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On arithmetical functions over Gaussian integers having
constant values in some domain

By MAHMOUD AMER (Mainz)

1. Let G be the set of Gaussian integers, G* = G\{0},C = com-
plex field. A function f : G* — C is called completely additive, if
f(apB) = f(a) + f(B) holds for each a,8 € G*. The set of completely
additve functions is denoted by .Ag,. Some function F : G* — C is called
completely multiplicative, if F(af) = F(a) - F(S) holds for each pair
?\;‘ ﬂ* € G*. The set of completely multiplicative functions is denoted by

G-

Let S(a,r)(C C) be the closed disc with center a and radius r, i.e.
S(a,r)={z:|z—a|<r}.

Our purpose in this short paper is to give the following analogon of a
theorem due to KATAI [1] for additive functions taking on constant values
in some relatively short intervals.

Theorem 1. Let f € .Ay. Assume that there exists a sequence
z1,29 ... of complex numbers such that |z,| — oo and that

f(a) = A, = constant on a € S(z,,(2+¢)y/]z,|) with some arbitrary
positive constant €. Then f(a) = 0, identically.

2. The assertion is an immediate consequence of the following three
lemmas. '

Lemma 1. Let f € Ay, z € G* with |z| = M(> 2). Assume that
fla)=AinR:={a € G*M < |a| < V2M}. Then A = 0, f(a) = 0 for
every a € G* with |a| < V2M.

PROOF. Let A = 1+ € G. Then |Az] = vV2M,ie. z € R, Az € R,
consequently f(A) = f(Az)— f(z) = 0. Let k be such an integer for which
A¥ € R. It is clear that such a k exists, and k € N. Then A = f(\¥) =
kf(A), which by f(A) = 0 implies that A = 0. Let now a € G* with
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|a] < M. Then with a suitable k € N, aA* € R, consequently 0(= A) =
f(aX¥) = f(a) + kf(A) = f(a).

The assertion is proved for a, |a| < M. But it is clear,ifa € R. O
For r > 1 let [r]g be defined by

[rle = 0Eg}ﬁﬁ|5rla|-

It is clear that r — 1 < [r]g < 1.

Lemma 2. Let § be an arbitrary number in the interval 0 < § < 1.
Then there exists a constant Ny(6) with the following property : If f € Ag
and N € R, N > Ny(§), f(a)=Afora€ Ry:={a€G*:N<ac<
(14 é)N}, then f(a) = 0 for each a € G* in the disc |a| < [%,E - I]G -1
(and so in |a| < 2N - 3).

PROOF. Let ¢ € {+1,4:,0} = E. Let B € G*, |B8| < N.
If

N(1+6) N
- M | — pe 5 |
S Bl+1 BI-12
hold, the there exists u € G* for which

N N(1+6)
2.2 < £
e ET R Fs
holds. But then

N N(1+46)
2.3 o < —_
(2.3) Iﬁ+e|‘lpl‘ Brel’
and so

N<L|(B+eu|<NQ1+9),
(B+¢€)p € Rn. Since ¢ = 0 € E, therefore for each unit ¢ we have

A = f(uB) = f(p(B +¢)), which gives that f(B) = f(B +¢).
Now we shall prove that the inequality (2.1) holds, if || runs in the

range L := [# + 1,2~ — 1], whenever N is large enough. It is enough
to prove that (2.1) holds at the endpoints of L. Let first |8| = § + 1.
Substituting this into (2.1), the left hand side of (2.1) is -2,(22_'_—’:6) and this
is clearly > 1, if N > 8/6% + 4/6. Let now |3| = 4% — 1. Then the left

hand side of (2.1) is 26 N=8=88 and this is > 1,if N > & +4/6.
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So we have proved that f(3) = f(8 + €), whenever |3| € L, € G*,
and N > 5 + . But then f(8) = constant in the ring |8| € L.
Observe that

g P 16 R

for each large N. But then we can find such a z € G* for which (|z|,
V2|z|) € L. Then we can apply Lemma 1 with |z| instead of M. This
implies that f(a) = 0 whenever |a| < v/2|z|. Since f(a) = constant when
|a| € L, therefore f(a) = 0 in the whole disc indicated in Lemma 2. 0O
Lemma 3. Let € > 0 be an arbitrary fixed constant. Then there exist
positive numbers Ny(¢),c(e) with the following properties. If f € Ag,
a € C satisfying |a| > Ny(e), r = (2 + €)y/|a| and f(a) = constant =
A in the disc a € S(a,r), then f(a) = 0 for each a € G* in the disc

lal < e(e)y/lal.

PROOF. For each w € C the disc S (w, 3?) contains at least one

Gaussian integer. Let § € G*, |B8| < V2r. Then there exists 4 € G* such
that

a 1 r
(2.4) 'P—"'g SESW-

Let € € {1,—1,7,—i}, and assume that 3 is so chosen that

1 |al r
2.5 —_ e
o 5T B+ S Be
holds. Then
’_ a <|_E+E_L‘<L+ R
LB+~ Bl TIB B+el= 2T BlIB+el = 1B+el’

consequently B(u + ¢€), Bu € S(a,r). But this implies that f(8) = f(8+¢)
under the condition (2.5).

By simple computation we deduce that (2.5) holds for each ¢ =
{£1,%:} if |B|(|8] + 1) — r|B| + |a] < 0 holds. It is clear that this in-
equality holds in the interval |3| € (1, z2), where z; < z; are the roots
of the quadratic polynomial

z? —(r—1)z +|a| =0.
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It is clear that z; = z,(]a|) = oo if |a] = oco. Furthermore,

L) = r =1 =4 R (r—1)++(r—1)* — 4q|
2 ; 2 )

Iy

Observing that

2%=1‘\/(1‘%)2'4T!2_|'%=1'\/ '((2ie))2+0(}-)’

and similarly that
27, 2 \* 1
oL G, I ¢ i (L =
r +\/ (2+e) +0(r)

i AR 1—(5%,—,)2

Ty 4 2(=: )
- - ()

Since b > 1, therefore choosing § to be less than b— 1, we get that ik 2

1 + 6, if |a| is large enough. But then the conditions of Lemma 2 are
satisfied with N := z,(|a|). Observing that z,(]a|) has the same order as

v/ la|, we get our lemma immediately. O

we get that

as |a] — oo.

3. Without any important change in the proof we can deduce the
following assertion.

Theorem 2. Let f € Mg, which does not take the zero value. As-
sume that there exists a sequence z,, z;, ... of complex numbers such that
|zy| = oo and that

f(a) = A, = constant on a € S(z,,(2 +¢)V/|zv|)
with some arbitrary positive constant €. Then f(a) = 1, identically.
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