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A note on stationarity of bilinear models

By GY. TERDIK and M. ISPANY (Debrecen)

1. Introduction

Bilinear stochastic processes in discrete time have been studied in-
tensively by several authors. A good list of references of this field can
be found in SUBBA RAO and GABR (1984). One of the most impor-
tant problem is the stationarity of such processes. A sufficient assump-
tion for the assymptotic stationarity was given by SUBBA RAO and GABR
(1981). This assumption proved to be sufficient for the strictly stationarity
M.B. RAo, SuBBA RAO and A.M. WALKER (1983) as well as for the second
order stationarity Gy. TERDIK (1985).

In this paper we construct the transfer function system for bilinear
realizable processes and show that the assumption mentioned above is
necessary and sufficient for the second order stationarity.

2. Bilinear realizable processes

We consider a second order stationary stochastic series y,,t € 2 =
{0,+1,+2,---} which is measurable with respect to the o — algebra B,
generated by a Gaussian white noise series v,,s < t,(Ev, = 0, Ev? = 0?)
that is y, is physically realizable . We assume that if T, is the shift transfor-
mation for vy, i.e., Tyvy = v444,t,8 € Z then it is also shift transformation
for y¢. In that case y;,t € Z is referred as subordinated to vy, t € Z. The
series y, is called bilinear realizable if there exist m x m matrices A, D and
m-dimensional vectors b,c such that y, is connected to v, by the following
state space equations

(2.1) z¢= Az¢—1 + Dze_qve—1 + boe + fo, t={0,%£1,%2,---},

Yt = chh
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where ¢ denotes the transpose of ¢ and fy = —o2Db keeping Ez; = 0.
We should mention that the realization (2.1) is not unique at all. It is easy
to see that a lower triangular bilinear model y; i.e.

P Q R 5
Z AmYt—m = Z bmVi-m + E Z Cmm4nYt—m-nVi-m

m=0 m=0 m=0 n=0

is bilinear realizable (ag = by = 1, ¢o,0 = 0).
If that lower triangular bilinear y, is second order stationary and sub-
ordinated to v, then one can put it into the Wiener-It6 expansion, see

Terdik and Subba Rao (1987),
m .
Yt = Z/ﬂ gr(w(n) ) E P OW(dw(yy); D" = [—m, 7",
r=0 X

where the integrals are r-fold Wiener-Ito stochastic integrals with respect
to the Gaussian stochastic measure W(dw), EW(dw) = 0,

E | W(dw) [*= 522 of v, ie.
vy = / e“wW(dW).
D

The w(,) denotes the vector (w;,w, -+ ,w,); wx € [-7, 7] and the Zw(,) =
> 11 wk. The trasfer functions g, are given by the following recursive way

g1(w1) = ﬁzi;
E ] r
gr(w(r)) — L al?éwzi))w )g.-_l(w(,._l)); oo 2

where

P % Q #
a(w) = Z Ul T s B(w) = Z e,

k=0 =0
IR, v
7(w$‘\) s Z Z cm’m+nel(m+n)w+m.\.
m=0 n=0

In case ga(w(s)) # 0, i.e. y; is not linear then it has infinite many nonzero
transfer functions, say its degree is infinite. The model (2.1) is more general
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in that sense because it can produce finite degree nonlinear processes as
well.

3. Wiener-Ito representation for the bilinear stationary states

Let us suppose that the state vector process z, in (2.1) is also phys-
ically realizable and subordinated to v,. Moreover all eigenvalues of the
matrix A (of linearity) are inside of the unite circle. Then the stationary
solution for the equation (2.1) can be given as follows. Under the above
assumption z; has Wiener-It6 representation

z¢ = Z/p eFO) fo(wir)W(dw(ry), fo =0,

r=1]

where the vector functions f.(w(,)) are uniquely determined up to permu-
tation of their variables. We must note that this fy is not the same as fj
in (2.1). fo = 0 follows from Ez, = 0.

The diagram formula (see TERDIK-SUBBA RAO (1987) ) and (2.1)
give for the product,

o0
Ty—1V¢—1 =E/ fr-l(w(,-_l))ei('_l)zw"}w(dw(r))+a'2b.
r=2 Dr

We get now from the uniqueness of the r—-dimensional transfer function
that

fi(way) =T - Ac“‘fl)—lb,

(3.1) A :
fr(wiry) = (I - Ae™F¥O) 1 De™ B0 fo_y (wpoy)); T2 2.
4, Assumptions for stationarity
Let us consider the de N polynomial bilinear model yq, i.e., y; is

bilinear realizable and for the transfer functions

gn(wn)) #0
g,(w(,)) =0; r>N.
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To study the stationarity of this model is extremely simple because it has N
strictly proper recognizable regular transfer functions and it is stationary
if and only if all the denominators of the transfer functions has no root
on the unit circle. In case it is physically realizable then the poles of the
transfer function are inside of the unit circle.

The stationarity of the state variables in the model (2.1) needs more
attention. In one hand from the stationarity of the state variables z,
clearly follows the stationarity of the model y;. On the other hand for a
N-degree stationary bilinear model y, there always exists stationary state
variables z,. This follows from the construction of the state space and the
linear representation theory.

Let us now consider the general case. The transfer function system
for the state varibles z, is given by (3.1). The question is that under what

condition will be all the components of the Exz,®z, finite, where ® denotes
the tensor product. For that purpose let us regard the transfer functions

fi (w(l)) — (I— Ac-iw')-lb,
fz(‘w(g)) - (I o Ae—iEw(z))—lDe-iEw(z)fl(w“))
= fa(we)) + fz(w(z}),

where

(4.1) fa(wy) = (I = Ae™*E¥@)~! De—Ev@p,
oo
fa(w@y) = Z(I — AeBw@) =1 De=iTua) gk —ikwr},
k=1

There is no matter of fact of the convergence as all eigenvalues of A are
inside of the unit circle. We get for k > 3 that

(4.2) fr(wry = fe(wy) + fr(w),

where

fk(w(k)) o (I - Ae—iEw(i))—lDe—iEw{nfk_l(w(k_l)),
fk(w(k)) - (I 5 Ae"z‘”(")'lDe"E“"*}f&_l(w(k_l)).

It can be shown that (4.2) is the orthogonal decomposition of fi(w(y).
Let us now consider the expectation of the tensor product of the k** term,
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for k>3

E[ f;‘(w(k))e“z“’(*)W(dw(k))®/tfk(w(k))ei'zw‘*)W(dw(k))
Dk D

a.2k

== k'/ sym fk(w(k)) @ sym fk(—‘w(k))(z )k dw(k,
Dk

2k

(2m)*

= 2/ Fe(Zway, wi x) ® fi(=Zw)y, —we k) rdw(r)

2

(2m)k

2!:

/ fr(wiy) ® fi(—way) (2 )kd (k)

dw(k)

+ / fr(wy) ® fk(—w(k))

2k
(2m)k

where w(e k) = (we, wegq,- - ,w;,), k > €. From (31) we get

+./p~ Fi(Bwey, wa p) ® fi(—Zwi), —we k) dw g,

2k

/v* fr(wiy) @ fr(—w(ky) : dwyy

(2m)*

='/m ) (Ae~E¥m)P D= EU® fy_y(wik-1))

p=0
oo 2k

® Z:(Aeizw(g))rDeiEw(k]fk_l(—w(k_l))(2”)k
r=0

-/ Z(A@A)P(D@D)fk 1 P S

o2k

(2m)*

dw( k)

— o(I- A® A)"N(D® D) f Fecilwiii)
Dr-1

og2(k=1)
® fr—1(—w(k- 1))(2 )k- ldw(k ! b

In similar way we get

o2k

(2m)*
o 2(k=1)

/1)* Fr-1(wg=-1)) ® frm1(~w(r- 1))(2 = —Tdw(k-1)-

/ fk(w(k))@ofk(—w(k)) dw(k) = 02(1—A®A)_1(D®D)
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We used the property (AB)®(CD) = (A®C)(B®D) of the tensor product.
From this it follows that Ez; ® z, is finite if and only if all eigenvalues of
the matrix 0?(I — A® A)~'(D ® D) are less then 1 in absolute value, i.e.,
0(c*(I-A® A)"'D® D) < 1 where p(A) is usual notation of the spectral
radius of the matrix A.

Theorem. Let us suppose that the m-dimensional state space vari-
ables z, fulfill the following bilinear state equation

(43) Xy = AI(_l +DI¢-101_] +bv; +fo, § = {O,il,i2,}

where the noise process v; is Gaussian i.i.d., Ev, = 0, Ev} = 0?, A and

D are m x m matrices, b € R™, fo = —0?Db and all eigenvalues of A are
inside the unit circle. Moreover z, is physically realizable and subordinated
to vy,t € £ and the transfer functions f,(w(,)),r € 2, are different from

zero in L?[—m,w|". Then the necessary and sufficient condition for the
stationarity of z, is that all eigenvalues of the matrix

c((I-A® A~ (D®D)
be less then 1 in modulus. In that case

Ex;@zi=[I-0*(I-AQA) ' (D®D)|'e?’(I-A® A7)
(DRD+I)(b@b)+d*(I-AQA)'(b®D).

So we have a necessery and sufficient condition for existence of weakly
stationary solution of the bilinear state space equation (2.1). A sufficient

condition of the strictly stationarity for the vector valued bilinear process
z¢ defined by (4.3) was given by Rao M.B. at al. (1983), as the eigenvalues

of the matrix A® A + 02D ® D be inside of the unit circle. The following
lemma shows that this condition is equivalent to the condition

o(c’(I-AQ A)"Y(D@D)) < 1.

So we get an important result namely the strictly stationarity of the model
(2.1) follows from the weakly stationarity of this model.

Lemma. Let A,D € R™*™ and p(A) < 1. Then the following state-
ments are equivalent

(i) oA®A+0’D®D)<1

(1) o(c*(I-A® A" (D®D)) < 1.

PROOF. It is enough to put o = 1 by replacing ¢ D with D. The proof
1s broken down into two steps.
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1. From (:z) follows (2).
Put
P4(A) = Det(A — AI),
for A€ R™*™ and A complex number. If | A |[> 1 then
Paga+peD(A) = (—1)" Paga(A)P(ar- a@4)-1 DeD(1).
Therefore it is enough to prove that

(4.4) Pixr-aga)-1pep(l) #0,

if | A |> 1. One can get by the spectral radius formula that

lim /[[T-A@A)"DeD]"[=e(I-A®A)'D®D)<1,

so there exist N € A that
(4.5) I(I-A® A)'D® D]V| < 1.

Denote

Myn(A) =[(AI-A® A)"'D® D]V,
if | A |> 1. It is easy to see that

Ma) = 30 30 3 A H(A*:D)mH(A*JD))
ki=0 ko=0 N=0

1=1

For every vector v € C™" there exists a matrix V € C™*™ such that

171

v = Vec(V'). By the singular decomposition (see Gantmacher(1958), ch.

IX, theorem 9)
V =U,5U;,

* is the notation of the Hermite-transpose and U; and U, are

where

or-

thogonal matrices i.e. U;U! = I,i = 1,2, and S is diagonal with the

singular values of V. Moreover ||V||? = 1 if and only if tr S* = 1. Now,
us consider the following quadratic form

Qx(v) =v*My(A)v = (U2 ® U1)Vee(S))" Mn(A)((TU2 ® Ur)Vec(S))

z A—Sk,'—N

k20
I=1,2,---N

Z sisjl(eTUT H(A"'D)U,e,)(eTUg 1'[(/41'“1))%.‘:J e

§,j=1

let
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where the singular values s; in S are nonnegative and we used the fact
that :

n

Vec(S) = ZS,‘&B.‘ ® ey,

i=1

where ¢; are the unite vectors in R™. Since | ab |[< (| a | + | b |?) for
every a,b € C we get

m N
1 £ 2 o
[ IS5 Y IATERN Y sl e OF [[(A* D)Ure; I

ky20 ij=1 =1
i=1,2,---N

N
+ | el OF [J(Ax, D)Uze; |2].
I=1

By | A7 N<1if | A |> 1 we get

| @a(v) IS 5(Q(01) + Qi(2)),

where v; = Vec(U;SU?),t = 1,2, and ||v;||> = 1,7 = 1,2. The assumption
(4.5) implies that
l Q1(U) |< 1,

if ||v]|* = 1 so for every | A |> 1 we get
| @a(v) < 1,
if ||v||*> = 1 and so
o(M-A® A)™'DeD)< 1

what we got replacing v with eigenvectors of My(A) in Q) which justifies
that
P(ix-ag4)-1pep(1) # 0,

what we want to prove.
2. From (2) follows (iz).
If | A|>1 then

P-4 4)-(DeD)(A) = (=A)" P3g4(1)Pi pgp+asall)-

Therefore it is enough to prove that
Py pgp+apa(l) #0
if | A |> 1. The reader can prove this as (4.4).
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