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The Third International Symposium on Functional Equations and In-
equalities was held in Noszvaj at the Education Center of the Heves County
Council from September 21 to September 27. The Symposium was or-
ganized by the Mathematical Institute of the L. Kossuth University of
Debrecen.

The 82 participants came from Australia, Austria, Brasil, Bulgaria,
Federal Republic of Germany, France, German Democratic Republic, Hun-
gary, Italy, Japan, Poland and the United States of America.

The Symposium was opened by Prof. Z. DAROCZY, who welcomed
the participants to Noszvaj.

The scientific talks presented at the Symposium focused on the follow-
ing subjects: equations in one and several variables, equations on restricted
domains, stability, iteration, functional differential equations, conditional
equations, composite equations, interval-filling sequences and functional
equations, convexity, inequalities for norms, elementary inequalities for
means, quadratic inequalities, integral inequalities, recurrent inequalities.

Every session was followed by a period devoted to remarks and open
problems, these were stimulating and successful. In spite of the very tight
schedule, typically twelve talks and two problems and remarks sessions
per day, the participants could enjoy an extra talk of Prof. J. DHOMBRES
about functional equation meetings from 1350 to 1820 and historical facts
concerning functional equations and inequalities. A bus excursion to Eger
and the Szalajka Valley was also organized.
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The meeting was closed by Prof. L. REICH, who expressed the thanks
of the participants to Prof. Z. DAROCZY and to the organizers.
The abstracts of the talks follow in chronological order of presentation.
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JARCZYK, W., Continuous functions additive on their graphs.

In the well known book ”Some aspects of functional equations”
J.G. DHOMBRES mentioned the equation

(*) f(z + f(z)) = f(z) + f(f(2))

which is the equation of additivity of the unknown function on its graph.
He found all continuous idempotent solutions mapping the real line R
into itself. In 1983 G.L. FORTI proved that every differentiable at the
origin and continuous solution f : R — R of equation (*) is linear, i.e. of
the form f(z) = f'(0)z. Unfortunately the assumption of differentiability
of a solution makes it sometimes impossible to apply this nice result to
other problems (e.g. in iteration theory). Recently I have succeeded in
finding the general continuous solution of equation (*). Namely we have
the following

Theorem. If f : R — R is a continuous solution of equation (*) then
there exist non-negative numbers c_ and c4 such that

oy { c-z z € (—00,0)

cy+z z €[0,00),

or there exists a negative number ¢ such that
f(z) = ez, r€R

The proof of Theorem is completely elementary but very long. It
makes use of quite fundamental properties of real continuous functions (e.g.
Darboux property) and some results concerning the recurrent equation

Ank = Qn41,k + An41,k+1-

There are simple examples showing that the assumption of the conti-
nuity of a solution in the Theorem cannot be replaced by the assumption
of measurability, continuity at a point or monotonicity.

CARROLL, F. W., Algebraic differential equations and functional
equations.

Suppose that S is a rational function with S(0) = 0 and S'(0) = s,
with 0 < |s| < 1. Let ¢(z) be a Koenig’s solution of Schroeder’s equation
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¢(S(2)) = s¢(z). The assumption that ¢ satisfies an algebraic differential
equation (ADE) implies that certain other functional equations

(E)  ¥(S(z)) =s*(S'(2))™¥(2) or
(F)  (S(2))(S'(2)) = ¥(2)S'(2) + AS"(2), A #0,

are satisfied by rational functions, viz., quotients of coefficients in a mini-
mal ADE. Consideration of the incidence matrix of a directed graph whose
vertices are the poles of ¥ shows that, except in special cases, (E) and (F)
fail to have rational solutions. There will be discussion of connections with
the classical work of RITT, as well as with the results of BOSHERNITZAN

and RUBEL on coherent families of polynomials.

TURDZA, E., On the stability of the equation

¢(f(2)) = g(z)p(z) + F(z).

Let the functions g, f, F' be defined on a topological space X, and take
values on the real line R, a topological space X, and a vector space Y. The
equation

(1) p(f(z)) = 9(z)p(z) + F(z)

is called iteratively stable in the class of continuous functions defined on
X' € X, if there exists a constant K > 0 such that for every absolutely
continuous neighbourhood Uy and every continuous solution ¢ : X' = Y
of the system of inequalities

P(f"(2)) = Ga(z)¥(z) — Fu(z) € Uy

where
n-—1 i i
Gn(z):= H 9(f'(2)), Fa(z) = Ga(z) Z 2(.'{1((?))

there is a continuous solution ¢ : X' — Y of equation (1), such that
Y(z) —¢(x) € KUy for z € X'.

Some conditions for the stability of equation (1) will be given.
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NIKODEM, K., Continuity of K—convex set—valued functions.

Let X and Y be arbitrary real topological vector spaces. Assume that
D is a convex and gpen subset of X and K is a cone in Y. A set-valued

function F': D — 2% is said to be :
— Jensen K-convex (or midpoint K-convex) iff

3@+ Fwlc P (S5Y) + K

for all z,y € D;
— K-continuous at a point z¢ € D iff for every neighbourhood W of zero
in Y there exists a neighbourhood U of zero in X such that

F(z)C F(zo)+ W+ K and F(z¢0)C F(z)+ W+ K

for all z € (z¢o + U) N D;
— K-upper bounded on a set A C D iff there exists a (topologically)

bounded set B C Y such that |J F(z) C B - K.
Z€EA

We say that a set—valued function F : D C X — 2Y, where X is a real
complete metrizable and separable topological vector space, is Christensen
measurable iff for every open set W C Y the set {z € D : F(z)NW # 0} is
Christensen measurable. By B(Y') we denote the family of all non-empty
and bounded subsets of Y.

The following theorems hold true.

Theorem 1. If a set-valued function F : D — B(Y) is Jensen K -
convex and K-upper bounded on a subset of D with a nonempty interior,
then it is K—continuous on D.

Theorem 2. If a set-valued function F : D C X — B(Y), where

X is a real complete metrizable and separable topologcal vector space, is
Christensen measurable, then it is K —continuous on D.

SzAz, A., Mild continuities of linear relations.

To extend standard results on continuities of linear functions, we prove
the following

Theorem. If f is a linear relation from a preseminormed space X(P)
into another Y(Q), then the following properties are equivalent:

(z) f is lower semiperfectly mildly (Rp,Rg) — continuous;
(22) f is mildly (R%,Rg) — continuous;
(111) Ry, € Rp forall g € Q and € > 0;
(tv) g¢=*fis (Rp,R| ) — continuous for all ¢ € Q;
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(v) g*fis((Rp)o,R)|) — continuous for all ¢ € Q;
(vi) Rg.s € (Rp)o forallqg€ Q and € > 0;

(viz) f is mildly ((Rp)o, Rg) — continuous;

(viii) f~Y(V)€ Tr, forall V € Fr,.

Moreover, if in particular X(P) and Y(Q) are seminormed spaces, then

the following property is also equivalent to the former ones:
(iz) for each g € Q there exist p € P and M > 0 such that
g* f < Mp.

The proof relies mainly upon the fact that Rf, (z) = FY(Ri(y))
whenever y € f(z).

SMAJDOR, W., Quadratic selections of subquadratic setvalued maps.

Let (G,+) be an abelian group in which the division by 2 is per-
formable and let Y be a topological vector space. If F' from G to Y with
compact, convex and non-empty values is subquadratic s.v.f., then there
exists a quadratic selection of F.

Let (G,+) be an abelian group and let Y be a Banach space. If F
from G to Y with closed, convex and non-empty values is subquadratic and

¢ := supdiam F(z) < oo, then there exists a unique quadratic selection
z€G
f:G—=Y of F.

SzABO, GY., Remarks on orthogonality spaces.

We consider a real orthogonality space (X, L) in the RATZ sense
(see [1]) and an abelian group (Y, +). The only known example of X
with a non-trivial even orthogonally additive mapping F' : X — Y (i.e.
F(z + y) = F(z) + F(y) whenever zly) is a real inner product space
with the natural orthogonality and F(z) = £(||z||*) with some additive
¢:R — Y (see [1], [2], [3]). In this note we take some further steps to-

wards the discovery of the general structure of such orthogonality spaces
and mappings.

[1] J. RATZ, On orthogonally additive mappings, Aequationes Math. 28 (1985), 35-49.

[2] J. RATZ, On orthogonally additive mappings, II, To appear in Publicationes
Math..

[3] Gy. SzaB6, On mappings, orthogonally additive in the Birkhoff-James sense,
Aequationes Math. 30 (1986), 93-105.
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KOMINEK, Z., Some properties of decompositions of a group.

Let (G, +) be a commutative group divisible by two. We study some
relations between the sets: A+ A, A'+ A" A'+ A, A-A A'—A'"and A'— A,
where A' denotes the complement of A and A F B denotes the set of all
sums (differences) a F b with a € A and b € B. For example we have the
following theorems.

Theorem 1. For every subset A of G one of the following conditions
A+A=Gor A +A' =G or A'+ A= G holds.

Theorem2. If for some subset A of G one has A—A # G and A'—A' #
GthenA—A=A"-A"and A'=A+ 1z iffz ¢ A— A. Moreover, in this
casse A+ A=A'"+A'"=A"+A=0GC.

Theorem 3. If A — A # G for some subset A of G then A' + A' = G.

Some examples which illustrate our results and their connections with
the celebrated Steinhaus theorem will also be presented.

SMAJDOR, A., Multi-valued iteration semigroups.

Let X be a real linear space. A multi-valued function F' from X into
X has at most one increasing iteration semigroup {F* : ¢ > 0} such that
the function

(1) (t,z) — F'(z)

from (0,+4+00) x X into X is positive homogeneous.

Let X = R" and let F be a multi-valued function from X into X
with compact and convex values. Then F has an increasing iteration
semigroup of convex functions from X into X with compact values such
that the function (1) is continuous and positive homogeneous if and only
if

F?*(2z) = 2F(z) D F(2z)

and :
() 27"F* *(2"2) = F(z)
n=1

for all z € X.

PRESTIN, J., Inequalities for trigonometric polynomials in Lipschitz
norms.

We consider Bernstein— and Nikolskii-type inequalities in the follow-
ing Lipschitz norm

k
lgllp.r8 = g™ llps + D llg™®llp
k=0



Report on the Third International Symposium . .. 9

with Y
lgllp,s = suph=2|lg(- + k) — g(-)|,
h>0

and 1 <p<oo, 0<B<1, reN,.
For trigonometric polynomials of degree less or equal n we prove

”Pfal)"p,m,a < 4nl+m+a_r_ﬁ"3’nnp.r.ﬁ

ifn>landl+m+a>r+p0.
With these estimates we get equivalence theorems for the best approxima-
tion in Lipschitz norms as well as for interpolation processes.

PALES, Zs., Inequalities for sums and differences of powers.

In the lecture we investigate the inequalities

(1) 1< (2% +9°)%(2® + v)P(2° + v9) (2 + v*)°
and
a al|a|. b b1P | c el | nd d|®
ke = &= 1) r -y & =Y
1
(2) e a b c d

We give necessary and sufficient conditions concerning the real parameters
a,b,c,d,a,3,v,6 in order that (1) and (2) be valid for all positive values

z and y.

LACZKOVICH, M., Decompositions into periodic functions belonging
to a given Banach space of functions.

If a function f : R — R has a decomposition

(1) f=h+h+...4+ fa

such that f; is periodic mod a; for every : = 1,... ,n then it is easy to see
that

(2) R N A F=0

where A, f(z) = f(z+a)—f(z). A family F of real functions is said to have
the decomposition property (d.pr.) if for every f € F (2) implies that there
is a decomposition (1) such that f; € F and f; is periodic mod a; for every
1 = 1,...,n. We show that some Banach spaces of functions (e.g. L, for
p > 1, the space of bounded functions, or L.,) have the d.pr. (We remark
that the family of all real functions or the class of continuous functions
do not have the d.pr.) These results are special cases of more general
theorems concerning families of functions f : A — R, where translations
are replaced by commuting mappings T; : A — A.
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GAIDA, Z., On functional equations related to homogeneous linear
differential equations.

We replace all the differential operators occurring in Heaviside's form
of the homogeneous linear differential equation by difference operators of
the same order. As a result we obtain the following functional equation:

(1) (Am, AR} Bm, ...AmkA::Bmk)f(::)=0,
where A,,, and B,,; denote operators defined by

A, f(2) i= mi(2) f(2), B f(z) i= mi(x)™* f(2).

The following theorem contains our main result concerning equation

(1).

Theorem. Let G be an Abelian group and let X stand for a linear
space over a field K of characteristic zero. Suppose that my,... ,my: G —
K\ {0} are pairwise different homomorphisms of G into the multiplicative
group of the field K. Then a function f : G — X satisfies equation (1) if
and only if it has the form

k
f= Zmipi,

=1

where p; : G — X is a generalized polynomial of degree less than
ni(t=1,...,k)

SZEKELYHIDI, L., On addition theorems.

In the talk we deal with addition theorems of a general type. A
complex valued function f on an Abelian group (or semigroup) is said to
have a polynomial addition theorem, if there exist functions ¢,,...,¢n,
hy,... ,h, such that the function value of f at z + y can be computed
by the values of ¢;,...,9n at z, and by the values of hy,... ,h, at y
using only "polynomial operations”, that is, addition and multiplication.
Special cases of polynomial addition theorems lead to classical functional
equations. Here we characterize all functions having a polynomial addition
theorem.
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DORFLER, P., On an inequality of Markov type.

For any polynomial f with complex coefficients we define

1/2

b
e / F@&)Pw(t)dt )

where w : (a,b) — R is a positive and integrable function with all moments
finite. It is well-known that there exists a constant v,, not depending on
f, such that || f'|| < va||f]| for all f; deg f < n. In my talk I consider the
analogous inequality for derivatives of higher order and compute the best
possible 4,. This constant turns out to be the largest singular value of a
certain matrix. Some examples are given.

Losonczi, L., On some quadratic inequalities.
Inequalities of the form
n n
(1) a) |zl? <) lzitziall <BY Izl
Jj=0 =0
are studied where zy,...,z, are real or complex variables, a, # are con-

stants, 1 < k < n, the summation in the middle can be understood in four
different ways:

n—k
) S

=0
n
@) Y With Zp41 =...=Znsx =0,
j=0
n—k
(iii) Y- with z_y=...=z_; =0,
j=—k
n
(iv) E with 2= .. ===y = =2
j=—k

and either the plus or the minus sign is taken. Since the cases (i2) and
(i11) are essentially the same we obtain six inequalities from (1). The exact
constants a, f are found in all cases. This is based on the determination
of the eigenvalues of suitable Hermitian matrices.
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GESZTELYI, E., On the capacity of the memory of processors.

With the development of computer technics, many new concepts came
to light and became generally known, such as Read Only Memory, Random
Acces Memory, Microprocessors, Interface, etc. The question about the
function and role of these devices arises naturally. If it is not desirable
to go into details of the electric circuits of semiconductor chips then the
clc;rrect answer may only be given in the framework of a mathematical
theory.

I do not wish to deal here with the theory of processors. I want
to speak only about a part of this theory which may be interesting for
specialists of the theory of functional equations.

Let S be a nonvoid set. By a memory M over S we mean a triple
M = (5,C,s) where C is a set of partitions of S and s € S is a variable
on S. S is called the set of states of M. C is called the core of M, a value
of s is called the instant state of M. A partition P € C will be called a
glemory cell of M. If C and every P € C are finite then M is said to be

nite.

One can describe partitions of S in a convenient way by means of
equivalence relations defined on S. For any function f : S — H we define
a binary relation (f) as follows: z (f)y <= f(z) = f(y). Clearly, (f) is
an equivalence relation on S. (f) will be called the "identity according to
f7. It is an interesting fact that any equivalence relation is the identity
according to a suitable function f : § — H. Thus any partition of S may
be described by means of functions defined on S. If a partition P is the
classification generated by the identity according to f then we say that
f:S — H is a generator function of P. If for the element h € H and the
instant state s the relation h = f(s) holds then we say that h is stored in
the memory cell P at the instant state s.

Let M = (S,{P,...,Pn},s) be a finite memory and f;,...,fn
be the generator functions of the memory cells Py,... , P,, respectively
(fi : S — H;, i€ {1,...,n}). The memory My = {S,{P},s} is said
to be the vector form of M if P, is the partition of S generated by the
vector—valued function Fy : S — H; x ... x H, for which

(%) Fo(s) = [fi(s), ..., fals)]-

P, is called the vector cell of M.
The capacity of a finite memory M = (S,C, s) is defined as the ca-
pacity of the core C. The capacity of the core is defined in two steps:
(1) By the capacity of a memory cell P we mean: cap(P) = log, |P|
(2) By the capacity of the core C = {Py,... ,P,} we mean the capacity
of the vector cell P, generated by the function (*).

Theorem. For every finite memory (S,{Py,... ,Pn},s) we have

cap{Py,... , Pa} < cap(P) + ... + cap(Py)
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where the equality relation holds exactly in case of an independent memory
(M is independent if the content may be changed in any memory cell
without disturbing the contents of other cells in M).

Remark. It would be interesting to give a characterization of the ca-
pacity memory like the characterizations of the measure of information
given in J. ACZEL, Z. DARSGCZY : Measures of information and their char-
acterizations, Academic Press 1975. New York, London, Toronto.

The whole theory of processors is contained in the paper E. GESZTE-
LYI: On a mathematical theory of processors, to appear.

PAGANONI, M.S., Report of a joint paper with L. PAGANONI.

We consider the functional equation

e(z +y) —p(z) — p(y) = f(z)f(y)h(z +y)

and we find all its holomorphic solutions f, h, ¢ defined in a neighbourhood
of the origin.

FocHI, M., Functional equations on orthogonal vectors.

Starting from some recent results on the orthogonally additive func-
tions i.e. on the solutions of the conditioned Cauchy functional equation

(1) flz+y)=f(z)+f(y) =zly

we investigate, in the class of real functions on an inner product space
H, other functional equations, related to Cauchy’s one, postulating for all
pairs of orthogonal vectors:

(2) f(z+y) = f(z) + f(v)
(3) fz+y)+ f(z —y) =2f(z) + 2f(y)
(4) fz+y)+ f(z —y) =2f(z) + f(v) + f(-y)

(5) f(z +ay) + f(az —y) = f(z) + f(y) + f(az) + f(ay)

In particular we study for each of these the relationships between the
class of the solutions of the equation postulated on the whole space and
that of the solutions of the conditioned one.

We also treat the same type of problems related to functional equa-
tions on the A-orthogonal vectors for the class of functions defined on a
Hilbert space X, A being a selfadjoint operator on X.
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SKOF, F., On approximately quadratic functions on a restricted
domain.

1. Suppose f: Dy C R — X, X being a Banach space, and

(1) |If(z+y)+ f(z —y) —2f(z) - 2f(y)l| <& for (z,y) € E C R?,

where E is a proper subset of R? and § is a positive real number.

If E is a (bounded) neighbourhood of the origin, we prove that f can
be uniformly approached, near the origin, by a quadratic function.

‘Then we consider unbounded subsets E C R? having the property
E:UE,UE;4,,UE; , =R, and f : Dy = R — X. We show some
classes of E such that there exists some function f for which the condition
(1) holds on E but does not hold on R%. On the other hand we prove
that (1) is valid on R? for every f satisfying (1) on E, whenever E is the
complement of a bounded set in R2.

2. It is natural to relate (1) with the non-homogeneous quadratic
equation

(2) f(z+y)+ f(z —y)—2f(z) - 2f(y) = g(z,y) for (z,y) € E C R?,

E being a restricted domain.

By some slight changes in a procedure introduced by I. FENYO and
G.L. ForrtI (1981) to solve the non-homogeneous Cauchy equation, we
can give the explicit solution of (2), assuming ¢ in a suitable class, when
E is a neighbourhood of the origin. The same result is valid if E = R?2.

3. In the end, we suggest a possible definition of "quadratic quasi—
extension” of a given function (in connection with DAROCZY’s and LOSON-

czI's definition, 1967), and we state an existence and uniqueness theorem
of quasi-extensions.

CHOLEWA, P.W., Almost approximately trigonometric functions.

Let (G,+) be an Abelian group and let f; and f; be two conjugate,
linearly invariant, proper o-ideals. Assume that f : G — C (C denotes
the set of all complex numbers) and there exist a § > 0 and M € f; such
that the inequality

If(z +y)+ flz —y) - 2f(z)- f(y)| < &
holds true for all (z,y) € G? \ M. Moreover, let sup ess|f(z)| = oco. Then
€l

there exists a function ¢ : G — C such that

c(z +y)+ c(z — y) =2¢(z)c(y) forallz,y € G
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and
{z € G: c(z) # f(2)} € fi.

Under the additional assumption that the group G is uniquely
2-divisible the following is true.
Let g : G — C be such function that the inequality

lg(z + y)g(z — y) — g*(z) — g’ ()| < 6

holds true for some § > 0 and all (z,y) € G* — N, where N € f;. Let
sup ess|g(z)| = co. Then there exists a function s : G — C such that
z€G

s(z+y)s(z —y) =s*(z) —s*(y) forallz,yeG

and

{z € G:s(z) # g(z)} € fr.

MILUSHEVA, S. D., BAINOV, D. D., Foundations of the average
method for a class of non-linear integro—differential equations
with impulses.

In this work we give a foundation for the average method for non-
linear integro-differential equations of the kind

z(t) = eX(¢t,z(t), ] Y(t, s, z(s))ds), t>0

z(t) = (t,e), —w<t<0

with the impuls influence. Here z € R", w = const, and € > 0 is a small
parameter.

REICH, L., Holomorphic integrals of Jabotinsky’s
differential equations.

In iteration theory the differential equation (introduced by E. JABO-
TINSKY)

(J) G(F(z)) = F'(z)g(2)

plays a certain role. Here g(z) is a power series g(z) = djp,z™ + ...,

m 2> 1, dn # 0, whereas a solution F(z) is a power series F(z) =
0z + c22? 4 ... . We will study the structure of the set of all formal so-
lutions, and show that, if g(z) is convergent, every formal solution too is
convergent. Furthermore the dependence on a certain parameter will be
investigated. Eventually, we will consider (J) as an equation for the pair
(F,G). (" Jabotinsky—correspondences”).
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GRONAU, D., Some differential equations connected
to iteration theory.

(Joint work with J. AczEL, Waterloo/Canada).

In connection with the translation equation
(T) F(F(z,s),t) = F(z,s+1)
three differential equations
OF(z,t) _ OF(z,t)

1) oD _ 20D 6(a)
@) oD < 6(F(z, 1)
Q 2nl). 6(z) = G(F(2,0)
arise together with a functional boundary condition
@ 6(z) 2t

i

They are satisfied by the differentiable solutions of (T) and the initial

condition
(I) F(z,0)==z

These equations are attributed in the literature (Targonski) to E. JABO-
TINSKY who seems to have been the first who treated these equations in
connection with the theory of analytic iteration.

GRONAU asked, whether the converse is true that all solutions of each
of these ”Jabotinsky differential equations”, possibly with some further
initial and/or boundary conditions added, are also solutions of the trans-
lation equation. In this paper we give counterexamples but also partial
positive answers to these questions.

For Banach space valued functions we show that the initial condition
(I) implies that every solution of (1) or (2) is also a solution of the trans-
lation equation (T) and (4) holds, too, supposed that the Cauchy problem
for (1) or (2), respectively, has a unique solution.

Equation (3) has not such a close relation to the translation equation
(T) as it will be shown in several propositions and examples which yield a
general representation of the solutions of (3) in the real one dimensional
case. The examples show that in general the solutions of (3) are not
solutions of (T) and they are in general not even solutions of the weaker
functional equation

(C) F(F(z,t),s) = F(F(z,s),t)
which describes a commutativity condition of F.
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SABLIK, M., On a conditional translation equation.

Let F:[0,400) X [a,b] — [a,b], where [a, }] is an interval of reals, be
a function continuous in the second variable and such that F(0,-) = id.
We are interested in the following question : does F satisfying

(1)  F(k(t) + €(t), z) = F(k(t), F(¢(t),z)), t>0, z € [a,b)],

with some functions k,€ : [0,400) — [0,+00), constitute an iteration
semigroup, i.e. does (1) imply the translation equation

(T) F(t+s,z) = F(t,F(s,z)), st>0, z€[a,b]?

We give some sufficient conditions guaranteeing a positive answer to
this problem. An important role in our approach is played by Jabotinsky’s
equation

@) G(z) O (t,2) = G(F(1,2))
with G : (a,b) = R given by G(z) = %(O,x).

RONKOV, A., Integral equations and inequalities of Volterra type
for functions defined in partially ordered spaces.

Linear integral operators of Volterra type acting in L,(7T, B) where T
is a partially ordered connected topological space and B is a Banach space,
as well as the corresponding equations and inequalities are considered.

FoORTI, G.L., Some consequences of the stability of the Cauchy
equation and their application for solving
some alternative equation.

Let G be a group and B a Banach space and assume that the couple
(G, B) has the property of stability of homomorphisms, that is for every
function f : G — B such that || f(zy) — f(z) — f(y)|| £ K for all z,y in G
and for some K, there exists ¢ € Hom(G, B) such that || f(z) — go(:r)|| <K
for all z € G. In this hypothesis we prove some propositions connectin
the set of values assumeti) by the function h = f — ¢ and those assumeg
by the difference f(zy) — f(z)— f(y).

This enables us to solve equations of the form f(zy)— f(z)— f(y) € V
where V is a given finite set.
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VINCZE, E., Uber eine Verallgemeinerung des
Funktionalgleichungssystems der Wirtschaftlichkeit.

In dem Vortrag wird das folgende System von Funktionalgleichungen
vollstandig gelost:
G(sz,sy,sz) = G(z,y, 2),
G(z, sy, sz) = Hy[G(z,y, 2), s),
G(s::,y, .SZ) = H?[G(z!ya z)s 3]&
G(sz,sy, z) - HS[G(":v Y, 2)! 3]»

wobei die Funktionen

G : R} = Rgp = (a,b) C Ry := (0, +00);
Hl) Hz: H3 : Rab X R+ =—=p R.l

in allen Veranderlichen stetig und streng monoton sind. Das obige Gle-
ichungssystem ist eine gemeinsame Vern.ﬁ emeinerung von mehreren Sys-
temen, die in den verschiedenen Wirtschn&lichkeitsmodellen eine grundle-
gende Rolle spielen.

BARON, K., On a problem of R. SCHILLING.

The problem concerns the functional equation

(1) f(gz) = é[f(x — 1)+ f(z +1) +2f(2)]
and its solutions f : R — R such that

= g
2) f@=0 forlel > {1,

where ¢ is a fixed number from the open interval (0,1). It comes from
physics and has been posed by R. SCHILLING (a personal communication).

Results on solutions of equation (1) fulfilling condition (2) in different
classes of functions will be presented.

FORG-RoOB, W., On the problem of R. SCHILLING.

The problem concerns the functional equation

(x) fgz) = %(f(z ~ 1)+ f(z +1) + 2£(2))
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where g is a fixed number from the interval (0,1).

Some results have been found until now (SCHILLING himself, K. BA-

RON) in the case ¢ € (0, ;] . In this talk I treat the case ¢ = 3. A complete

description of the solution under the condition

(xx) f(z)=0 for |z| > -l-—g-—&
is given for ¢ = %

Furthermore, the following theorem holds:

Theorem. Let ¢ = % Then any solution of (x), which is measurable
on an interval of positive lenght contained in (—3},3) and which fulfills
(xx), is equal to 0 a.e.

GRZASLEWICZ, A., On some solutions of the functional equation
F(z,y) F(y,2) = F(z,2).

Assume < is a linear order in the set B, § # A C B and (M,) is
a semigroup such that (M \ {0},-) is a group. We shall write A < y if
ACB,ye Band z < yfor all £ € A. Let us put

R:={(z,5)€EAxB:2<y}, Ry={{z;y) EAx A:z Sy}
We shall consider the functional equation
(1) F(I,y)‘F(y,Z)=F(I,Z),

where F' maps A x B or R into M.

Theorem 1. A function F : A x B — M satisfies (1) if F = 0
or there exists a function f : B — M such that f(A) C M \ {0} and

F(z,y) = [f(z)] f(y) for z € A, y € B.

Theorem 2. If there exists an element a € A such that a < B\ A
then a function F : R — M (F # 0) is a solution of (1) such that F(R4) C
M \ {0} iff there exists a function f : B — M such that f(A) C M\ {0}

and F(z,y) = [f(z)]7 f(y) for (z,y) € R.

‘Theorem 3. If A is an interval in B then F : R — M is a solution of
(1) iff there exists a family U of disjoint intervals of the set A such that

for every A € U there exist functions fa : A — M\ {0} and ks : {y € B :
A <y} — M such that
(a) ka(y)=0ifA<y
and(ye A\AorA<z<yforsomez € A\ A),
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0 fre A\ U A,z<y,y€ B,
A€EU

&) F(z,9) = [fa(z)] ' faly) ifz,yeAz<y,
[fa(z)] ka(y) ifzeA,ye{yeB: A<y}

Theorems 1 and 2 are results of ANGELO GRZASLEWITZ and Theorem
3 is our common result.

MOSZNER, Z., Sur la commutativité des groupes un—paramétriques
des transformations affines.

On considere le probléme suivant est-ce-qu'il est vrai qu’on a I'implica-
tion suivant

*x) A f@)-9®) =g9@®)ft) = N F(r)-9(s) =g(s)- f(r)

teER r,s€ER

pour deux homomorphismes f et g de (R, +) au groupe (A, -) des trans-
formations affines de C", avec la superposition comme 'operation ” - ” .
On sait (les résultats avec M™¢ Z. LESZCZYNSKA [2] et [3]) que
1) pour n = 2,3 l'implication () a lieu pour les transformations centro—
affines,
2) cet implication n’ a pas lieu pour les transformationes affines déja
pour n > 3 et pour les transformationes centro-affines pour n > 4.
On peut aussi indiquer pour quelles transformationes affines cet im-
plication (*) a lieu pour n = 3.

Bibliographie
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LovE, E. R., Hardy’s inequality with Orlicz-Luxemburg norms.

The original Hardy’s inequality may be written
[Az|| < C||=|

o0
where ¢ = (z,,) is a column sequence, ||z| = ( 3 Izmlf’) i Pk
m=1

A = (amn) is the Cesaro matrix (amn = 1/mif 0 < n < m, app =0
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otherwise) and C is independent of z. I wish to generalize this, replacing
A by a much more general matrix operator and || - || by an Orlicz-type
norm which is essentially due to Luxemburg,.

The Orlicz-Luxemburg norm of a complex-valued sequence z = (z,,)

o0
. : Tn
|l =mf{k>o.z,\,,q> (T) < 1},
n=1
where A,, > 0 and @ are fixed, @ being an Orlicz function. An example is

00 1/p

#(t) =t with p> 1; then [z = ( £ dleal?) & weighted £ -norm
=1

with arbitrary weighs A,. i

18

m
Theorem. Let & be Orlicz and supermultiplicative. Let A, = ) Ap,
n=1
where A\, > 0. Let a(t) be non-negative and measurable, and have a
decreasing rearrangement @(t), all on (0,00). If A = (amyn) satisfies

An’hm [+ =]
o f a(t)dt, and C = ] &1t~ )a(t)dt.
An-1/Am 0

then |Az|| < C||z| for all z.
Ezample. Let ®(t) = t? with p > 1. Let

a(t)=1 if0<t<1, aft) =0 otherwise,
Gnn =An/Am if0<n<m, am,=_0otherwise.

Then the mth element of the column Az is

= MzZ1+ 224 ... 4+ AmTm
" M+ +...4+2n ’

and the conclusion of the theorem is that

oo 1/p oy 1/p
(E /\nlaﬂl’) s ;{_1 (r; ’\ﬂlxulp) .

n=1

The case of this in which A,, = 1 is the original Hardy’s inequality.
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UHRIN, B., Some new results around integral inequalities of
Henstock-Macbeath-Dinghas—type.

Notations. f,g : R® — R} L-measurable functions; u L-measure;
mo(f) = ess sup f(z); s C R™ k-dimensional subspace, T its orthogonal

complement,zﬂ S RN
i(f,u) = ff(a: + u)dz, mi(f) = ess sup i(f,u); for a,b>0,

-~ < a < 400,0< A <1 Ma(a,b) (Aa® + (1 = A)b*)/* if a,b > 0
and M,(a, b)—01fa b=0;
SXgLF) e sy Ma(f(z/), 9((t - 2)/(1 = V),

ka(T) = ess SuPM (i(f, u/A)/me(f), i(g, (T —u)/(1 = A))/mu(g));
¢(f,¢) = {-'r ER": f(z) 2mo(f)- £}, 0<E<T;
Ma(1-A)B={zeR": py(AAN(z-(1- A)B)) > 0}.
In the talk we present two reduction theorems to gain sharp lower bounds
for the integral of h,o(t). The first one reduces the question to lower esti-

mations for y(AA @(1—A)B), and the second one to lower estimations for
the same type integral but in smaller dimensions.

[ ess sup min{f(a/3)/mo(£),((t = 2)/(1 = X)) /m(g)}at >

ay ;
> [ (£, €) @ (1 = M)e(g, €))dE,

0

(2) f0<k<nand a+ 20, af/(a+ B)> —1/k then

j hao(t)dt > M_g(mi(f),mx(g)) - jk.{(‘r)dr,
T

Rn"

where v = (1/a+1/8 + k)1.

These inequalities sharpen all known inequalities of Henstock-Macbeath-
Dinghas-type. They have applications in many fields of mathematics.
(The results (1), (2) are further developments of those in [1], [2].)
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Roux, D., L, approximation by smoothed Fourier polynomials.

Let {an(0)},ez~; @ > 0 be a sequence of multipliers of L!(TV)
(N > 1) such that lin°1+ an(0) =1 for all n € ZV. For every f € L}(TV)

and for every integer m > 0 let us set

Pmo(t)= Y an(o)f(n)e?™™

In|]<m

Pm,o(t)= Z: f‘(n)eZwint

In|<m

te ",

We study the functional inequality

If = Pmolls < 1If = Pom,oll-

The problem is connected with approximation theory.

EBANKS, B., A functional equation connected with homogeneous
biadditive forms and information measures.

In the course of obtaining his results on functionally homogeneous
biadditive forms, C. T. NG [1] solved the functional equation (system)

(FE) F(z)+ M(z)G(1/z) =0 (z #0)

for additive F, G and multiplicative M on fields. In order to solve a certain
characterization problem for information measures (2], it was necessary to
solve a special case of (FE) with G = F on the positive cone of R" [3].
Now the general solution of (FE) on the positive cone of R" is known.
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forms, (submaitted).
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(1986), 247-252.
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FENYO, I. S., Connection between an integrodifferential equation
and a functional equation.

Let us denote by D a subset of reals (or complex numbers) with the
property that s € D implies 1/s € D. We consider the following functional
equation:

0 Fo)+ (8/s0)F () = HG)

where H(s) is an arbitrary function defined on D, F is the unknown and
p is an arbitrary number. The following theorem of alternative holds:

Theorem A. 1°. If 3% # 1, then (I) has exactly one solution which is
given explicitely.
2°. If p* = 1, then (I) has solution iff H fulfills the

following condition:

H(s)=(B/s")H(1/s) (s€ D)

and the most general solution is given explicitely.

From this theorem we derive the solvability of the following integro-
differential equation:

(1n) f(t)+ 8 / Ta(2VEz)(t/2)™? f®)(2)dz = h(t).
0

Here h is a given function defined on Ry, f is the unknown, 7, is the
Bessel-function of first kind (n > —1) and k is a nonnegative integer. We
look for the solutions of (II) in a suitable function space in which also h is
lying.

Theorem B. (i) If 8 # 1 then (II) has exactly one solution in the
considered function space which is given explicitely. )

(#1) If % = 1 then (II) has solutions iff h is a solution

of the following equation :

) = B [ Tu2VE)t/2)"/h D z)ds.

Also in this case the general solution is given explicitely.
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PAGANONI, L., On a functional equation concerning affine
transformations.

We consider the following functional equation
(%) U(Rz + p) = a(R,p)U(z) + B(R, p).

We show that if () has a nonconstant solution U then a and S have to
be of a very special form. Then we obtain under suitable hypotheses the
general solution of (*).

SHIMIZU, R., Expansion of a completely monotone distribution.

A probability distribution F is said to have decreasing hazard rate
if the ratio f(z)/(1 — F(z)) is non-increasing, where f is the probability
density of F. If the distribution has the moments yu;,7 = 1,2,... , K, with
1 = 1 then they satisfy the inequalities

1< pz/2 < p3/3 < ... < pk/K!

If any one of the inequality signs becomes equality, then the distribution
F is exponential: F(z)=1—¢e7%, for z > 0.
A distribution F is said to be completely monotone if it can be put

o0
in the form 1 — F(z) = [ e7?*dG(0), where G is a distribution function.

0
In statistical terminology, this means that the distribution F of a positive
random variable 7 belongs to C if and only if there exist mutually indepen-
dent positive random variables ¢ and X such that n = ¢ X and X follows
the exponential distribution.
Completely monotone distributions constitute a subclass C of the class
D of distributions with decreasing hazard rate.
In this talk, it will be shown that the distribution F' of C admits the

following expansion: for any even number k < K, write

k-1
1
Fi(z)=1-¢"" - E }a,'Lgl_)l(:r)xc_‘
i=1

where
a,»=2(—1)f’( 5 )s,, e e e SR
r=1

and where the L’s are Laguerre polynomials: Lgl)(:r:) =1 Lgl)(z) =z-2,
L(z) = 22 — 62 + 6 and L{"(z) = 23 — 1222 + 36z — 24. Then, we have
IF(S:) — Fg(:!:)l < Apay,

where the A’s are positive numbers independent of the distribution G. A
numerical computation shows that A; = 4.23, A4 = 12.29 and Ag = 38.95.
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STEHLIG, F., Functional inequalities in the theory of environmental
quality indices: concepts of synergism and antagonism.

Various attempts have been made to describe the quality of a certain
area of the environment by real-valued indices I : E — R4, where E is
the set of (all) objects which are relevant for the environmental quality at
time t. In practical applications, the set E is usually specified as a sub-
set of R7,y- It has often been observed, for instance in connection with
the damages caused by acid rain, that synergistic and sometimes antago-
nistic effects play an important role. If these effects are to be described
(and measured) by environmental quality indices these indices must have
certain properties which can be expressed in terms of functional inequali-
ties. Moreover, a precise definition of synergistic and antagonistic effects
can be given only by such properties of environmental indices. Differ-
ent approaches are presented and their consequences with respect to the
structure of the indices are analysed.

MATKOWSKI, J., On L? norm.

Let ¢ : [0,00) — [0,00) be a bijection with ¢(0) = 0. We prove,
without any regularity conditions on ¢, that if the functional
Pok : R¥ = [0,00), k > 2, defined by the formula

k
Pok(z) =" (2 w(lzel)) = (21, 7))

=1
is a norm in R¥ then ¢(t) = ct?. Moreover the norm
lzllpx == (lz1[” + ... + |z [")!/?

has the following property. If both ¢ and ¢! are bounded on every inter-
val (0,a), a < oo, and 'lim t~Pp(t) > 0 then there exists a "homogeneous
—00

regularization” r,x : R¥ — [0,00) of the functional p, x defined by the
formula

"w.k(-"-') o tliﬂ; t_lpep,k(f-f)

and
rox(z) = ||lzllsx, = €R"
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DAROCZY, Z., Interval filling sequences and functional equations.

Let A denote the set of those real sequences A := {A,} for which the
o0
conditions A\, > Ap41 >0 (n € N) and LY := ¥ ), < oo are satisfied.
n=1
If A € A then we define

S[Al == {{e,\) | £ € {0, 1}"})

o0
where (¢,)) := Y €,An. The sequence A € A is said to be interval filling
n=1
if S[A] = [0, L™)].
Let A € A be an interval filling sequence. A mapping
e:[0,LMV] — {0,1}N is an algorithm if for any z € [0, L(V)]

z = (e(z),A)

holds. We call the function F : [0,LY)] — R additive (with respect to

the interval filling sequence A € A and with respect to a nonvoid set A of
algorithms) if for any z € [0, L("] and for any ¢ € A the equality

(1) F(l’) = F[ (s(:c), ’\) ] o (E(:L'),F(/\))

holds where F(}) := {F(Aa)} and 3 [F(An)| < oo.
n=1

We present some results and problems on the functional equation (1).

CHOCZEWSKI, B., Dirichlet’s problem for a functional equation.

(This is a joint paper by Z. POWAZKA (Krakéw) and the speaker.)
Let W C R" be a nonempty, convex and bounded set, dW # 0 and

let F: R?* - R, b: W — R be given continuous functions. The following
problem will be discussed.

Problem (D). Find a continuous solution ¢ : W — R of the functional
equation

@ (pTH) = F(¢(p), ¢(q))

that satisfies the following condition : ¢(p) = b(p), p € OW.
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MAKSA, GY., Nonnegative entropies.

It is known that there exist 1-recursive, symmetric, normalized, non-
negative entropies different from the Shannon-entropy. On the other hand,
the Shannon-entropy has minimal property in the set of all 1-recursive,
symmetric, normalized and nonnegative entropies.

In the talk similar problems will be discussed in connection with
a-additve, nonnegative, normalized entropies which have the sum prop-
erty.

ZDUN, M. C., On CT solutions of simultaneous Abel’s equations.

Let fx : (a,b) — (a,b), k = 1,... ,m be continuous bijections such
that fio f; = fijofifori,j =1,... ,m. Let 1 < i < m and suppose that
for every n,k € Z and |n| + |k| # 0 f(z) # f¥(z) for z € (a,bd). Let
zo € (a,b). Then for every n € N there is a unique m,, € Z such that

" Yxzg) < fM(z0) < fi""(z0) and there exists a limit
i 2% = s(fi, /1) € Q

n—oo mN

and this limit does not depend on zy. Put

A:={36R\Q; s=ag+1/(a1 +1/(az+...))),

lim limsu fSn.ei2f
f—o0 n_.mp > log(1+ a;)
i<n

> log(1+ ay) }

The set A is of full Lebesgue measure in R.

If fi and f; areof class C", 3<r<w, f1#0, fl #0, s(fi,f) €A
then there exist a function ¢ € C"™™? unique up to an additive constant
and ¢3,... ,¢m € R\ {0} such that
(1) e(fr(z)) = ¢(z) + &, for k =1,... ,m, z € (a,b), where ¢; = 1 and
@' # 0. Moreover ¢; = s(f;, f1).

If s(fi, f1) € A, then the system (1) even for analytic f; and f; may
possess no C! solutions.

VOLKMANN, P., Eine spezielle Klasse von Deviationsmitteln.

Satz. Es sei [a,b) C R und M : [a,b] x [a,b] — R. Dann sind
aquivalent:
(A) M ist stetig, in beiden Variablen streng wachsend, und es gilt

min{z,y} < M(z,y) = M(y,z) < max{z,y}.
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(B) Es existiert E : [a,b] % [a,b] — R stetig mit
E(z,z) =0,
<7, y27 (z,9) # (7,9) = E(z,y) < ET,7),
E(z,M(z,y)) + E(y, M(z,y)) = 0.

KOVACEC, A., Two recurrent inequalities.

Theorem. (a) Let r > 0 be fixed and define the function

r
f = f(C) = [1 N, Cl/r(l o r)l+1frl "
Then for every N € N there holds the inequality

r N r
(f°f° 0 f)(1) < zy (ZJ") + 7, (in) +

N-1- tlmes =3

N r
+...+$N(ZI.‘) (z; 2 0)

i=N
(b) Let p > 1 be fixed and define the function
CHp =1
F=f(C):= [1 - 3
(C) p
Then for every N € N there holds the inequality
I Tro & N <

pV/II+I2+...+IN+P\/32+1.3+-”+xN+-.. P\/ﬁ_

N 1-1/p
<(fofo...0f)1) (Zz.)

N-1- hme-

The proofs are given by the ”Functional equation approach to inequal-
ities” as to be found e.g. in the works of CHUNG LIE WANG, BELLMAN

and (implicitly) REDHEFFER.

Corollary. (American Mathematical Monthly Problem E2996,
M90 (1983), 334)

£ (5

3—1" ;Il -1 J=1
V'J

Another approach to inequalities of this second (”infinite”) type is
also discussed.
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KRASINSKA, S., The transient process and the Switching moments
for the long Thomson’s cable.

The aim of the note is to derive the general form of the formula which
gives the Switching Moments of the current for the Long — Thomson’s
cable with boundary conditions, having the following form:

u(0,¢) = 0 for £ > 0 and u(t,0) = E = const for t > 0 and

u(t, &) = i(t, € ) R.

The paper deals with the optimal control problem of the system with
distributed parameters described by a differential equation of the parabolic
type.

NAGY, B., On spectral measures with singularities.

It 1s well-known that there is a 1-1 correspondence between the class
of all closed normal operators and the class of all selfadjoint spectral mea-
sures in Hilbert space or, more generally, between the class of all spectral
operators of scalar type (in the sense of DUNFORD and BADE) and the class
of all (non-selfadjoint) spectral measures in Banach space. As a contrast
it is shown here that to every closed linear operator in a Banach space
there corresponds a spectral measures with singularities that is maximal
in a certain sense: however, there are such (in general unbounded) spectral
measures with singularities that do not correspond to any closed operator
in the sense above (even in Hilbert space). The proof of the last asser-
tion contains elements that are similar to methods used in the theory of
functional equations.

KRAUTER, A. R., On best possible upper bounds for the permanent
of (1,—1) matrices with arbitrary rank.

Two nxn (1,—1) matrices A and B are said to be equivalent (4 ~ B),
if B can be obtained from A by a sequence of the following operations:
(#) interchange any two rows or columns of A; (i¢) transpose A; (1i2) negate
any row or column of A.

Let r be a nonnegative integer, r < n—1 and let C(n,r) = (¢;;) be the
n x n (1,-1) matrix with ¢;; = =1 for: =1,... ,r and ¢;; = 1 otherwise.
Then it is known that

nr = per(C(m ) = (2%} ) (n = B!

k=0

The main topic of the talk will be a discussion of the following Conjecture
([2]). Let A be an n x n (1,—1) matrix, n > 5, such that rank (A) = r + 1.

hen
lper(A)| < wn,r
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and equality occurs if and only if A ~ C(n,r).

For r = 0 and r = 1 complete solutions have been given by WANG [4].
For r = n — 1 the conjecture as well as a partial solution is presented in
[1], thus answering in part a problem posed by WANG, whereas SEIFTER
[3] found a partial answer for the general case.
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SKORNIK, K., A remark on the Foias theorem.

The Foias theorem [2] on convolution was proved for the first time
in 1961. Other proofs of this theorem can be found, for instance, in [1],
(3], [4]. In all of those papers the Foias theorem was proved by applying
the representation theorem for linear continuous functionals and the Hahn
— Banach extension theorem so that transfinite methods were involved.
J. MIKUSINSKI in [5], eliminated transfinite methods by using the repre-
sentation theorem of functionals on L' (see also [6]). Similarly, in [8], the
Foias theorem on convolution for continuous functions was proved.

In [7] a new proof of the Foias theorem on convolution of integrable
functions is given, without use of transfinite methods and without use of
the theorem on representation of functionals on L'. Instead we use some
properties of Hilbert space.
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REVESZ, Sz., Continuous solutions of the difference equation
Ba, s Dg =0

Denote by A, the difference operator with step a € R, which operates

over R® and has kernel {f : R = R, f(z +a) = f(z),(z € R)}. If
f € C(R) is the sum of the functions f;, periodic mod a;,

(1) f=h+...+fa ABgfi=0,
then f satisfies the homogeneous difference equation
(2) ADg,Dgy -+ D f=0.

Here we investigate the converse, and prove, that if f € C(R) is bounded
and satisfies (2), then there exists a representation (1) with f; continuous
(t = 1,...,n). This extends a theorem of M. WIERDL, Mat. Lapok, 32
(1984), 107-113, which settles the case n = 2. Using a result of H. WHIT-
NEY, J. Math. Pures Appl. 36 (1957), 67-95, and the above theorem, we

can characterize the functions f having a representation
B) f=P+hHi+...+fn, ieC(R), A,,;fi =0, P € Rlz], deg P < n.

These functions are the trivial solutions of (2) in C(R), and an f € C(R)
can be decomposed according to (3) if and only if (2) and

(4)  w(n,f)<oo (w(n,f):=sup{l|As... A4 flleo : h € R})

n—-times

is satisfied.

The same decomposition problem can be investigated in various other
function spaces. Moreover, we can prove a generalization of our first the-
orem to certain topological spaces (in place of R) and commuting trans-
formations (in place of the translation z — z + a;).

BRYDAK, D., On the stability of the iterative functional equation.

The problem of stability of the equation
(1) ‘P[f(z)] P g['r'r "P(r)]’ t€J = [arb)s

where f and g are given functions, will be discussed in the case where
equation (1) has a one-parameter family of continuous solutions. We shall
deal with the iterative stability in the sense of Hyers being on the iterative
stability of the stability of the so—called comparison equation

plf(z)] = f(z)p(z), z€T

such that
|g(1‘,y)—g(z,2)| Zf(‘r)ly_zlv xej
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POWAZKA, Z., Uber eine Funktionalungleichung.

In dieser Arbeit werden Ergebnisse aus der Theorie der Funktionalun-
gleichungen einer Veranderlichen in der Theorie der Funktionalungleichun-
gen mehrerer Veranderlichen angewendet.

Mit anderen Worten beweisen wir Satze fur die stetigen Losungen der
Funktionalungleichung

Y(az + By +7) < av(z) + BY(y) + 7,

wo z,y € R, a, 3, positive reelle Zahlen sind.

BARBANTI, L., Application of the Gronwall-Belman inequality for
Volterra — Stieltjes integral equations.

In this work we solve two problems that are posed in the context of
numerical linear Volterra-Stieltjes integral equations that is, in the context
of the equations

(K) z(t) — /-d,K(t,s)z(s) = f(t) 0<t<t
0

where z and f belong to G([0,%],R) the set of all regulated functions
(i.e. that has only discontinuities of first kind) from [0,%,] into R, and
K :[0,t0]> - L(R) is an admissible nucleus (in the sense that the interior
(or Dushnik type) integral [ - exist and is regulated, and that there exists

t
a unique resolvent R satisfying z(t) = f(t) + [-d,R(t,s)f(s), and the
0

equalities
t
(R.) R(t,s)z—z— K(t,s)z + /-d,K(t, o)(R(o,8)z) =0, z€R

(R*) R(t,s)c -z + ]-d,(R(t,a)(K(a,s)a:) il WER LAY,

(For the conditions on K to be admissible, and for the general theory of
the interior integral and the (K) equation, see HONIG Equations intégrales
generalisées et applications — Public. Math. d’Orsay 83-01 (1983)).



34 Gyula Maksa

We say that the pair (K, R) satisfies the G-B-property if K is in-
creasing and R decreasing when we fix the first variable in both.

The Gronwall-Bellman inequality for (K) is the following: "for all
f,9 € G([0,t0],R) if (K, R) satisfies the G—B-property then we have :

g9(t) < f(t) + ;f'd.K(t,S)y(S) implies ¢(t) < f(t) — j d,R(t,3)f(s) " (see

HONIG, l.c).
The problems that we are going to solve are due to U. ZILINSKI when
dealing with problems in meteorology (see the technical report by ZILINSKI,

1981 Applied Mech. Institute, Kiev): Given K, and K, as admissible nuclei

and R;, R as their associated unique resolvents find the conditions under
which
1.) There exists a T(t,s), where T is an admissible nucleus with resolvent

R, such that (T, R) has the G-B-property and

/ ‘dy[Ky(t,8) 0 Ry(s,0) + K3(t,s) o Ry(s,0)]z|| <
() S
< f -d,T(t,s) o [Ry(s,0) — Ry(s,0)]z
0
for all z € R.

2.) There exist a T(t,s), where T is an admissible nucleous with (T, R)
having the G-B-property, and a constant operator G such that

([K2(t,s) o Ry(s,0) — Ry(t,s) 0 Kz(s,0)] — [K,(t,s) 0 Ry(s,0)—

L) — Ry(t.s) o K1(s,0)])z = ([T(t,s) + G] o [K1(s,0) — K3(s,0)])z

for all z € R.
The solution of these problems is obtained essentially using (R*) and

(R.) and taking into account that in the Gronwall — Bellman - inequality,
in this case, the term f(t) becomes zero. The answer is affirmative if and
only if the first terms in both (%) and (*) are zero.
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TABOR, J., On mappings preserving spheres, directions and
sense of vectors.

Let E be a nonzero real normed space, G a group (written additively)
and p : E x G — E a mapping. Consider the following conditions.
(i) ¢(z,0)=z forz€E,
(i1) tp(ﬂp(:t,t),&) =¢(z,t +3) forz€E, t,s€QG,

(iii) |o(z,t)| = lp(y,t)]  for 2| =y|, t € G,
(iv) There exists a function a: R x Rt x R — R* such that

¢(az,t) = a(z,a,t)p(z,t) forzre E, aecRY, teR.

Theorem. If the function ¢ : E x G — E satisfies conditions (i) -
(iii) then the function

(1) O(|z|,t) = |e¢(z,1)| forz € E, teG

satisfies the translation equation and the identity condition. If furthermore
¢ satisfies condition (iv) then it can be written in the form

Q(I,t) = e(x,f).x (m,t) for z - E’ T # 0’ te G,
forz=0,teqG

(2)

where A\: SxG — S, S ={z € E : |z| = 1} and A satisfies the translation
equation and the identity condition.

Conversely, if © : Rt x G — R* satisfies the translation equation
and the identity condition, then the function ¢ of the form (2) satisfies
conditions (i) - (iv) and (1).

FEHER, J., Uber die Polynomldsungen einer Funktionalgleichung.

DHOMBRES, J., About functional equations meetings from 1350 to
1820 or some historical facts concerning
functional equations and inequalities.
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Problems and remarks

1. Problem. (D. BRYDAK). Let F be a one-parameter family of func-
tions defined and continuous in an interval [a, b). Let D C R? be a region

such that through every point of D there passes a unique function ¢ € F.
Let us define the first integral R of the family F' as follows

R(z,y) :=¢(z), (z,y) €D,

where ¢ is such a member of F' that ¢(z) = y.
What are the assumptions implying the differentiability of R ?

2. Problem. (D. BRYDAK). Let f be a function defined, strictly in-
creasing and continuous in J = [0,a), a > 0. Moreover, let f(0) =0, 0 <
f(z) < z for z € (0,a). Let g be a function defined, nonnegative and
continuous in J. Let the equation

(1) elf(z)] = g(z)p(z), z€J

have a continuous solution, positive in (0, a) and depending on an arbitrary
function. Let ¥ be a nonnegative continuous solution of the inequality

(2) Pf(z)]) < g(z)¥(z), =z€J.

Does there always exist a solution of ¢ such that there exists the limit
lim 4(z)/(x) ?

Remark. The function ¢ does not have to be continuous. It is already
known that such a continuous ¢ does not have to exist for every solution

of (2).
3. Remark. (L. PAGANONI). Consider the functional equation

(1) (flz+y)— f(z) = f)(9(z +y) —g(z) —9(y)) =0 =z,yeR

in the unknown functions f,¢g : R — R. L. Giupicl, a student of the
University of Milano, has found the general solution of (1) under the hy-
pothesis of the continuity of f (no assumption of g). In particular, if both
f and g are continuous, then at least one of them has to be additive.

4. Remark. (D. Rusconi). A function G; G : R? — R, is of the form

G(z,y)=f(y) - f(z) +v(y—2) =z,y€R

where f,¢ : R — R if and only if it is a solution of the equation

G(z+z2,y+2)-G(z,y) =G(y,y+2)-G(z,z+2) =z,y,2€R.
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All continuous functions f and ¢, which appear in the previous repre-
sentation, are given explicitely, when G is a continuous solution of the
equation

G(x,y):G(z,z_‘;_g)+G(x;y,y) z,y € R.

5. Remark. (Z. SEBESTYEN). A Schwarz type inequality for positive
operators on a Hilbert space proved to be useful in obtaining extension
theorems of KREIN [2] and FRIEDRICHS type [3] as well. Another applica-
tion of the method of proof gives a simple proof of a remarkable theorem
of PARROTT [1] concerning the quotient norm with respect to spaces of
Hilbert space operators.
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6. Remark. (Z. GAIJDA). Remark on a problem of M. SABLIK. Let
Fy denote the Cauchy difference of a function f: [0,00) = R, i.e.

Fy(z,y):=f(z +y) - f(z) - f(y), =,y €([0,00).

The following two classes of functions have appeared in the course of inves-
tigations concerning conditional Cauchy functional equations carried out
recently by Dr. M. SABLIK :

A:={f:[0,00) = R: Fy is differentiable at the origin as a function
of two variables},

B:={f:[0,00) = R: f =a+ g, where a is additive and g is
differentiable at zero}.

It is easily seen that the class B is contained in A. Dr. SABLIK was inter-
ested in answering the question whether the two classes coincide. Adopting
the terminology introduced by M. LACZKOVICH one may also formulate
this question as follows:

Is it true that the class of all functions differentiable at the origin
posseses the double difference property?

Some facts seemed to suggest that the solution to this problem should
be positive. For instance the well known results of N. G. DE BRUIJN im-
ply that the class of all functions differentiable everywhere has the double
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difference property. Moreover M. LACZKOVICH has recently proved the
double difference property for the class of all functions continuous at zero.
The following example shows, however, that the class of functions differ-
enctiable at zero fa.if; to share the same property.

Let us take a function h : [0,00) — R such that h(z) = z for z € [0,1)
and h is bounded on the interval [1,00). Now, define f : [0,00) — R by

PRPR o1 ¢
n=1

Then one can check that F;(0,0) = 0 but f does not admit a decomposition
into a sum of an additive function and a function differentiable at zero.
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