
Publ. Math. Debrecen

51 / 3-4 (1997), 205–224

On functions continuous on certain classes
of ‘thin’ sets

By WOLFGANG RING (Graz), PETER SCH�OPF (Graz) and
JENS SCHWAIGER (Graz)

Abstract. Continuity properties of functions with continuous restrictions to cer-
tain classes of ‘thin’ sets are considered. By construction of an explicit counterexample
it is shown that continuity of the restriction to neither of the following classes of sets is
sufficient to guarantee continuity of a real-valued function on the plane: (real) analytic
images of compact intervals, zero sets of real analytic functions in two variables and
regular C1,α-images of compact intervals. However, continuity of a real-valued func-
tion in two variables along all regular C1-curves implies its continuity. In addition it
is shown that a function which is continuous on the boundary of some ball of positive
radius in a Hilbert space, or even — in the finite dimensional case — on the boundary
of a bounded open set must be continuous if it satisfies a Cauchy-type functional equa-
tion. In dimension two the same result can be obtained if the set on which continuity
is required is connected and contains three noncollinear points.

1. Introduction

In [Z] F. Zorzitto showed that every function f : C → C which
satisfies the Cauchy equation

(1) f(x + y) = f(x)f(y)

and is continuous on circles has necessarily to be continuous globally. He
wrote: “The above proof leads one to speculate, out of mere curiosity,
whether any function f : C → C, having continuous restrictions to all
circles in C, can still possess a point of discontinuity.”

In Section 2 we deal with the problem of constructing several discon-
tinuous functions which have continuous restrictions to certain classes of
‘thin’ sets, all of them including the class of circles Zorzitto was curious
about. More specifically we give an example of a discontinuous function
f : R2 → R with continuous restrictions f |γ(I) (f |Na resp.) for every an-
alytic image γ(I) of a compact interval I and for every zero-set Na of an
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arbitrary (non vanishing) real analytic function a(x, y) in two variables.
Under the additional regularity assumption that γ̇(t) 6= (0, 0) for all t ∈ I,
we can drop the requirement of analyticity for γ assuming only that γ is
taken from some Hölder-class C1,α with α > 0.

In contrast to these counterexamples we show in Section 3 that any
function f : R2 → R, for which all restrictions to arbitrary regular C1-
images of compact intervals are continuous, has to be continuous itself.

The last Section 4 is devoted to the study of continuity properties
of functions satisfying a generalized form of the functional equation (1).
Problems of similar structure, dealing with Jensen-convex functions in-
stead of solutions of the Cauchy equation (1), were considered by Ger
[G1], [G2] and Kuczma [K].

2. The counterexamples

We consider the well-known function ϕ : R→ R, defined by

(2) ϕ(x) :=
{

exp(−x−1) x > 0
0 x ≤ 0.

This function is of class C∞ with ϕ(n)(0) = 0 for all n. We also note
separately the important property that for all n ∈ N0

lim
x→0
x6=0

ϕ(x)
xn

= 0.

(This is used to establish the relations ϕ(n)(0) = 0 mentioned above.)
Using this we may define ψ : R→ R by

(3) ψ(x) := 1− ϕ(x2)
ϕ(x2) + ϕ(1− x2)

.

Again, ψ is (well-defined and) of class C∞. Moreover

0 ≤ ψ ≤ 1, ψ(0) = 1, and ψ(x) = 0 outside [−1, 1].

This is used for the definition of the function f : R2 → R:

f(x, y) :=

{
0 x ≤ 0

ψ
(

2
ϕ(x)

(
y − 3

2ϕ(x)
))

x > 0.
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Remark 1. By the properties of ψ it follows easily that f vanishes
outside the closed set A defined by

(4) A := {(x, y) ∈ R2 | x ≥ 0, ϕ(x) ≤ y ≤ 2ϕ(x)}.
Moreover, 0 ≤ f ≤ 1, f(0, 0) = 0 and f(x, 3

2ϕ(x)) = 1 for all x > 0.

Lemma 1. The function f is of class C∞ on R2 \ {(0, 0)} and discon-
tinuous at (0, 0).

Proof. Obviously f is C∞ on the open set R2 \ A since it is zero
there. Moreover it is clear from the definiton that f is C∞ in the right
halfplane. Therefore f is C∞ on the union of these two open sets, which
is R2 \ {(0, 0)}.

Finally, f is discontinuous at (0, 0), since f(0, 0) = 0 and
lim

x→0+
f(x, 3

2ϕ(x)) = 1. ¤

The function f is constructed in such a way that a curve which is
either an analytic image of an interval or part of the zero set of an analytic
function in two variables and which passes through the origin cannot do
so from within A. This property of f is the essential point in the proof of
the following two theorems.

Theorem 1. Let I ⊆ D ⊆ R with D open and I compact. Let
furthermore γ : D → R2 be (real) analytic and denote by γ(I) the image
of I under γ. Then the restriction f |γ(I) is continuous.

Proof. We write γ(t) = (γ1(t), γ2(t)), where γ1, γ2 : D → R are real
analytic. Since f is continuous on R2\{(0, 0)} the assertion of the theorem
is obviously true if (0, 0) /∈ γ(I). Thus we may suppose that (0, 0) ∈ γ(I).
If, in this case, γ(I) ⊆ R2 \ A◦ we conclude that f

∣∣
γ(I)

= 0 and thus
continuous. Here A◦ denotes the interior of A. So we are left with the case
γ(I) ∩A◦ 6= ∅.

This means that both γ1 and γ2 are different from zero and that there
is some t̃ ∈ I such that γ1(t̃ ) > 0 and ϕ(γ1(t̃ )) < γ2(t̃ ) < 2ϕ(γ1(t̃ )). In
particular γ1, γ2 are not constant. Since I is compact and γ1 is analytic,
there are only finitely many zeroes t1, t2, . . . , tr of γ1 in I. Now, for 1 ≤
i ≤ r we have representations

(5)
γ1(t) = (t− ti)σiγ1,i(t− ti),

γ2(t) = (t− ti)τiγ2,i(t− ti)
(σi ∈ N, τi ∈ N0),

where γ1,i(0), γ2,i(0) 6= 0 for 1 ≤ i ≤ r.
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Now, choose m ∈ N such that mσi > τi for all i. Due to the continuity
of the functions γj,i there are positive reals M1,M2, δ0 such that for all
1 ≤ i ≤ r and all t ∈ I we have that |t− ti| < δ0 implies

|γ2,i(t− ti)| > M2 and |γ1,i(t− ti)| < M1.

Then, for 0 < δ < min(1,M2/M
m
1 , δ0) and 0 < |t− ti| < δ

|γ2(t)| = |t− ti|τi |γ2,i(t− ti)| ≥ |t− ti|mσi−1
M2

> |t− ti|mσi−1 (δMm
1 ) > |t− ti|mσi Mm

1

> |t− ti|mσi |γ1,i(t− ti)|m = |γ1(t)|m .

For ε > 0 put Tε :=
{
t ∈ I

∣∣ |γ1(t)| < ε
}
. Then Tε is contained in the union

Kδ :=
⋃r

i=1]ti−δ, ti+δ[ provided that ε is sufficiently small. (For otherwise
we could construct a sequence (sn) of reals contained in the compact set
I \ Kδ, converging to some t0 ∈ I \ Kδ, such that limn→∞ γ1(sn) = 0 =
γ1(t0) contradicting the fact that t1, t2, . . . , tr is the set of all zeroes of γ1

in I.)
Taking into account the properties of the function ϕ we may choose

0 < ε < 1 such that

Tε ⊆ Kδ and 2ϕ(|x|) ≤ |x|m (|x| ≤ ε).

Thus t ∈ I and |γ1(t)| < ε implies t ∈ Tε and

|γ2(t)| > |γ1(t)|m ≥ 2ϕ (|γ1(t)|) .

But this means that γ(I) ∩ ( ]−∞, ε[ × R) ∩ A◦ = ∅. Accordingly f is
continuous on γ(I)∩( ]−∞, ε[×R) as it vanishes on this set. But obviously
f is also continuous on γ(I) ∩ ( ]0,∞[× R). So f

∣∣
γ(I)

is continuous. ¤

Now we consider the restrictions of f to locally analytic sets.

Theorem 2. Let D ⊆ R2 be an open set and assume that a : D → R
is a real analytic function, a 6≡ 0. Moreover let

Na := {(x, y) ∈ D
∣∣ a(x, y) = 0}.

Then f |Na is continuous.

Proof. The assertion is obviously true whenever (0, 0) /∈ Na. Thus
we suppose that (0, 0) ∈ Na.

If, in this case, Na is contained in the complement of A◦, we have that
f vanishes identically on Na, implying continuity.
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Otherwise we have Na ∩ A◦ 6= ∅. It is enough to show continuity of
f
∣∣
Na

at (0, 0). We can assume that the power series representation of a at
(0, 0) given by

(6) a(x, y) =
∑

i,j≥0

ai,jx
iyj ,

is absolutely and uniformly convergent on Qδ = [−δ, δ] × [−δ, δ] for some
δ > 0. Without loss of generality we may also assume that a (as given in
(6)) is neither divisible by x nor by y. If, for example, a(x, y) is divisible by
x, we could write a(x, y) = x`b(x, y) with ` ≥ 1 and b(0, y) 6≡ 0. Putting
c(x, y) := x` this would imply Na∩Qδ = (Nb∪Nc)∩Qδ. But Nc = {0}×R
and f is continuous on the y-axes (and, as for the divisibility by y, on the
x-axes as well). Thus f is continuous on Na at (0, 0) iff it is continuous on
Nb at (0, 0). This and a(0, 0) = 0 implies that

(7) a0,0 = 0 and a0,`, an,0 6= 0 for some `, n ∈ N.

We will now show that there is some integer m ≥ 1 and some ε > 0 such
that

|x| < ε and a(x, y) = 0 implies |y| ≥ |x|m .

This can be seen as follows. The properties (7) imply that

(8)
∑

m≥n

am,0x
m = −

∑

(i,j)∈N0×N
ai,jx

iyj .

for all (x, y) ∈ Na ∩ Qδ, where n ≥ 1 is minimal with an,0 6= 0. We may
rewrite the left-hand side of (8) as

xn(an,0 + an+1,0x + · · · ) = xn(an,0 + g(x)),

where an,0 6= 0 and |g(x)| < |an,0/2| for all |x| < δ, if δ is chosen sufficiently
small. Hence for |x| < δ we have

(9) |xn(an,0 + g(x))| ≥ |x|n (|an,0| − |g(x)|) ≥ |x|n
∣∣∣an,0

2

∣∣∣ .

Now we consider the right-hand side of (8). This expression is not zero
since a0,` 6= 0 and it does not contain any pure power of x. Thus there is
a maximal k ≥ 1 such that the right-hand side of (8) is divisible by yk.
This yields

(10)

∣∣∣∣∣
∑

(i,j)∈N0×N
ai,jx

iyj

∣∣∣∣∣ =

∣∣∣∣∣y
k

∑

(i,j)∈N0×N
j≥k

ai,jx
iyj−k

∣∣∣∣∣ ≤ |y|k|h(x, y)|,
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with h continuous on Qδ. Let K > 0 be the maximum of |h| on the
compact set Qδ. Combining (9), (10) and (8) gives

|x|n
∣∣∣an,0

2

∣∣∣ ≤ |xn(an,0 + g(x))| =
∣∣ykh(x, y)

∣∣ ≤ |y|k K

for all (x, y) ∈ Na ∩Qδ. If we set M :=
(|an,0/2| K−1

)1/k we get

|y| ≥ M |x|n/k
,

and for m ∈ N, m ≥ (n/k) + 1, and δ < min(1,M) we finally get

|y| ≥ δ |x|n/k ≥ |x|(n/k)+1 ≥ |x|m

provided that (x, y) ∈ Na ∩Qδ.
Now the proof can be finished as in Theorem 1. ¤
Remark 2. 1) The compactness of the interval I in Theorem 1 is

necessary. This can be seen by considering the curve

γ : R→ R2, γ(t) = (cos(t) + cos(ωt), sin(t) + sin(ωt))

with irrational ω. The image of this curve is dense in the disk of radius 2
centered at the origin (and the origin is in the image). Thus f restricted to
γ(R) cannot be continuous. Note, however, that although the restriction
f |γ(R) is discontinuous, the composition f ◦ γ is continuous.

2) Theorems 1 and 2 are not independent. It can be proved that
every analytic zero set is locally the union of finitely many analytically
parametrized curves (c.f. [KP] Theorem 3.2.3, p. 84 and Theorem 5.2.1
p. 153), thus, in fact, Theorem 2 follows from Theorem 1. However, the
proof for this fact requires deep methods from the theory of real analytic
functions and is restricted to dimension n = 2, so we preferred to give
elementary proofs for both cases. It is not known to the authors whether
every analytic curve is locally the zero set of an analytic function, so
conversely Theorem 2 would imply Theorem 1. A counterexample to an
analogous situation is known for 2-dimensional analytically parametrized
surfaces in R3. (c.f. [N] Example 1.4.16, p. 28.)

A modified version of the function f can be be shown to have contin-
uous restrictions to all C1,α-images of compact intervals. We briefly recall
the definition of the Hölder space C1,α(I,R2): Let I be a compact interval
and let 0 < α ≤ 1. Then C1,α(I,R2) consists of all curves γ : I → R2;
γ(t) = (γ1(t), γ2(t)) for which γi ∈ C1(I,R) and there exists a constant
M = M(γ) such that

(11) |γ̇i(t)− γ̇i(s)| ≤ M |t− s|α
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for all t, s ∈ I and i = 1, 2. An important property of C1,α-functions lies in
the fact that the remainder in the first-order Taylor expansion is of order
O(1 + α). Actually we have

(12) γi(t) = γi(s) + γ̇i(s)(t− s) +
∫ t

s

[
γ̇i(ξ)− γ̇i(s)

]
dξ,

and due to (11),

(13)
∣∣∣∣
∫ t

s

[
γ̇i(ξ)− γ̇i(s)

]
dξ

∣∣∣∣ ≤ M |t− s|1+α

for i = 1, 2 and s, t ∈ I.
A curve γ ∈ C1(I,R) is said to be regular if |γ̇(t)| 6= 0 for all t ∈ I.

Let ψ be as defined in (3) and let p : [0,∞[ → [0,∞[ be given by

p(x) := −
∫ x

0

ds

ln s
for x ∈

[
0,

1
2

]
,

and suppose that p is continued outside [0, 1
2 ] in such a way that p is

monotone and C∞-smooth on [0,∞[ . It follows easily by de l’Hospitals
rule that

(14) lim
x→0+

p(x)
x1+α

= ∞

for all α > 0 and

(15) lim
x→0+

p(x)
x

= 0.

We now define the function f̃ : R2 → R in analogy to f as

(16) f̃(x, y) :=

{
0 x ≤ 0

ψ
(

2
p(x)

(
y − 3

2p(x)
))

x > 0.

Note that, by definition, f̃(x, y) = 0 if x ≤ 0 or if y /∈ ]p(x), 2p(x)[ .

Theorem 3. For any α ∈ ]0, 1] the function f̃ has continuous restric-
tions to all regular C1,α-images of compact intervals.

Proof. Let γ : I → R2 be a regular curve of class C1,α. Obviously
f̃ |γ(I) is continuous at every point (x, y) ∈ γ(I) which is not the origin.
We therefore assume that there exists t0 ∈ I such that γ(t0) = (0, 0) and,
as γ is regular, γ̇(t0) = (v1, v2) 6= (0, 0).
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Let us first suppose that v2 6= 0. If we choose some neighborhood Vt0

of t0 small enough that |t − t0|α ≤ min{1, |v2|
2M } is satisfied for all t ∈ Vt0 ,

we can conclude from (12) and (13) that

|γ2(t)| ≥ |v2| |t− t0| −M |t− t0|1+α ≥ |v2|
2
|t− t0|,

and
|γ1(t)| ≤ (|v1|+ M)|t− t0|

holds for all t ∈ Vt0 . Consequently we obtain

(17) |γ2(t)| ≥ |v2|
2(|v1|+ M)

|γ1(t)|

on Vt0 . Now since

p(|γ1(t)|)
|γ1(t)| → 0 for t → t0,

due to (15), we have

(18) p(|γ1(t)|) ≤ |v2|
4(|v1|+ M)

|γ1(t)|

on some neighborhood Wt0 ⊂ Vt0 of t0. Combining (17) and (18) we find

|γ2(t)| ≥ 2p(|γ1(t)|)
and therefore f̃(γ1(t), γ2(t)) = 0 on Wt0 . Hence f̃ ◦ γ is continuous in this
case.

Now assume that v2 = 0. Then v1 6= 0 since γ is regular. Let the
neighborhood Vt0 be choosen in such a way that |t − t0|α ≤ |v1|

2M on Vt0

Then, using again (12) and (13) we obtain

|γ2(t)| ≤ M |t− t0|1+α

and
|γ2(t)| ≤ M

( 2
|v1|

)1+α

|γ1(t)|1+α.

By (14) and since γ1(t) → 0 as t → t0, we can choose a neighborhood Wt0
of t0 so that

p(|γ1(t))|) ≥ M
( 2
|v1|

)1+α

|γ1(t)|1+α.

for all t ∈ Wt0 . We thus have

|γ2(t)| ≤ p(|γ1(t)|)
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and accordingly f̃(γ1(t), γ2(t)) = 0 if t ∈ Wt0 . Hence also in this case we
obtain that f̃ ◦ γ is continuous at t0.

So far we have shown that f̃ ◦ γ : I → R is continuous. It is still
to prove that f̃ restricted to γ(I) is a continuous function. To this aim
suppose that (xn, yn) → (x, y) with (xn, yn) = γ(tn) and (x, y) = γ(t) and
assume that

(19) |f̃(γ(tn))− f̃(γ(t))| ≥ ε for all n ∈ N.

By the compactness of I, we can find a convergent subsequence tnk
→ s

of {tn}. The continuity of f̃ ◦ γ implies that

(20) f̃(γ(tnk
)) → f̃(γ(s)).

Since γ is continuous we also have γ(tnk
) → γ(s). Thus γ(t) = γ(s) in

contradiction to (19) and (20). ¤

Remark 3. By means of the functions f and f̃ we can easily construct
functions F and F̃ respectively which have discontinuities of the above
discussed types at all points of an arbitrary countable set {xn}n∈N ⊂ R2.
In fact, we set fn(x) := f(x− xn) and we define

(21) F (x) :=
∞∑

n=1

1
2n

fn(x).

The series (21) is uniformly convergent on R2, and every function fn is
continuous on R2 \{xn}, hence the limit-function F is continuous at every
point x /∈ {xn}. Let G be either an analytic image of a compact interval,
or the zero-set of a real analytic function. Then every restriction fn|G is
continuous and therefore F is again a continuous function on G. Finally
F cannot be continuous at xn ∈ R2 since it is the sum of the continuous
function

∑
k 6=n

1
2k fk(x) and the discontinuous fn.

The construction of F̃ is completely analoguous.

3. Functions continuous on regular C1-curves
are continuous

In contrast to the counterexamples given in Theorem 1 and Theorem 2
we shall now show that the continuity of f along regular C1-curves implies
its continuity.

Theorem 4. Suppose D ⊆ R2 is open and f : D → R. Moreover
assume that f ◦ γ : I → R is continuous for every regular curve γ : I → D,
γ ∈ C1(I,R2) and I ⊂ R compact. Then f is continuous.
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Proof. Suppose that f is discontinuous at z0 ∈ D. Then there is a
sequence zn ∈ D, zn 6= z0, zn → z0, and ε > 0 such that

(22) |f(zn)− f(z0)| ≥ ε (n ∈ N).

Our aim is to find an appropriate subsequence of {zn} which can be in-
terpolated by a C1-curve γ. Since f is continuous along γ this would
contradict (22).

Before we proceed any further, some technical comments have to be
made. In the following we shall frequently choose subsequences of {zn}
which we shall always denote by the same expression {zn}. Furthermore let
g ∈ C1([−1, 1],R) be given, fulfilling the requirements g(1) = 1, g(−1) =
−1, g′(1) = g′(−1) = 0. For instance we could choose g(x) = 1

2 (3x− x3).
We set

(23) M := ‖g′‖∞ = sup
{ |g′(x)|

∣∣ − 1 ≤ x ≤ 1
}

.

Using polar coordinates centered at z0 = (x0, y0) we can write zn =
(xn, yn) = (x0 + rn cos ϕn, y0 + rn sin ϕn) with rn > 0 and ϕn ∈ T =
R/2π∠Z. From the compactness of the torus group T we conclude that
there exists a convergent subsequence ϕn → ϕ. Without loss of generality
we assume ϕ = 0, for otherwise we could rotate the coordinate system and
use {(cos ϕ, sin ϕ), (− sin ϕ, cos ϕ)} as a new basis on R2. Since ϕn → 0 it
follows that xn − x0 > 0 for sufficiently large n. By taking a subsequence
we can assume that this property holds for all n.

We shall now list several properties which can be supposed to hold for
some subsequence of the current (sub)sequence zn = (xn, yn) and which
remain valid if we take further subsequences.
• Since xn → x0 and xn > 0 we may choose a subsequence such that

(24) xn+1 − x0 <
xn − x0

2
(n ∈ N).

• As yn → y0 there is a subsequence such that

(25) |yn+1 − y0| ≤ |yn − y0| (n ∈ N).

• Since ϕn → 0 we also have tan ϕn → 0 as n →∞. Therefore yn−y0
xn−x0

→0
and we find a subsequence for which

(26)
|yn − y0|
xn − x0

≤ 1
n

(n ∈ N).

For (xn, yn) satisfying properties (24), (25) and (26) we now con-
struct a regular C1-curve γ = (γ1(x), γ2(x)) : [x0, x1] → R2 such that
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γ2(x0) = y0 and γ2(xn) = yn for all n ∈ N. We define

(27) `n(x) :=
2(x− xn+1)
xn − xn+1

− 1 (x ∈ [xn+1, xn], n ∈ N)

and

(28) γ(x) :=





(x, 1
2 (yn − yn+1)g(`n(x)) + 1

2 (yn+1 + yn))

if x ∈ ]xn+1, xn],

(x0, y0) if x = x0

Note that `n : [xn+1, xn] → [−1, 1] is linear, `n(xn+1) = −1 and
`n(xn) = 1. The only delicate points with respect to continuity of γ
and γ̇ are the points x = xn for n ∈ N and the point x = x0. It is
easy to see that γ is continuous at x = xn. For the derivative we find
(29)

γ̇(x) =
(

1, (yn − yn+1)g′(`n(x))
1

xn − xn+1

)
(x ∈ ]xn+1, xn]).

Again we easily find that the left sided and the right sided derivatives
of γ at x = xn exist and that they both equal (1, 0). Thus γ̇(xn)
exists and γ̇ is continuous at x = xn. From (25) we obtain

(30) |yn − yn+1| ≤ 2 |yn − y0| (n ∈ N)

and (24) implies

(31) xn − xn+1 = (xn − x0)− (xn+1 − x0) ≥ xn − x0

2
.

Consequently

(32)
|yn − yn+1|
xn − xn+1

≤ 4
|yn − y0|
xn − x0

≤ 4
n

(n ∈ N).

Due to (26) (using also (23) and (32)) we have

(33)
∣∣∣∣
yn − yn+1

xn − xn+1
g′(`n(x))

∣∣∣∣ ≤
4
n

M for xn+1 < x ≤ xn,

hence (recall (29)) limx→x0 γ̇(x) = (1, 0). It remains to prove that γ
is differentiable at x = x0 and that γ̇(x0) = (1, 0). Obviously only the
second component γ2 of γ has to be considered. For x ∈ ]xn+1, xn]
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we have

|γ2(x)− γ2(x0)|
x− x0

≤ |γ2(x)− γ2(xn+1)|+ |γ2(xn+1)− γ2(x0)|
x− x0

≤ |γ2(x)− γ2(xn+1)|
x− xn+1

+
|yn+1 − y0|
xn+1 − x0

≤ sup
ξ∈[xn+1,xn]

|γ′2(ξ)|+
1

n + 1

≤ 4M

n
+

1
n

by (26), (29) and (32). But this implies the desired properties of γ̇.

Now, for x sufficiently close to x0 we may assume that γ(x) ∈ D.
Thus for some n0 ∈ N the function f ◦γ

∣∣
[x0,xn0 ]

is continuous. This implies
f(zn) → f(z0) as n →∞ since zn = γ(xn) in contradiction to (22). ¤

Remark 4. 1) Once the existence of an appropriate subsequence ful-
filling (24)–(26) is established, we can conclude the existence of an interpo-
lating C1-curve by applying Whitney’s extension theorem (see [N, p. 31]).
But since the character of this paper is constructive we preferred however
to give an explicit construction of γ.

2) We stress the fact that the velocity of the parametrization of the
curves along which f is assumed to be continuous is bounded away from
zero. In fact |γ̇(x)| ≥ 1 would be a sufficient requirement. By this assump-
tion ‘trivial’ interpolating curves, such as C∞-parametrizations of broken
lines with vanishing velocity at the vertices, are excluded. By this argu-
ment one can easily see that if we drop the assumtion of regularity, then
it is suffitient to claim that f is continuous on all C∞ images of compact
intervals in order to obtain continuity of f .

3) The restriction to the two-dimensional case D ⊆ R2 is not essential.
With some minor modifications the proof works for D ⊆ Rn, n ≥ 2. How-
ever it is not clear to the authors what happens in the infinite dimensional
case, since we do not have compactness of the unit sphere in this situation.

4. Functions with a continuous addition law
and continuity on ‘thin’ sets

Here we present a generalization of Zorzitto’s result. We start with
a lemma.

Lemma 2. Let (X, 〈 , 〉) be a real inner product space of dimension
greater than 1. Let e ∈ X with ‖e‖ = 1, and put B := B(e, 1) :=
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{
x ∈ X

∣∣ ‖x− e‖ < 1
}
. Then there exist continuous functions u, v : B →

∂B, where ∂B denotes the boundary of B, such that u + v = id
∣∣
B

.

Proof. We first derive some necessary conditions for the function
u : B → ∂B Suppose, we have u = u(z) ∈ ∂B, v = v(z) ∈ ∂B and
z = u + v. Since u and v have the same distance from e, we get that

0 = ‖u− e‖2 − ‖v − e‖2 = 〈u, u〉 − 〈v, v〉 − 〈u− v, 2e〉
= 〈u− v, u + v − 2e〉 = 〈2u− z, z − 2e〉.

Upon dividing by 4 in the above equality it follows that 〈u− z
2 , z

2 − e〉 = 0.
On the other hand, if we can find a continuous function w : B → X \ {0}
which satisfies the orthogonality condition

(34) 〈w(z),
z

2
− e〉 = 0,

then the construction

u(z) :=
z

2
+

√
1−

∥∥∥z

2
− e

∥∥∥
2 w(z)
‖w(z)‖ and v(z) := z − u(z)

will do the job. Note that ‖ z
2 − e‖ ≤ 1

2 (‖z − e‖ + ‖e‖) < 1, hence the
square root in the definition of u makes sense.

Now let e0 ∈ X be given such that ‖e0‖ = 1, 〈e0, e〉 = 0, and let
P (z) = z−〈z, e0〉e0 denote the projection onto the orthogonal complement
of the subspace generated by e0. We have P (z) 6= 0 for all z ∈ B, for
otherwise we would have z = λe0 and consequently 1 > ‖z − e‖2 = λ2 + 1
due to the orthogonality of e0 and e.

To determine the function w, we put

w(z) = α(z)e0 + β(z)P (z).

The orthogonality condition (34) implies

α(z)〈e0,
z

2
〉+ β(z)〈P (z),

z

2
− e〉 = 0

which allows the determination of the coefficients

α(z) = −〈P (z),
z

2
− e〉 and β(z) = 〈e0,

z

2
〉.

To prove continuity of u, we still have to ensure that α(z)2 +β(z)2 6= 0 for
z ∈ B. However β(z) = α(z) = 0 would imply z ⊥ e0 and

0 = 〈z − 〈z, e0〉e0,
z

2
− e〉 =

1
2
‖z‖2 − 〈z, e〉,
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leading to the contradiction

1 > ‖z − e‖2 = ‖z‖2 − 2〈z, e〉+ ‖e‖2 = 1.

Thus we have constructed a function w which has all the properties we
want. ¤

We have the following generalization of Zorzitto’s result.

Theorem 5. Let (X, 〈 , 〉) be a real inner product space of dimension
greater than 1, let Y be a topological space, g : Y × Y → Y continuous.
Let furthermore f : X → Y fulfill the functional equation

(35) f(x + y) = g(f(x), f(y)) (x, y ∈ X).

Then f is continuous on X provided that its restriction to the boundary
of some ball of positive radius is continuous.

Proof. At first we suppose that f |∂B(e,1) is continuous, where
‖e‖ = 1. By Lemma 2, we can write z = u(z) + v(z) where z ∈ B(e, 1),
u(z), v(z) ∈ ∂B(e, 1), and u, v are continuous. Then from (35) it follows
that

f(z) = f(u(z) + v(z)) = g(f(u(z)), f(v(z)))

which implies continuity of f on B(e, 1).
But the continuity of any solution f of (35) in some point implies

global continuity. To see this consider f(x1 + h) = f((x0 + h) + (x1 −
x0)) = g(f(x0 + h), f(x1 − x0)) and f(x1) = g(f(x0), f(x1 − x0)). The
same arguments show that continuity of f |∂B(x0,r) for fixed r implies the
continuity of f |∂B(x1,r) for all x1. So if we suppose that f |∂B(x0,r) is
continuous, we can conclude that f |∂B(0,r) must be continuous. Hence
also the function fr defined by fr(x) := f(rx) has continuous restriction
onto ∂B(0, 1). But fr also satisfies (35). Thus fr|∂B(e,1) is continuous,
and, by the first part of the proof, we have continuity on X. Accordingly
also f is continuous on X since f(x) = fr(r−1x). ¤

It is clear that this result generalizes Zorzitto’s result ([Z]) when
we consider C as a (2-dimensional real) Hilbert space. But in the finite
dimensional case an even stronger result may be derived. In the sequel
the inner product space X is replaced by Rn equipped with the usual
Euclidean norm.

Theorem 6. Let X = Rn with n ≥ 2, Y , f , g be given as in Theo-
rem 5. Suppose moreover that there exist a bounded, open and connected
set O ⊂ Rn and a compact, connected set C ⊂ Rn containing the boundary



On functions continuous on certain classes of ‘thin’ sets 219

∂O of O such that the restriction f |C is continuous. Then f is continuous
on Rn.

Before we start proving Theorem 6, we formulate a topological lemma
which we shall need henceforth.

Lemma 3. Let O ⊂ Rn be a bounded, open and connected set and
assume that C ⊂ Rn is compact and connected satisfying ∂O ⊂ C. Then

2O ⊂ C + C and therefore (C + C)◦ 6= ∅.

Proof. It has to be proved that, for every x ∈ O, we can find u, v ∈ C
with u+v = 2x. Let x ∈ O. We translate Rn in such a way that x is shifted
into the origin and consider the sets Cx = −x + C and Ox = −x + O.
We shall prove that Cx ∩ (−Cx) 6= ∅. We choose w from the compact set
Cx such that ‖w‖ = sup{‖y‖ ∣∣ y ∈ Cx}. Since ∂Ox ⊂ Cx, we have

‖w‖ ≥ sup{‖y‖ ∣∣ y ∈ ∂Ox} = sup{‖y‖ ∣∣ y ∈ Ox},
implying that −w /∈ Ox, for otherwise we could find some v ∈ Ox with
‖v‖ > ‖w‖ contradicting the above inequality. We can also suppose that
−w 6∈ ∂Ox, for otherwise we would have Cx∩(−Cx) 6= ∅ and the assertion
is proved. Now we choose ρ ∈ R in such a way that n := ρw ∈ Cx and

|ρ| = inf
{|σ|

∣∣ σw ∈ Cx, σ ∈ R}
.

Again we assume that −n 6∈ Cx for otherwise we would conclude that
Cx ∩ (−Cx) 6= ∅. We consider [[−n, n[[ , the straight segment joining −n
and n with n excluded. Obviously 0 ∈ [[−n, n[[ and also 0 ∈ Ox. Moreover
[[−n, n[[ does not intersect Cx by the minimality property of ρ, hence it
also does not intersect ∂Ox. Since [[−n, n[[ is connected, has one point
in Ox and does not intersect the boundary of Ox, it must lie completely
within Ox. (C.f. [R, p. 141, Prop. 14.5].) Therefore −n ∈ Ox. Thus
we have −n,−w ∈ −Cx, −n ∈ Ox and −w /∈ Ox. Employing again [R,
p. 141, Prop. 14.5] and the fact that −Cx is connected, we conclude that
−Cx ∩ ∂Ox 6= ∅ and, since ∂Ox ∈ Cx, we obtain Cx ∩ (−Cx) 6= ∅.

Now we choose u′ ∈ Cx ∩ (−Cx), i.e. u′ ∈ Cx and −u′ ∈ Cx. By
definition of Cx there exist u, v ∈ C such that u′ = −x+u and−u′ = −x+v
and therefore 2x = u + v, which completes the proof. ¤

Proof of Theorem 6. Let x ∈ O. We want to show that f is contin-
uous at 2x. Assume that it is not. Then there exists a sequence xn ∈ O,
xn → x, such that f(2xn) does not converge to f(2x). This implies the
existence of some neighbourhood V of f(2x) and of a subsequence x′n of
the original one such that

(36) f(2x′n) /∈ V (n ∈ N).
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But every point 2x′n may be written as

2x′n = u′n + v′n (u′n, v′n ∈ C)

and we get
f(2x′n) = g(f(u′n), f(v′n)).

Using the compactness of C we may (by choosing suitable subsequences,
if necessary) assume that u′n → u ∈ C and v′n → v ∈ C. We also have
2x = u + v. Passing to the limit and using the continuity of f on C we
derive

f(2x′n) = g(f(u′n), f(v′n)) → g(f(u), f(v)) = f(u + v) = f(2x)

which contradicts (36).
Hence f is continuous at 2x. Using the arguments given in the proof

of Theorem 4 this implies the continuity of f on X. ¤
If O ∈ Rn is an open, bounded and connected set which has a con-

nected boundary ∂O, then it is possible to choose C = ∂O in Lemma 3
and we obtain

2O ⊂ ∂O + ∂O.

Furthermore we conclude by Theorem 6 that f (satisfying the functional
equation (35)) must be continuous on Rn if its restriction to ∂O is con-
tinuous. Thus Theorem 6 is in fact a generalization of Theorem 5 in the
finite dimensional case.

It is however possible to derive an even more general result.

Lemma 3’. Let O ⊂ Rn be a bounded, open and connected set. Then

2O ⊂ ∂O + ∂O and therefore (∂O + ∂O)◦ 6= ∅.

Corollary 1. Let X = Rn with n ≥ 2, Y , f , g be given as in Theo-
rem 5. Suppose moreover that there exists a bounded, open and connected
set O ⊂ Rn such that the restriction f |∂O is continuous. Then f is con-
tinuous on Rn.

Once the assertion in Lemma 3’ is established, Corollary 1 follows from
Lemma 3’ in exactly the same way as Theorem 6 follows from Lemma 3.
Therefore we focus on the proof of Lemma 3’.

Proof of Lemma 3’. Let O ⊂ Rn be open, bounded and connected.
The complement Rn \O contains exactly one unbounded, open, connected
component which we denote by O∞. Let C = ∂O∞. Then C is compact
and C ⊂ ∂O. (c.f. [D, p. 356, Th. 1.2] for these facts.) C is separating
the space Rn in the sense that Rn \C is not connected. Especially O and
O∞ lie in different components of Rn \ C (Suppose they lie in the same
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component, then there exists a path γ in this component which connects
some point in O with some other point in O∞. This path however must
intersect ∂O∞ = C contradicting the fact that γ lies entirely in Rn \ C.)

It can be proved by means of Zorn’s Lemma that there exists a mini-
mal compact set (with respect to inclusion) C∗ ⊂ C such that O and O∞
lie in different components of Rn \ C∗.

The set C∗ is connected. This is proved as follows. Assume that
C∗ = C1 ∪ C2 with C1 ∩ C2 = ∅, Ci 6= ∅ and Ci closed for i = 1, 2
and let p ∈ O and q ∈ O∞ be given. Suppose that p and q belong
to the same component of Rn \ C1 and that they also belong to the same

component of Rn\C2. Let βp : Rn\{p} → Sn−1 be defined as βp(x) = x−p
|x−p|

and βq : Rn \ {q} → Sn−1 be analoguosly given by βq(x) = x−q
|x−q| . It is

known [D, p. 359, Prop. 4.1] that two points p and q belong to the same
component of Rn \ A, where A is some compact set, if and only if the
restrictions βp|A and βq|A are homotopic. Hence there exist homotopies
Φi : [0, 1] × Ci → Sn−1 with Φi(0, x) = βp(x) and Φi(1, x) = βq(x) for
x ∈ Ci and i = 1, 2. But now it is easy to construct a homotopy Φ
between βp and βq on C∗ = C1 ∪C2. We define Φ : [0, 1]×C∗ → Sn−1 by

Φ(t, x) :=
{

Φ1(t, x) if x ∈ C1

Φ2(t, x) if x ∈ C2.

It is easily seen that Φ is continuous and satisfies Φ(0, x) = βp(x) and
Φ(1, x) = βq(x) for all x ∈ C∗. Using again [D, p. 359, Prop. 4.1], we
conclude that p and q belong to the same component of Rn \ C∗. This
however is a contradiction to the fact that C∗ separates O from O∞.
Therefore p and q are separated by at least one of the Ci-s say by C1.
Since O and O∞ are connected and O∩C1 = O∞ ∩C1 = ∅, it follows that
O and O∞ are subsets of different components of Rn \ C1, which cannot
be true since C∗ is a minimal set fulfilling this requirement. Thus C∗ is
connected.

By O∗ we denote the component of Rn \ C∗ which includes O as a
subset. Then we have ∂O ⊂ C∗ [D, p. 356, Th. 1.2 (3)] and O∗ is bounded
since it is separated from the (unique) unbounded component of Rn \ C∗
(which includes O∞) by C∗. Therefore Lemma 3 can be applied to O∗ and
C∗ respectively and we finally get

2O ⊂ 2O∗ ⊂ C∗ + C∗ ⊂ ∂O + ∂O
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which completes the proof. ¤
In dimension n = 2, this result can be generalized.

Lemma 4. Let C ⊂ R2 be a compact, connected set, containing three
noncollinear points a, b and c. Then

(C + C)◦ 6= ∅.

Proof. 1. case: C◦ 6= ∅, then obviously (C + C)◦ 6= ∅.
2. case: If R2 \ C has a bounded component O, then ∂O ⊂ C and

Lemma 3 implies that (C + C)◦ 6= ∅.
3. case: Assume that C◦ = ∅ and R2 \ C is connected. Under these

assumptions C cannot contain all edges of the triangle, whose vertices are
a, b and c. Without loss of generality we suppose that there exists a point
x ∈ [[a, b]] \ C. Here [[a, b]] denotes the closed line-segment joining a and b.
We denote by L the straight line passing through x, perpendicular to [[a, b]].
Then there exist two points x1, x2 ∈ L \ {x}, such that [[x1, x2]] ∩ C = ∅
and [[x1, x2]] ∩ [[a, b]] = {x}, since R2 \ C is open.

We set C̃ := C ∪ [[a, b]] and we shall show now that R2 \ C̃ has at least
one bounded component. Assume to the contrary that R2\C̃ is connected.
Since x1, x2 ∈ R2 \ C̃, there exists a broken line Px1,x2 ⊂ R2 \ C̃ with
endpoints x1 and x2, which does not cross itself. Here we use the fact
that the open, connected set R \ C̃ is also polygonaly connected (in the
sense described above, see [R, p. 150, Thm. 14.29]). We also may assume
that Px1,x2 ∩ [[x1, x2]] = {x1, x2}. Hence J := Px1,x2 ∪ [[x1, x2]] is a closed
polygonal Jordan curve. Moreover a and b lie in different components
of R2 \ J , since the line connecting a and b intersects the Jordan curve
at exactly one point x. On the other hand, a and b are elements of the
connected set C, and therefore C must have a nonempty intersection with
the boundary of the bounded component of R2 \ J , which is J . However
we assumed that [[x1, x2]] ∩ C = ∅ and Px1,x2 ∩ C = ∅, in contradiction to
J ∩ C 6= ∅.

Let O be one of the (open) bounded components of R2 \ C̃ and let
w ∈ ∂O be a point with maximal distance δ > 0 from a, b, the line through
a, b. Moreover let L∗ be the line parallel to a, b, with distance δ/2 from
a, b which lies between a, b an w. We now consider the nonempty and open
intersection of the open halfplane H∗, defined by ∂H∗ = L∗ and w ∈ H∗,
with O. We put O∗ := H∗ ∩O and take any z ∈ O∗. Then, by Lemma 3,
there exist points u, v ∈ ∂O ⊂ C ∪ [[a, b]] such that z = u+v

2 . It is easy
to see that u, v 6∈ [[a, b]], because u ∈ [[a, b]] ⊂ a, b would imply that the
distance between v ∈ ∂O and a, b is twice the distance between z and a, b,
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which is greater that δ, in contradiction to the maximality of δ. Therefore
we have u, v ∈ C and we can write 2O∗ ⊂ C + C, i.e. (C + C)◦ 6= ∅. ¤

With Lemma 4, we can generalize a result by Kuczma [K, p. 219
(§5 plane curves) Th. 2].

Theorem 7. Let D ⊂ R2 be open and convex and let f : D → R be
a Jensen convex function, i.e.

f
(x + y

2

)
≤ f(x) + f(y)

2
for all x, y ∈ D.

Furthermore let C ⊂ D be a connected compact set containing three non-
collinear points, such that f is bounded from above on C. Then f is
continuous on D.

Proof. Let f(z) ≤ M for all z ∈ C, then

f
(x + y

2

)
≤ f(x) + f(y)

2
≤ M + M

2
= M

for all x, y ∈ C, or, what is the same, f(u) ≤ M for all u ∈ 1
2 (C + C).

By Lemma 4, we have ( 1
2 (C + C))◦ 6= ∅, and therefore, by the Theorem of

Bernstein–Doetsch, we get continuity of f on D. ¤
By the same method we get the following generalization of Theorem 6

in the case of dimension 2.

Theorem 6’. Let f : R2 → Y fulfill the equation

f(x + y) = g(f(x), f(y))

with Y a topological space and g : Y × Y → Y a continuous function. If
C ⊂ R2 is a compact connected set, containing three noncollinear points,
and if f |C is continuous, then f is continuous on R2.

Proof. Imitate the proof of Theorem 6 by using Lemma 4.

Conjecture. Let n ≥ 2 and let C ⊂ Rn be a compact connected set
which contains n + 1 affinely independent points, then the n-fold sum
C + · · ·+ C has nonempty interior.
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