), we get

f(m) = Zp’( )b +'8 +ug") = Zp’(J)

where we have put Q; = wf? + w87 +w"". One the other hand,

B =pi{(1+pB)—1) =p~7 ) (1)~ (D(l +pB)*,
h=0
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and in view of (1) and the definition of {;,
A il
oar) 1=
2  9=p g( 1) (h)f(h)-

In view of (2), we get

(3) Qo = f(0) =z =0,
(@) s-21=J‘(l)—f((l)=1'*4'4‘H=+i—zi=1V-"4'=k+i,
P P p
i f(2) - 2f(1) + f(0) - M? - 23444 "‘2M'zk+i.
p? p?
Moreover,

Zhti = ‘}’Sk'H +7:£rk+i 1 7nsnk+s‘ EN(‘}'&‘ + 7t€u' 4 7"6'“) =
=N2z; =0 (mod p);

therefore §2; is a rational integer. In view of (¢3), {2; belongs also to Z.
Suppose now that g% = A%+ BB+ C, with A, B,C, € Z, is the character-
istic equation of the algebraic integer 4. We claim that p does not divide
C. Indeed, p divides C iff it divides the norm of 3. But, ¢¥ = N + p)
and 1+ pB = Me* = MN + pM\ =1+ pM) (mod p?), so that 8 = M)
modulo p, and since Norm(MA) = M*® Norm()) # 0 (mod p), our claim
is proved.

The formula Q413 = AQj42 + BQj41 + CQ; for every j in Z shows
that all the 2’s are p-adic integers. Consider now f(m). In view of (3)
and (4), we have

m m
. m &
(8) f(m) =0= Qe+ pm, +ZPJ(J)QJ — Mmzk+g+2p-' (T)Q’
=2 1=2
Suppose for the moment that m # 0 and let p"||m, r > 0. It is easy to see

that ,
ordy(pP’m/jl) > j+r—j/(p—1) (2r+2if j24).
Also, it is straightforward to check that ord,(p’m/;j!) > r +2 for j = 2,3.

Henceforth,
ord, (p’(m)) >r+2 forj > 2,
J
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and since the s are p-adic integers it follows by (5) that ord,(Mmzi4;) 2
r + 2, which is equivalent to ord,(zx4;) 2 2, in contrast to (c4). This
contradiction proves that m = 0, as required.

The followi a.lf
values of D. In all these cases, it is straig

ng table shows how we apﬁly the above theorem for various

tforward to check the validity of

conditions (c1) and (c2) (remark: to check the validity of (cl) it suffices

to know A modulo p, i.e. €¥ modulo p?)

D |(a,b,c) | (u,v,w) |(20,21,22) | (U,V) | (p,k) |(N,M) | A mod p
2| (0,1,0) Hiaa) (0,1,4) (3,3) (3,3) (1,1) 20+0?
31(-1,1,0) | '(4,3,2) (0,1,11) (12,6) |[(61,60) [ (1,1) 210+200?
6 |(2,-1,0) | *(1,-6,3) (0,12,42) (3,-327) | (37,12) | (10,100) | 21©+1967

10 | (2,-1,0) | %(1,6,-3) | (0,-12,—42) |[(3,-543) | (3,1) (1,1) 20-6?

25 | (3,-1,0) |3(1,2,-4/5) | (0,—42,— %) | (3,-123) | (67,22) (1,1) -80-1107

D |i € I|zk4; mod p? | 244 mod p?

21 & -3 3
3| o 61 122
6| o 37 —629

10| o -3 3

25| o -1072 —-2144

': u 4+ v0O + wO? is a fundamental unit of both Z[O] and Q(O),

?: u+v0 + wO? is a fundamental unit of Z[O] but not of Q(O),

3:u+v0 +wO?-is a fundamental unit of Q(O), which does not
belong to Z[O)].

As we see from this table, the conditions (c2) and (c3) are satisfied for the
above values of D.

The cases D = 1, 15, 30, 75, 150 remain.

The case D =1 is trivial:
We have to solve 23 — y* = —2. This gives z = —1 and z° +2 = 1.
Also, the case D = 75 does not give any solution, because in this case

e = 1081 — 3120 + %992 =1 (mod2), a =22 - 0O + O?
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and, according to the remark preceeding the theorem, there is no n with
2, = 0.

In cases D = 15,30 and 150 there is no element in Z[O] with norm
-2.

In general, the problem of determining a complete set of pairwise
non-associated elements of an order with given norm (or of deciding that
such a set is empty) can be effectively solved; see for example [Bo & Sh],
ch. 2, §5.4. In the Appendix below, we describe the way we worked in our
particalar case.

To summarize, to solutions of P(z* +2) < 7 are

t=-3,242=-25z=-2,z2+2=-6;z=-1,z2> +2 =1;
1:=0,.1:3+2=2;a:=1,1:3+2=3; =222 +2=10.

Thus, P(z3 +2)>11ifz < -3 orz > 2.
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Appendix

Searching for the integral elements of a cubic field of
negative discriminant, with a given norm

Let K = Q(©) be a cubic field with negative discriminant. For a € K,
we denote the conjugates of a in C by a’) € R, a®,af®. Let O be the
ring of integers in K.

The foﬁowing method has been used to find all elements in K of norm
C (in our case C = 2). If @ € K is of norm C € Z, then there is a principal
ideal in O of norm |C'|. Let

K
IC|=]]»"

t=]

be the decomposition of |C | into prime numbers p; and let

gi
pi0 = H ©i; Y
Jj=1

be the decomposition of the principal ideals p;O into a power product of
prime ideals of O. Let f;; be the degree of the residue class field O/p;;,
i.e. the norm of p;j is Np;j =pifi (1<i<k, 1<j<gi).

Since K is a cubic field, this decomposition can be obtained very easily
(see [De & Fa)]). It is then an easy matter to determine the finite set S
of all the ideals of norm |C |. This is particularly easy, if |C| is a prime
number and in this case, S contains at most three elements.

If S is empty, then there is no element in K of norm C. Otherwise we

determine the set i ¢
R = {—O,..., ——0}
H1 Hr

of all the reduced principal ideals of O. Here u; € O for 1 < i < r. For
every a in S we also calculate a reduced ideal a' = éa in the equivalence

class of a. If a is equal to ,-‘1-',-0 for some ¢ € {1,...,r} then a is principal
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and 4 = a/py; is of norm | C'| and we can easily check whether N(vy) = C.
The calculation of the reduced ideals is described in [Bu & Wi].
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