On the solutions of the functional equation

$$f(xf(y)^{\ell} + yf(x)^k) = tf(x)f(y)$$

By JANUSZ BRZDĘK (Rzeszów)

Let N, Z, Q, R denote sets of all positive integers, integers, rational numbers, and real numbers, respectively. The functional equation

(1)
$$f(x f(y)^{\ell} + y f(x)^{k}) = t f(x)f(y),$$

where $t \neq 0$ is a fixed real number, k and ℓ are fixed positive integers, and the unknown function f maps \mathbf{R} into itself, has been studied by many authors in various cases (cf. [1] – [11]). N. BRILLOUËT [2] (cf. also [3], [4]) found all continuous solutions $f: \mathbf{R} \to \mathbf{R}$ of (1) in the case $k = \ell = 1$ and t > 0, M. Sablik and P. Urban [9] – [11] solved (1) for t = 1 in the class of continuous functions $f: \mathbf{R} \to \mathbf{R}$, and W. Benz [1] determined the cardinality of the set of discontinuous solutions of (1) for many $t \in \mathbf{R}$.

We are going to find all continuous solutions of (1) in the case where $t \in \mathbb{R}\setminus\{0\}$ and $k \neq \ell$ are positive integers. We always suppose, without loss of generality, that $\ell < k$. The result presented here is a generalization of the one from [10].

Let us start with the following

Lemma 1. If a function $f : \mathbf{R} \to \mathbf{R}$ satisfies functional equation (1), then the following conditions hold:

- (i) if there exists an $x \in \mathbf{R}$ such that f(x) = 0, then f(0) = 0,
- (ii) if an $x_0 \in \mathbf{R} \setminus f^{-1}(\{0\})$, then the functions

(2)
$$\mathbf{R}\ni y\to x_0f(y)^{\ell}+y\,f(x_0)^k,$$

(3)
$$\mathbf{R} \ni y \to y f(x_0)^{\ell} + x_0 f(y)^{k}$$

are one - to - one.

PROOF. ad (i) Let f(z) = 0 and x = y = z. Then by (1) f(0) = 0. ad (ii) We are going to prove that function (2) is one – to – one. The proof for function (3) is analogous.

Let us suppose that $f(x_0) \neq 0$ and function (2) is not one -to - one. Then there exist $y, z \in \mathbf{R}$ such that $y \neq z$ and

$$x_0 f(y)^{\ell} + y f(x_0)^k = x_0 f(z)^{\ell} + z f(x_0)^k.$$

Since by (1) $t f(x_0) f(y) = t f(x_0) f(z)$, so f(y) = f(z) and $y f(x_0)^k =$ $z f(x_0)^k$. Thus y = z. It is a contradiction.

This completes the proof.

Lemma 2. If a continuous function $f: \mathbb{R} \to \mathbb{R}$ satisfies (1) and there exists an $x \in \mathbf{R}$ such that $f(x) \neq 0$, then for each r > 0 there exists an $x_r \in \mathbf{R}$ such that $f(x_r) \neq 0$ and

$$\left| \frac{f(x_r)^{\ell}}{x_r} \right| < r.$$

PROOF. Let us denote $F := \{x : f(x) \neq 0\}, s := \sup F$, and $i := \inf F$. Since f is continuous and there exists an $x \in \mathbf{R}$ such that $f(x) \neq 0$, so $F \neq \emptyset$ and $s \neq 0$ or $i \neq 0$.

The following two cases are possible:

F is bounded,

F is not bounded. Suppose that 1^0 holds. If $s \neq 0$, then there exists a sequence $\{x_n\}_{n \in \mathbb{N}}$ $\subset F\setminus\{0\}$ such that $\lim_{n\to\infty}x_n=s$. If s=0, then $i\neq 0$ and there exists a sequence $\{y_n\}_{n\in\mathbb{N}}\subset F\setminus\{0\}$ such that $\lim_{n\to\infty}y_n=i$.

Let $s \neq 0$. Then by 1^0 $s < +\infty$ and $\lim_{n \to \infty} f(x_n) = 0$. Thus

$$\lim_{n\to\infty}\frac{f(x_n)^{\ell}}{x_n}=0.$$

When s = 0, then in a similar way, we obtain that

$$\lim_{n\to\infty}\frac{f(y_n)^\ell}{y_n}=0.$$

Now suppose that 2^0 holds. Then there exists a sequence $\{x_n\}_{n\in\mathbb{N}}\subset$ $F\setminus\{0\}$ such that $\lim_{n\to\infty}|x_n|=+\infty$. If there exists a subsequence $\{x_{n_k}\}_{k\in\mathbb{N}}$ of $\{x_n\}_{n\in\mathbb{N}}$ such that

(4)
$$\lim_{n\to\infty} \frac{f(x_{n_k})^{\ell}}{x_{n_k}} = 0,$$

then the assertion holds.

On the contrary, if each subsequence of $\{x_n\}_{n\in\mathbb{N}}$ does not satisfy (4), then there exist a d>0 and an $n_0\in\mathbb{N}$ such that

$$\left| \frac{f(x_n)^{\ell}}{x_n} \right| > d \qquad \text{for all } n > n_0.$$

Hence

(5)
$$|f(x_n)^{\ell}| > d|x_n|$$
 for all $n > n_0$

and

(6)
$$|x_n f(x_n)^{-\ell}| < \frac{1}{d}$$
 for all $n > n_0$.

Since $\ell < k$ and $\lim_{n \to \infty} |x_n| = +\infty$, by (5) we have that

(7)
$$\lim_{n \to \infty} |f(x_n)^{k-\ell}| = +\infty.$$

Let

$$W(x,y) := x f(y)^{\ell} + y f(x)^{k}$$
 for all $x, y \in \mathbf{R}$.

Then

$$\frac{f(W(x,y))^{\ell}}{W(x,y)} = \frac{t^{\ell}f(x)^{\ell}f(y)^{\ell}}{x\,f(y)^{\ell} + yf(x)^{k}} = \frac{t^{\ell}f(y)^{\ell}}{x\,f(x)^{-\ell}f(y)^{\ell} + y\,f(x)^{k-\ell}}$$
 for all $x, y \in F \setminus \{0\}$.

Thus by (6) and (7)

$$\lim_{n \to \infty} \frac{f(W(x_n, y))^{\ell}}{W(x_n, y)} = 0 \qquad \text{for all } y \in F \setminus \{0\}.$$

This implies the assertion.

Lemma 3. If a continuous function $f : \mathbf{R} \to \mathbf{R}$ satisfies (1) and there exist $a, b \in \mathbf{R}, a < b$ such that $f(a) = f(b) \neq 0$, then f(x) = f(a) for all $x \in [a, b]$.

PROOF. Let us denote

$$V(x,y,z) := \frac{f(x)^\ell}{x} (y-z) + f(y)^k - f(z)^k \qquad \qquad \text{for all } x,y,z \in \mathbf{R}, x \neq 0$$

and suppose that there exists a $c \in (a, b)$ such that $f(c) \neq f(a)$. Then

(8)
$$\operatorname{sgn}(f(c)^k - f(a)^k) \neq \operatorname{sgn}(f(b)^k - f(c)^k),$$

where

$$sgn x = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0. \end{cases}$$

Since

$$|f(c)^k - f(a)^k| = |f(b)^k - f(c)^k| \neq 0,$$

by Lemma 2 there exists an $x_0 \in \mathbf{R}$ such that

$$\left| \frac{f(x_0)^{\ell}}{x_0} (c-a) \right| < |f(c)^k - f(a)^k|$$

and

$$\left| \frac{f(x_0)^{\ell}}{x_0} (b-c) \right| < |f(b)^k - f(c)^k|.$$

Hence

(9)
$$\operatorname{sgn} V(x_0, c, a) = \operatorname{sgn}(f(c)^k - f(a)^k)$$

and

(10)
$$\operatorname{sgn} V(x_0, b, c) = \operatorname{sgn}(f(b)^k - f(c)^k).$$

It is easy to observe that by (8), (9), and (10)

(11)
$$\operatorname{sgn} V(x_0, b, a) \neq \operatorname{sgn} V(x_0, c, a)$$

or

(12)
$$\operatorname{sgn} V(x_0, b, a) \neq \operatorname{sgn} V(x_0, b, c).$$

Since f is continuous, the following functions:

$$\mathbf{R}\ni y\to V(x_0,y,a),$$

$$\mathbf{R} \ni y \to V(x_0, b, y)$$

are continuous. Thus, if (11) holds, then there exists an $e_1 \in [c, b]$ such that

(13)
$$V(x_0, e_1, a) = 0$$

and if (12) holds, then there exists an $e_2 \in [a, c]$ such that

$$(14) V(x_0, b, e_2) = 0.$$

It is easy to verify that (13) implies that

$$e_1 f(x_0)^{\ell} + x_0 f(e_1)^{k} = a f(x_0)^{\ell} + x_0 f(a)^{k}$$

and (14) implies that

$$e_2 f(x_0)^{\ell} + x_0 f(e_2)^k = b f(x_0)^{\ell} + x_0 f(b)^k.$$

In view of Lemma 1 (ii) it is impossible.

Lemma 4. If a continuous function $f : \mathbf{R} \to \mathbf{R}$ satisfies (1) and there exist $a, b \in \mathbf{R}$, a < b such that $f(x) = f(a) = f(b) \neq 0$ for all $x \in (a, b)$, then f(x) = f(a) for all $x \in \mathbf{R}$.

PROOF. Let us suppose that there exists an $x \in \mathbf{R}$ such that $f(x) \neq f(a)$. Then card $f(\mathbf{R}) > \operatorname{card} \mathbf{N}$ and by axiom of choise there exists a set $Y \subset \mathbf{R}$ such that

- (15) $\operatorname{card} Y > \operatorname{card} N$,
- (16) $f(x) \neq f(y)$, for all $x, y \in Y, x \neq y$, and
- $(17) 0 \notin f(Y).$

Fix a $y \in \mathbf{R}$. We define a function $W^y : \mathbf{R} \to \mathbf{R}$ as follows

$$W^{y}(x) := y f(x)^{\ell} + x f(y)^{k},$$
 for all $x \in \mathbf{R}$.

It follows from (1) that $f(W^y(x)) = t f(x) f(y)$ for all $x, y \in \mathbb{R}$. Thus

$$f(z) = t f(a)f(y),$$
 for all $z \in W^y([a, b]), y \in \mathbf{R}$

and according to (16) and (17)

(18)
$$W^x([a,b]) \cap W^y([a,b]) = \emptyset$$
, for all $x, y \in Y$, $x \neq y$.

It is easy to notice that for each $y \in Y$ the function W^y is continuous and by Lemma 1 (ii) is one – to – one. Hence $W^y([a,b])$ is a nontrivial interval for all $y \in Y$.

Let $A := \{W^y([a,b]) : y \in Y\}$. Then (18) implies that A is a family of disjoint intervals. By (15) card A > card N. It is impossible.

Finally we prove the following

Theorem 1. The functions $f_1 \equiv 0$ and $f_2 \equiv \frac{1}{t}$ are the only continuous solutions of (1) in the class of functions $f : \mathbf{R} \to \mathbf{R}$.

PROOF. Let a continuous function $f: \mathbf{R} \to \mathbf{R}$ satisfy (1) and let $f \not\equiv 0$. We define $F := \{x: f(x) \neq 0\}$. Thus

$$(19) F \neq \emptyset.$$

Two cases are possible

(a) $f|_F$ is not one – to – one,

(b) $f|_F$ is one – to –one,

where the function $f|_F: F \to \mathbf{R}$ is defined as follows

$$f|_F(x) := f(x)$$
 for all $x \in F$.

When (a) holds, then there exist $a, b \in F, a < b$ such that $f(a) = f(b) \neq 0$. Thus by Lemma 3 we obtain that $f|_{[a,b]} \equiv f(a) \neq 0$ and consequently on account of Lemma 4 and (1) $f \equiv \frac{1}{t}$.

On the contrary, if (b) holds, then by (1) the following condition is true:

$$x f(y)^k + y f(x)^\ell = y f(x)^k + x f(y)^\ell$$
, for all $x, y \in F$.

Thus

$$f(x)^{\ell} - f(x)^k = x \frac{f(y)^{\ell} - f(y)^k}{y}$$
 for all $x, y \in F, y \neq 0$.

Since f is continuous and $f \not\equiv const$, there exists a $y_0 \in F \setminus \{0\}$ such that $f(y_0)^{\ell} \neq f(y_0)^k$. Denote

$$p := \frac{f(y_0)^{\ell} - f(y_0)^k}{y_0}.$$

Then

$$(20) f(x)^{\ell} - f(x)^{k} = px, \text{for all } x \in F.$$

Hence the function $g: \mathbf{R} \to \mathbf{R}$ defined as follows

(21)
$$g(x) = \frac{1}{p}(x^{\ell} - x^{k}), \qquad \text{for all } x \in \mathbf{R}$$

satisfies the following condition

$$(22) g(f(F)) = F.$$

Now suppose that

$$(23) F = \mathbf{R}.$$

Then by the fact that f is continuous we obtain that f(F) is connected. Thus $f(F) \subset (0, +\infty)$ or $f(F) \subset (-\infty, 0)$. Since by (21) $g((0, +\infty)) \neq \mathbf{R}$ and $g((-\infty, 0)) \neq \mathbf{R}$, by (22) we obtain that (23) does not hold. Hence by Lemma 1 (i)

$$(24) f(0) = 0.$$

It follows from (21) that g(1) = g(0) = 0. Thus by (24) and (22)

$$(25) {0,1} \cap f(F) = \emptyset.$$

Observe that since f is continuous and (b) holds, we obtain that $f(F) \cup \{0\} = f(\mathbf{R})$ is connected and $f^{-1}(\{0\})$ is connected. Thus by (19) F is unbounded and consequently according to (20) f(F) is unbounded. Therefore in view of (25)

(26)
$$f(F) = (-\infty, 0).$$

Hence and from (21) and (22) it follows that

(27)
$$\operatorname{card} \mathbf{R} \backslash F > 2.$$

In the case where k and ℓ are even numbers, we have that g(-1) = 0. Thus by (22), (24), and (26) at least one of the following cases holds:

- (j) k is an odd number,
- (jj) ℓ is an odd number.

Suppose that (j) holds and denote $A_k := \{f(x)^k : x \in F\}$. Then on account of (26)

$$(28) A_k = (-\infty, 0).$$

Since according to (1)

$$f(x f(y)^k) = 0,$$
 for all $y \in F$, $x \in f^{-1}(\{0\}),$

so

(29)
$$x A_k := \{x z : z \in A_k\} \subset f^{-1}(\{0\}), \quad \text{for all } x \in f^{-1}(\{0\})$$

and

(30)
$$zf^{-1}(\{0\}) \subset f^{-1}(\{0\}),$$
 for all $z \in A_k$.

Fix any $x_0 \in f^{-1}(\{0\})\setminus\{0\}$ (cf. (27)). If $x_0 < 0$, then by (28) and (29)

 $x_0 A_k = (0, +\infty) \subset f^{-1}(\{0\})$

and consequently in virtue of (28) and (30)

$$(-\infty,0) \subset f^{-1}(\{0\}).$$

Thus according to (24)

$$f^{-1}(\{0\}) = \mathbf{R}.$$

On the contrary, if $x_0 > 0$, then by (28) and (29)

$$x_0 A_k = (-\infty, 0) \subset f^{-1}(\{0\})$$

and consequently in view of (28) and (30)

$$(0, +\infty) \subset f^{-1}(\{0\}).$$

Thus on account of (24)

$$f^{-1}(\{0\}) = \mathbf{R}.$$

Hence $f \equiv 0$. It leads to a contradiction.

In the case (jj) we obtain a contradiction in the same way.

This completes the proof.

We can generalize the above theorem in a similar way as in [10].

Theorem 2. Let X be a linear space over \mathbf{R} and let a function $f: X \to \mathbf{R}$ satisfy (1). Then, if for each $x \in X \setminus \{0\}$ the function $g_x : \mathbf{R} \to \mathbf{R}$ given by

$$g_x(s) = f(s x)$$
 for all $s \in \mathbf{R}$

is continuous, then $f \equiv 0$ or $f \equiv \frac{1}{t}$.

PROOF. It is easy to verify that g_x satisfies (1) for $x \in X \setminus \{0\}$. Thus by Theorem 1 $g_x \equiv const$ for $x \in X \setminus \{0\}$.

Since $g_x(0) = f(0)$ for $x \in X \setminus \{0\}$, so $g_x \equiv f(0)$ for $x \in X \setminus \{0\}$ and therefore $f \equiv const.$ This completes the proof.

Acknowledgement. I wish to thank Professor JÓZEF TABOR for his most valuable comments and suggestions.

References

- W. Benz, The cardinality of the set of discontinuous solutions of a class of functional equations, Aeguationes Math. 32 (1987), 58-62.
- [2] N. BRILLOUËT, Equations fonctionnelles et recherche de sous groups, Publ. Math. Univ. Nantes, (1983).
- [3] N. BRILLOUËT, J. DHOMBRES, Equations fonctionnelles et recherche de sous groups, Aequationes Math. 31 (1986), 253-293.
- [4] J. DHOMBRES, Finding subgroups, Aequationes Math. 24 (1982), 267-269.
- [5] S. MIDURA, Sur la determination de certains sous groups du groupe L_s¹ á l'aide d'équations fonctionnelles, Dissertationes Math. 105 (1973).
- [6] S. MIDURA, Sur certains sous demigroupes á un parametre du groupe L₃¹ determinés á l'aide d'équations fonctionnelles, Proc. of the Twenty third Internat. Symposium on Functional Equations, Gargnano, Italy, June 2 June 11, 1985, Centre for Information Theory, 26-27, Faculty of Mathematics, Waterloo, Ontario, Canada.
- [7] S. MIDURA, Sur certains sous demigroupes á un parametre des groupes L_2^1 et L_3^1 determinés á l'aide d'équations fonctionnelles, Rocz. Nauk. Dyd. WSP Rzeszów 7/62 (1985), 37-50.
- [8] S. MIDURA, Solutions des équations fonctionnelles qui determinent les sous demigroupes du groupe L¹₄, Rocz. Nauk. Dyd. WSP Rzeszów 7/62 (1985), 51-56.
- [9] M. SABLIK, Remark, Aequationes Math. 26 (1984), 274.
- [10] M. SABLIK, P. URBAN, On the solutions of the equation $f(x f(y)^k + y f(x)^\ell) = f(x)f(y)$, Demonstratio Math. 18 (1985), 863-867.
- [11] P. URBAN, Continuous solutions of the functional equation $f(x f(y)^k + y f(x)^\ell) = f(x)f(y)$, Demonstratio Math. 16 (1983), 1019-1025.

INSTITUTE OF MATHEMATICS PEDAGOGICAL UNIVERSITY 35 - 310 RZESZÓW POLAND.

(Received August 7, 1987)