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On the solutions of the functional equation
f(zf(y) +yf(2)*) = tf(z)f (y)
By JANUSZ BRZDEK (Rzeszéw)

Let N, Z, Q, R denote sets of all positive integers, integers, rational
numbers, and real numbers, respectively. The functional equation

(1) f(z f()* +y f(2)*) = t () (v),
where t # 0 is a fixed real number, k and ¢ are fixed positive integers,
and the unknown function f maps R into itself, has been studied by many
authors in various cases (cf. [1] — [11]). N. BRILLOUET [2] (cf. also [3],
[4]) found all continuous solutions f : R — R of (1) inthecase k=£¢=1
and ¢ > 0, M. SABLIK and P. URBAN [9] - [11] solved (1) for t = 1 in the
class of continuous functions f : R — R, and W. BENZ [1] determined the
cardinality of the set of discontinuous solutions of (1) for many ¢ € R.

We are going to find all continuous solutions of (1) in the case where
t € R\{0} and k # ¢ are positive integers. We always suppose, without
loss of generality, that £ < k. The result presented here is a generalization
of the one from [10].

Let us start with the following

Lemma 1. If a function f : R — R satisfies functional equation (1),
then the following conditions hold:

(i) if there exists an ¢ € R such that f(z) =0, then f(0) = 0,
(i1) if an z9 € R\ f~1({0}), then the functions

(2) R3y— zof(y)' +y f(=zo),

(3) R3y—yf(z) +zof(y)*

are one — to — one.

PROOF. ad (i) Let f (z) = 0 and z = y = 2. Then by (1) f(0) =0.
ad (ii) We are going to prove that function (2) is one — to — one. The proof
for function (3) is analogous.
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Let us suppose that f(z,) # 0 and function (2) is not one -to - one.
Then there exist y,z € R such that y # z and

zof(y)" +y f(z0)* = z0f(2)" + 2 f(z0)*.

Since by (1) t f(20)f(y) = t f(z0)f(2), so f(y) = f(z) and y f(z0)* =
z f(zo)*. Thus y = z. It is a contradiction.
This completes the proof.

Lemma 2. If a continuous function f : R — R satisfies (1) and there
exists an ¢ € R such that f(z) # 0, then for each r > 0 there exists an
z, € R such that f(z,) # 0 and

f(:r)c ..

PROOF. Let us denote F := {z : f(z) # 0}, s := sup F, and
t := inf F. Since f is continuous and there exists an ¢ € R such that
f(z)#0,s0 F#0and s #0 or i # 0.

The following two cases are possible:
1° F is bounded,

20 F is not bounded.
Suppose that 1° holds. If s # 0, then there exists a sequence {z, }nen

C F\{0} such that lun L, = 3. o m 0, then 7 # 0 and there exists a
sequence {Yn }neN C F\{O} such that Jlim y, =1.
Let s # 0. Then by 1° s < 400 a.nd hm f(zn) = 0. Thus

lim __f(x“ )t

n—oco Ip,

= (.

When s = 0, then in a similiar way, we obtain that

lim M:O.

n—oo yﬂ.

Now suppose that 2° holds. Then there exists a sequence {z, }nen C
F\{0} such that lim |z,| = +o00c. If there exists a subsequence {Zn, } N
n—oo

of {z,},en such that

(4) lim {Em)

n—oo Ty,

=0,
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then the assertion holds. !
On the contrary, if each subsequence of {z,}n,en does not satisfy (4),
then there exist a d > 0 and an ng € N such that

¢
-’f(—:'-’i >d forall n > no.
Hence
(5) |f(za)t] > dl|za] forall n > ng
and
(6) |zaf(za)~¢| < 3 forall n > no.
Since £ < k and Jim |zn| = 400, by (5) we have that
() Jim [f(za)*!] = +oo.
Let
W(z,y) =z f(y) +y f(z)* forallz,y € R.
Then
fW(z,y))* _  tf(x)fv)* _ t'f(y)"

W(zy) 2 fW+uf@F 2 F@ W) +vF@r
for all z,y € F\{0}.
Thus by (6) and (7)

. J(W(za,9)® _
nango T Y 0 forally € F\{0}.

This implies the assertion.
Lemma 3. If a continuous function f : R — R satisfies (1) and there

exist a,b € R,a < b such that f(a) = f(b) # 0, then f(z) = f(a) for all
z € [a, b].
PROOF. Let us denote

V(iz,y,2) := %x)t(y—z)+f(y)" - f(2)* forall z,y,z € R,z #0
and suppose that there exists a ¢ € (a, ) such that f(c) # f(a). Then

(8) sgn(f(c)* — f(a)*) # sgn(f(0)* - (o)),

where

-1 ifz<0
sgnz =4 0 ifz=0

1 if z > 0.
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Since ; 2 A "
|f(c)* = f(a)*| = |£(8)" — f(c)®| # 0,
by Lemma 2 there exists an z¢9 € R such that

L) o o) < 150 - i@
and -

180 4 o) < 1708t - s(e
Hence
(9) sgn V(zo,¢,a) = sgn(f(c)* - f(a)*)
and
(10) sgn V(zo,b,¢) = sgn(f(b)" - f(c)").

It is easy to observe that by (8), (9), and (10)

(11) sgn V(zg, b, a) # sgnV(zo,c,a)
or
(12) sgn V' (zo,b,a) # sgnV(zo, b, c).

Since f is continuous, the following functions:
R > =% V(Q:Ovy’a),
R DY V(Iﬂrbay)

are continuous. Thus, if (11) holds, then there exists an e; € [c,b] such
that

(13) V(zo,€1,a) =0
and if (12) holds, then there exists an e; € [a,c] such that
(14) V(zo,b,e2) = 0.

It is easy to verify that (13) implies that

e1f(z0)* + zof(e1)* = a f(z0)* + 20 f(a)*
and (14) implies that

e2f(20)" + 2o f(e2)" = b f(z0)* + 2o f(b)".

In view of Lemma 1 (ii) it is impossible.
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Lemma 4. If a continuous function f : R — R satisfies (1) and there
exist a,b € R,a < b such that f(z) = f(a) = f(b) # 0 for all z € (a,b),
then f(z) = f(a) for all z € R.

PROOF. Let us suppose that there exists an z € R such that f(z) #
f(a). Then card f(R) > card N and by axiom of choise there exists a set
Y C R such that

(15) cardY > cardN,
(16)  f(=) # f(v), for all z,y,€ Y,z # v,

and
(17) 0 ¢ f(Y).
Fix a y € R. We define a function W¥ : R — R as follows

W¥(z) :=y f(z)" + = f(v)F, forall z € R.
It follows from (1) that f(W¥(z)) = ¢ f(z)f(y) for all z,y € R. Thus
f(z) =t f(a)f(v), forall z € W¥([a,8]), y € R
and according to (16) and (17)
(18)  WZ([a,b]) N W¥([a,b]) =0, forall z,y € Y, z # y.

It is easy to notice that for each y € Y the function W? is continuous
and by Lemma 1 (ii) is one — to — one. Hence W¥([a,}]) is a nontrivial
interval for all y € Y.

Let A := {W¥([a,b]) : y € Y}. Then (18) implies that A is a family
of disjoint intervals. By (15) card A > card N. It is impossible.

Finally we prove the following

Theorem 1. The functions f; = 0 and f, = } are the only continuous
solutions of (1) in the class of functions f : R — R.

PROOF. Let a continuous function f : R — R satisfy (1) and let
f #0. We define F := {z : f(z) # 0}. Thus

(19) F #0.
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Two cases are possible
(a)  f|F is not one - to — one,
(b)  f|F is one - to —one,
where the function f|r : F — R is defined as follows

flr(z) == f(z) forall z € F.

When (a) holds, then there exist a,b € F,a < b such that f(a) =
f(b) # 0. Thus by Lemma 3 we obtain that f|j, 3 = f(a) # 0 and conse-

quently on account of Lemma 4 and (1) f = 1.

On the contrary, if (b) holds, then by (1) the following condition is
true:

z f(W)* +vf(2) =y f(2)* +z f(v)", forall z,y € F.
Thus

f(z) - f(z)* = :cf(y)t ; fw)* forall z,y € F, y # 0.

Since f is continuous and f # const, there exists a yp € F'\{0} such
that f(yo)* # f(y0)*. Denote

pi= f(yo)z ;)f(yo)k'

Then
(20) f(-’”)t ac f(-"’)’c = pz, forall z € F.

Hence the function ¢ : R — R defined as follows
1o¢ &
(21) g(z) = ;(:c -z"), forall z € R

satisfies the following condition

(22) g(f(F)) =F.

Now suppose that

(23) F=R.
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Then by the fact that f is continuous we obtain that f(F') is connected.
Thus f(F) C (0,400) or f(F) C (—00,0). Since by (21) ¢((0,+o0)) # R
and g((—o00,0)) # R, by (22) we obtain that (23) does not hold. Hence by
Lemma 1 (i)

(24) f(0) =0.
It follows from (21) that g(1) = g(0) = 0. Thus by (24) and (22)
(25) {0,1}n f(F) = 0.

Observe that since f is continuous and (b) holds, we obtain that
f(F)U {0} = f(R) is connected and f~!({0}) is connected. Thus by (19)
F' is unbounded and consequently according to (20) f(F') is unbounded.
Therefore in view of (25)

(26) f(F) = (-00,0).
Hence and from (21) and (22) it follows that
(27) card R\F > 2.

In the case where k and £ are even numbers, we have that g(—1) = 0.
Thus by (22), (24), and (26) at least one of the following cases holds:

(j) k& is an odd number,

(jj) ¢ is an odd number.
Suppose that (j) holds and denote A := {f(z)* : z € F}. Then on
account of (26)

(28) A = (—00,0).
Since according to (1)

f(z f(y)*) =0, forall y € F, z € f7'({0}),
(29) z Ak :={zz:2z€ A} C f71({0}), forall z € f~1({0})
and

(30) zf~'({0}) c f~'({0}), forall z € A;.
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Fix any zo € f~1({0})\{0} (cf. (27)). If zo < 0, then by (28)
and (29)

oAk = (0,+00) C f7'({0})
and consequently in virtue of (28) and (30)

(—00,0) C f71({0}).

Thus according to (24)
f7'({0}) = R.

On the contrary, if zo > 0, then by (28) and (29)
zoAx = (—00,0) C f7'({0})
and consequently in view of (28) and (30)
(0, +00) C f71({0}).

Thus on account of (24)
({0 =R.

Hence f = 0. It leads to a contradiction.
In the case (jj) we obtain a contradiction in the same way.
This completes the proof.
We can generalize the above theorem in a similar way as in [10].

Theorem 2. Let X be a linear space over R and let a function
f : X — R satisfy (1). Then, if for each z € X\{0} the function
g: : R — R given by

9:(s) = f(sz) forall s e R

is continuous, then f=0or f = 1.

PROOF. It is easy to verify that g, satisfies (1) for z € X\{0}. Thus
by Theorem 1 g, = const for z € X\{0}.

Since ¢.(0) = f(0) for z € X\{0}, so g, = f(0) for z € X\{0} and
therefore f = const. This completes the proof.
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