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Torsion and curvature in smooth loops

K. H. HOFMANN (Darmstadt) and KARL STRAMBACH (Erlangen)

Abstract. A Lie group is flat with respect to its natural left invariant affine con-
nection, and its torsion relates to the Lie bracket via T(X,Y) = —[X,Y]. A smooth
loop is, roughly, a Lie group without associativity. Its tangent algebra at the ori-
gin has, in addition to the binary bracket, a ternary operation which is a measure of
deviation from associativity locally. There are several ways of giving a smooth loop
affine connections. There is one for which the torsion behaves like in groups while the
curvature relates to the ternary operation of the tangent algebra via R(X,Y)(Z). =
—(Xe,Ye, Z,) + (Ye, X, Z.).

Introduction

Each Lie froup carries a canonical left invariant connection giving rise
to torsion and curvature tensors. The torsion T associates with two left

invariant vector fields X and Y their Lie bracket T(X,Y) = —[X,Y] (up
to sign), and the curvature R vanishes identically. Lie groups are flat in
this sense. These matters are familiar and emerge already in any local
theory dealing with differential geometric aspects of Lie theory. (Sample
references: HELGASON 1978, KLINGENBERG 1984, GRAEUB 1961.)

Conversely, if one associates with a smooth manifold M endowed with
a connection an exponential function Exp : T(M) — M and considers a
normal neighborhood U of any point e € M (see HELGASON 1978, p. 32
ff.), then one obtains a smooth binary partial multiplication

p:UxU—M, p(z,y)=Exp,(r(z,e)(Exp~" y))
with the parallel transport 7(z,€) : T,(M) — T,(M) along
the unique geodesic connecting e and z in U.
The multiplication satisfies u(e,z) = p(z,e) = z and allows unique

solutions z and y of the equations u(a,z) = b = p(y,a) for all a and b
sufficiently close to e; such solutions are usually denoted z = a \ b and
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y = b/a and they depend smoothly on a and b. (See e.g. KIKKAWA 1975
or SABININ and MIKHEEV 1985.) Thus we have produced all ingredients of
a local Lie group with the sole exception of associativity of multiplication.
Such "nonassociative” (local) Lie groups are called (local) Lie loops, or
smooth, respectively, analytical (local) loops.

Lie loops have attracted the attention of authors in topological algebra
(A.I. MALCEV 1955, SAGLE 1961 ff., Hupson 1963 ff., KuzMIN 1968 ff.),
in the foundations of geometry (SALZMANN 1957, FREUDENTHAL 1960;
see also the survey by HOFMANN and STRAMBACH 1990) and in differen-
tial geometry (LOOs 1966, AKIvIis 1969 ff., KIKKAWA 1975 ff., SABININ
1981 ff.; see also the survey by GOLDBERG 1990 and the lecture notes by
SABININ and MIKHEEV 1985). In particular, passing through various levels
of generality, one has finally learned to associate with a (local) Lie loop G
a tangent algebra L(G) = T.(G) which carries a bilinear anticommutative
multiplication (z,y) — [z,y], called commutator bracket, and a trilinear
operation (z,y,z) — (z,y,2), called associator bracket vanishing identi-
cally in the case of a (local) Lie group. The two operations are linked by
the so called Akivis identity

(A) E{Sgn(a) = (Iu(l)a 30(2)116(3» 10 € Sa}
= [[z,y],2] + [[y,2],2z] + [[z,y1,=z]1.

As in the Lie group case, the commutator bracket is a measure for
noncommutativity near the identity; but on the top of that, the associator
bracket is now a measure for nonassociativity near the identity. We call
an algebra with a binary and a ternary multiplication satisfying (A) an
Akivis algebra, and, in particular, the tangent algebra of a (local) Lie loop
its Akivis algebra. One notes that (A) reduces to the Jacobi identity in
the Lie group case. (See AKIVIS 1976, HOFMANN and STRAMBACH 1987,
1990.)

The objective of this paper is to nominate reasonable canonical con-
nections on a (local) Lie loop and to compute the associated torsions and
curvatures with the particular aim of linking these with the algebraic data
of the Akivis algebra of the loop.

For this purpose we observe a general procedure by which certain
connection may be constructed on a smooth manifold M. We shall say
that we have a transitive family m(z,y) : M — M of diffeomorphisms
of M, if each function m(z,y) is a diffeomorphism such that (z,y,z) —
m(z,y)(z) is smooth and the relations m(z,z) = 1)y and m(z,y)(y) = =
hold for all z,y € M. (It would suffice that m(z,y) is defined on an open
neighborhood of y.) For each such family we obtain a smooth family of
linear maps p(z,y) : Ty(M) — T:(M) via p(z,y) = d(m(z,y)), satisfying
p(z, ) = 11, () for all z. Such a family we shall also call a linear transport
family on M. This family is at the heart of the matter, because we can
define a connection on M via
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Vx(Y) = % p(7(t),z) 'Y, with a smooth curve v which
t=0

uniquely solves the initial value problem 7'(t) = X ), v(0) = =z,

locally.

Let us say that this connection is associated with the transitive family
m of diffeomorphisms.

Now we consider a (local) Lie loop M. Then we have at the very least
two natural transitive families of diffeomorphisms related to left transla-
tions A, (given by A;(y) = z o y with the loop multiplication o)

I) The first left canonical family: m(z,y)(z) =zo(y)\ 2),
II) The second left canonical family: m(z,y)(z) = (z/y) o z.

We note m(z,y) = Az (Ay)~! in the case of the first family. This
implies the identity

m(z,y)m(y,z) =m(z,z) and p(z,y)p(y,2) = p(z, 2).

We shall call such families associative. In a (local) Lie group, both families
coincide, but not so in nonassociative loops. Accordingly, we have a first
left canonical connection and a second left canonical connection.

We shall show that the curvature for a connection associated with
an associative transitive family of diffeomorphisms vanishes identically.
(Theorem 2.7). As a consequence, the first left canonical curvature van-
ishes identically on a (local) Lie loop. In other words, with respect to the
first left canonical connection, Lie loops are flat.

The main result of our paper, however is the following:

Theorem A. On each (local) Lie loop the torsion and curvature as-
sociated with the second left canonical connection and the Akivis algebra
of the loop are related as follows:

(¢) T(X,Y) = [Y,, X1,
(n) R(X,Y)(Z)e = _(Xcs Yesze) + (Yev Xes Zc)

for all smooth vector fields X,Y, and Z.

This calls for some remarks.

Firstly, the result concerning the torsion corresponds to the Lie group
situation. As it seems to be common, it is comparatively easy to establish.

Secondly, in the Lie group case, identity (ii) is a special aspect of
the more general fact, that the curvature vanishes identically. Seen in
this light, curvature and nonassociativity are linked in the context of the
second left canonical connection. This deserves to be emphasized, since
the published record indicates that it is not obvious how a connection is
to be defined in such a way that this phenomenon becomes visible.
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Thirdly, one might ask the following question. Via the torsion, the
commutator bracket of the Akivis algebra is determined geometrically. Is
the same true for the associator bracket, i.e., can the associator bracket
be retrieved from the torsion and curvature in general? Since the cur-
vature R(X,Y)(Z) is skew symmetric in the arguments X and Y while
simple examples show that the associator bracket may be invariant under
all permutations of its arguments, the answer is no. This calls for a small
algebraic elaboration which we shall give in the text. Thus an identity like
(#2) is about the best that one can rightfully expect.

At this point, some historical background information is called for.
The first author to connect the algebraic operations of the tangent algebra
of a local Lie loop with differential geometric invariants was Akivis (AKIVIS
and SHELEKHOV 1971a). Since it is important to recognize the relation
between his procedure and ours, we shall explain his approach in some
detail, Akivis is primarily interested in the differential geometry of webs
which was initiated by BLASCHKE in the thirties. This allows him to utilize
the close relationship between loop theory and the geometry of 3-webs.
In fact each Lie loop G determines a 3-web of three families of smooth
foliations on G x G, consisting of the horizontal leaves G x {a}, a € G,
the vertical leaves {a} x G, a € G, and the transversal leaves {(z,y) :
roy = a}, a € G, respectively. (In the geometric literature, these leaves
are referred to as the lines of the web.) Conversely, each smooth 3-web
gives rise to a class of Lie loops which are equivalent in a sense which is
very precisely understood. On the 3-web G x G we have a connection,
which was introduced by CHERN in his dissertation under BLASCHKE as
early as 1935. This connection is called the Chern connection of the 3-web.
(See KIKKAWA 1985.) It gives rise to a torsion T" and a curvature R" on
the product manifold G x G. We shall use the abbreviations

(1) C(X,Y)=T"((X,0),(0,Y)), and
(2) A(X,Y,Z2) = R ((X,0),(0,Y))(Z,0),

where we have represented each vector field on G X G in the form
(X, X)) with its horizontal component X% and its vertical compo-

nent X (*). In terms of the tensor fields C' and A we can express the torsion
and curvature as follows:

(3) T, 00, (P L)
- C(X“'),YU')) 4 C(X("), y(v))’
(4) R (X, X), (v, y®))(2®, 2)

_ A(X(M,Y(”))(Z“‘)) h= A(Y“‘),X("))(Z(h))
& A(X“'), y(v))(z(v)) _ A(Y(h),X("))(Z(”)).
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(See AKIVIS and SHELEKHOV 1971a), KIKKAWA 1985). (There is, as usual,
a local version of this theory; it is in the local form that AKIVIS and his
school present this frame.) Akivis’ main result in this direction is

Theorem B. (AKIVIS and SHELEKHOV 1971a). If the tensor fields C

and A are derived from the torsion and curvature of the Chern connection
on the 3-web associated with a (local) Lie loop as indicated in (1) and (2)

above, then

() C(X,)Y) = [Y,, X1,
(“) A(X,Y,Z), - "'(Xc,Yea Zc)

The Chern connection induces a connection on all horizontal and all
vertical leaves. In particular, if the connection induced on G x {a} is
transported to G we obtain a connection on G. It was observed by NAGY
1985 that this connection is the first left canonical connection. The vertical
leaves induce the first right canonical connection. It thus follows that the
curvature induced in horizontal and vertical leaves is identically zero :
They are flat with respect to the Chern connection. This connection was
reconsidered by KIKKAWA 1985, and independently of the web-aspect, the
first left canonical connection was investigated on special Lie loops by
SABININ and MIKHEEV 1985.

In fact, quite in contrast with the second left canonical connection
which we treat in this paper and which is capable of detecting curvature
in the presence of nonassociativity, the first left canonical connection is
made to order for the treatment of local geodesic Lie loops such as we
have mentioned in the beginning of this introduction. Such local geodesic
loops always have certain additional algebraic properties. If, in addition,
the manifold we consider is symmetric, then the local geodesic Lie loop
satisfies the identity a(ab) = a?b (locally). This identity is called the left
Bol identity. (See SABININ and MIKHEEV, 1985, p. 13, 14.) Conversely,
if a Lie loop satisfying the left Bol identity is given, then the first left
canonical connection (which, as we have remarked, is always flat!) allows
a geodesic Lie loop multiplication to be defined, but in the end it turns
out to agree with the given Lie loop multiplication. (See SABININ and
MIKHEEV 1985, p. 59, Theorem 5. See also NAGY 1986 and, for certain
special cases, KIKKAWA 1975, p. 168, Theorem 5.7.) ’

The tensor fields C' and A given by (1) and (2) can be identified
internally in the loop. For this purpose we recall that for a smooth function
f:X xY — Z we have partial derivatives such as
(D1 f)(z,y) : Te(X) = Tg(z,4)(Z) and mixed second partial derivatives
(D1D2f)(z,y) : Te(X) @ Ty(Y) — Ty(z,)(Z). (Since we are exlusively
interested in the local theory, it suffices to visualize these concepts for
smooth functions defined on an open subset of R taking values in R™.)
Now for a (local) Lie loop G we let p : GxG — G denote the multiplication
u(z,y) = z oy and k(z,y) : G — G the family of diffeomorphisms given
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by k(z,y) = AjgyAzAy. Set &(z,y, 2) = &(z,y)(2).

zoy
Theorem C. In a local Lie loop we have

() C(X,Y)e = —(D1Dap)(e, e)(X. @Y. — Y. ® X.)
(i) A(X,Y,Z)e = —(D1D,DsE)(e, e,e)(Xe @ Y. ® Z.)

for all smooth vector fields X, Y, and Z.

This result was proved by KIKKAWA 1985 for a special class of loops
(namely, loops with the left inverse property). It is noteworthy that in the
same paper, KIKKAWA considers yet another type of transitive family of
diffeomorphisms m(z, y) which is given by

1) m(z,y)(z) =yo((y\z)o(y\2)).

For a special class of Lie loops arising in the context of homogeneous
spaces, he shows that for the connection associated with this family the
torsion and curvature yield essentially the same formulae as in we have
in Theorem A. We shall show in the last section of this paper that our
methods yield this result without any special hypotheses on the loop.

Our paper is organized as follows. Since our applications address the
local theory of Lie loops only, we can restrict our attention completely to
manifolds which are open subsets of R", and thus we can stay within the
purview of the calculus of several variables. In order to keep the presen-
tation self contained and elementary, we record the necessary background
material. The calculations themselves tend to get involved. We have made
a concerted effort to use coordinate free notation. In existing literature,
the excessive use of coordinate calculations has obscured the matter more
than it has elucidated it.

We first study connections with transitive families of diffeomorpisms
in general, and we calculate the torsion and curvature in this situation
(Theorem 2.6). Then we apply this theorem to the case of the second
left canonical family of diffeomorphisms on a local Lie loop. In our last
section we provide supplementary information such as a proof of Theorem
C above and a discussion of the torsion and curvature associated with the
Kikkawa family III) above.

In our treatment of local Lie loops we stay within the domain of local
analytical loops. But this is merely a matter of convenience. The essential
fact is that we use power series computations up through terms of order
three. Thus our conclusions remain intact for local differentiable loops of
class C* with k > 3.

The conceptual purpose of the paper is to elucidate the interrelation of
the infinitesimal algebra (the Akivis algebra) of a local analytical loop and
the geometric concepts of torsion and curvature. This requires a substan-
tial amount of calculations such as arise in any context where accuracy up
to terms of degree 3 is necessary. We have opted for including the calcula-
tions because we believe them to be nontrivial and because we have found
t{]le progability for errors to be too high in order to leave them entirely to
the reader.
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1. Background information from calculus

We consider an open subset B of a finite dimensional real vector space
L, and we shall have occasion to regard other finite dimensional vector
spaces Ly, L, etc. The vector spaces Hom(L,, Hom(L,, L3)) and Hom(L;®
L,, L3) shall be identified via the rule

(1) F(u)(v)=F(u®v) with ueL, and ve€ L.

If f: B — L, is a differentiable mapping, then the derivative f' is a
mapping
f' : B - Hom(L,L,), ie. f'(z) : L — L, is linear; if f is twice
differentiable, then f” is a mapping f” : B — Hom(L,Hom(L,L,)) =
Hom(L ® L,L,) according to (1) so that f"(z)(u ® v) is a meaningful
expression denoting a vector in L.

Any function X : B — L is called a vector field on B; instead of X (z)
we shall write X ;. For our purposes we will not be encumbered by assuming
that all function, including vector fields are smooth (i.e., are of class C*).
Every vector field X on B operates on the vector space C*(B,R) of
C*°— functions via X(f)(z) = f' (:t:)(X z), thus yielding a C*°— function
X(f) : B — R. The product rule (fg)'(z)(u) = f'(z)(u)g(z) +f(3239 (z)

(u) immediately confirms that X operates as a derivation on

(2) X(fg)(z) = (X f)(z)9(z) + f(z)(Xg)(=).

(It is convenient to allow the abbreviation (X f)(z) for X(f)(z).)
On several occasions we shall refer to the following Lemma :

Lemma 1.1. Let f : B — Hom(L;, L;) and
g : B — Hom(Ly,L3) be smooth function and define
g# f: B — Hom(Ly,Lj) via (9 # f)(z) = g(z) o f(z).
The derivative (¢ # f)' : B — Hom(L,Hom(L,, L3)) is then computed as

follows:

(9# ) (2)(u)(v) = ¢'(z)(u)(f(z)(v)) + 9(z)f'(z)(u)(v),u € L, v € L.

PROOF. We define the composition C : Hom(L,, L3) x Hom(L,, L;)
— Hom(L,, L3) by C(q,p) = qo p and the diagonal F : B — B x B by
F(z) = (z,z). Then C'(q,p)(r,s) = C(r,p) + C(q, s), since C is bilinear,
and since f#¢g = C o (f x g) o F we compute by the chain rule that
(9# f)(2) = C'(g(x), £(z)) o (¢'(x) X f(z)) o F, or (g # f)(z)(u)(v) =
C(g'(z)(u), f(z))(v) + C(g(z), f'(z)(u))(v), which transforms into our as-

sertion.
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If X is a vector field on B, we may identify it with a function f : B —
Hom(R, L) via X; = f(z)(1). An application of Lemma 1.1 then yields
the following corollary :

Lemma 1.2. Let X be a smooth vector field on B and g : B —
Hom(L,L,) a smooth function, and define g(X)(z) = g(z)(X;). Then
9(X): B — L, and

9(X)'(z)(u) = ¢'(z)(u)(Xz) + 9(z)(Xz(u)). O

This Lemma applies to the smooth function X(f) for a smooth vec-
tor field X and a smooth function f. We recall X(f)(z) = f'(z)(X:) =
f'(X)(z) in the notation of Lemma 1.2. Hence Lemma 1.2 yields

(3) X(f) (z)(uw) = f'"(z)(u)(Xz) + f'(z)( X (u)).

As a consequence, if Y is a second smooth vector field on B, as an operator
on smooth functions we can form Y X(f) and by the definition Y(g) =
¢'(z)(Y:) obtain from (3) the relation

(4) YX(f)(x) = f"(z)(Ye)(X:) + f'(2) X (Yz).
Since for any twice continuously differentiable function f we have
(5) f'(z)(u®v) = f'(z)(v @ u),

we derive from (4) and (5) with the definition [X,Y] = XY — Y X the

equation
(6) (X, Y](f)(z) = f'(z) o (YVz(X:) — X;(Y2)).

We defined the Lie bracket [X, Y] in terms of operators on C*°(B, R);
but relation (6) allows us to interpret it as a vector field as follows:

(7) [X1 Y]: - ;(X:) = X;:(Y:)'

Lemma 1.3. Let F: B — G{¢(L) C Hom(L, L) be a smooth function
and X a smooth vector field on B. We define a vector field Y on B by
Y: = F(z)~'(X;). Then

(8) Yi(u)=—F(z)™ F'(z)(u)(F(z)™" Xz) + F(z)"'(Xz(u)), u € L.
PROOF. We set g(z) = F(z)~! and thus define a smooth function

g : B — Hom(L, L). With this notation we have ¥ = g(X) in the termi-
nology of Lemma 1.2. Hence Lemma 1.2 yields

Yz (u) = 9(X)'(2)(u) = ¢'(2)(u)(Xz) + g(z)(X 2 (u)).



Torsion and curvature in smooth loops 197

Now we write g = Io F with I : G¢(L) — Hom(L, L) given by I(f) = f~'.
By the chain rule, ¢'(z) = I'(F(z)) o F'(z). Now I'(f)(u) = T
for u € Hom(L L); this is an exercise resultmg from the expansion
(f+u)_ —fl=(Q+fTu) =T =—fluf 4
Hence ¢'(z)(u)(v) = I'(F(z))(F'(z)(u))(v) = —F(z)™ (F'(x)(u)) F(z)™!
(v). Substitution of this expression gives the assertion. 0O

We conclude our preliminary section by recalling the definition of the
concept of an affine connection on B and of the associated ideas of a torsion
and a curvature field.

Definition 1.4. An affine connection on B is a function V which assigns
to a pair (X,Y’) of smooth vector fields a vector field V xY satisfying the
following two conditions:

(1) Vix4gyr = fVx+gVy for f,g € C*(B,R)
(22) Vx(Y1 +Y2)=VxY) +VxY; and Vx(fY)
= X(f)Y + fUxY for fe C®(B,R).

We notice that we wrote fX for the vector field (fX), = f(z)X,.

Definition 1.5. If V is an affine connection on B, then the torsion field
18 defined by

() T(X,Y)=VxY-VyX-[X,Y],

and the curvature field 1s defined by
(11) R(X,Y)Z)=VxVyZ-VyVxZ-VixyvZ.

2. The affine connection associated with a transitive family
of diffeomorphisms

Definition 2.1. Let B be an open subset of the finite dimensional real
vector space L. By a transitive family of (local) diffeomorphisms of B we
understand a family of functions m(z,y) : B — L, z,y € B which satisfy
the following conditions:

(2) The functionm: Bx Bx B — L,
m(z,y,z) = m(z,y)(z) is smooth.

(22) Each m(z,y) is a diffeomorphism onto its image, an
open subset of L.
(222) m(z, z) is the inclusion map of B in L,

. Le., miz, £)2) =2
(2v) m(z,y)(y) = z for all z,y € B.

By a linear transport family we understand a family of linear maps
p(z,y): L - L, z,y € B which satisfy the following conditions:
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(v)© p:BxB — Hom(L,L) is smooth.
(vi) p(z,z)=1y for all z € B.

We shall denote with (Dif)(z1,... ,zn) the partial derivative with
respect to rg.

Proposition 2.2. If m is a transitive family of local diffeomorphisms
on B, then the definition p(z,y) = m(z,y)'(y) = (Dsm)(z,y,y) yields a
linear transport family.

PRroOOF. Every p(z,y) is in Hom(L, L) and p is smooth by 2.1. (7).
Since m(z, ) is the identity on B, then m(z,z)'(y) = 1y for all z,y € B;
in particular we have (vi). O

The family p defined by p(z,y) = m(z,y)'(y) will be called the linear
transport family associated with the family m.

In order to give an orientation of the ideas involved, let us assume
that we have a Lie group structure on B; the simplest case is B = L and
zy = z + y. Then the equation m(z,y)(z) = zy~'z defines a transitive
family of diffeomorphisms of B. This family has the additional property
that m(z, y)m(y, z) = m(z, z) holds for all z,y,z € B and that m(y,z) =
m(z,y)~'. Nothing of this kind is assumed in Definition 2.1 and this is
crucial for the later developments; most of it would become trivial in this
situation.

If we denote with A; : B — B the left translation given by A;(y) = zy,
then m(z,y)(z) = A;y-1(z), whence m(z,y) = A'ﬂ_1 and thus p(z,y) =
Ay-1(y) in this example. Since we have m(z,y) = A;A;", the chain rule
secures p(z,y) = A, (e)A,(e)~! with the identity e of B in this example.

In the remainder of this section we consider a linear transport family
pon B as given. It may or may not arise as the linear transport family
associated with a transitive family of local diffeomorphisms. We shall
attach to the family p an affine connection on B which will then allow us
to introduce a torsion field and a curvature field on B.

We recall that for a smooth vector field X on B and each z € B the
differential equation 4'(t) = X (), has a unique maximal solution with the

initial value 4(0) = z. We call it the X —trajectory through z.

Definition 2.3. Let X and Y be smooth vector fields on B and v the X
~trajectory through x. We set ¥(t) = p((t),z)~1Y,(s), notice (0) = ¥;
by 2.1. (i21) and define

(VxY): = ¢'(0).
For a function p in two variables z and y we denote with D;p the

partial derivative with respect to the first variable z and with D,p the
partial derivative with respect to the second variable y.
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Proposition 2.4.

(VxY): = —(D1p)(z,2)(X:)(Yz) + Yz(X:)
= —(D1p)(z,2)(X: ®Y:) + Y;(X:).

PrOOF. We fix z and set F(z) = p(z,2) and Z, = F(z2)"(Y3).
Then ¥(t) = Z.(y), and by the chain rule we have ¢'(0) = Z,,(7'(0))
= Z3(X;) = F(2) 7' F'(z)(X;)(F(z)~'Y;) + F(2)7(Y{(X;)) by Lemma
1.3. Now we notice that F(z) = p(z,z) = 1p by 2.1. (vi) and that
F'(z) = (Dyp)(z,z). This proves the assertion. 0O

Proposition 2.5. The assignment V of 2.2 and 2.3 is an affine con-
nection on B.

PRrROOF. We have to verify conditions (i) and (i7) of 1.4. But by the
linearity of (D,p)(z,z) and Y/, condition () is immediate from 2.4, as is
the additivity of VxY in Y. But if f is a smooth function on B, then
Vx(fY): = —(Dip)(z,z)(X:)(f(2)Yz) + (fY).(X:). The first summand
is simply — f(z) - (D1p)(z,z)(X;: ® Yz). By Lemma 1.2, the second sum-
mand is f/(z)(X,)Y; + £(z)- (V(X.) = (X(f)Y ), + f(z) .Y!(X.), since
f'(z)(X;) = X(f)a). We thus cbtain Vx(fY), = f(z) - (~(Dip)(z,2)
(Xz: ®Yz) + Y;(X2)) + (X(f)Y): = f(z) - (VxY): + (X(f)Y), which is

the remainder of condition () in 1.4. O

We shall say that the affine connection V is associated with the given
linear transport family p and that the corresponding torsion and curvature
fields are also associated with this family.

Theorem 2.8. The torsion and curvature fields associated with a lin-
ear transport family p(z,y) on B are described as
follows :

(i) T(X,Y), = (Dip)(z,2)(Y: ® X, — X, ©Ya).
(1) R(X,Y)(Z): = (D1p)(z,z)(X; ® (D1p)(z,2)(Y: ® Z;)

- Y, ®(Dip)(z,2)(X: ® Z;))

oo (DQDIP)(I's I)(X.r ® Y.r ® Z: = Y: ® Xr ® Zr)

Complement. If the linear transport family p(z,y) is associated with
a transitive family of local diffeomorphisms m(z,y) and if we set m(z, y, z)
= m(z,y)(z), then in the Theorem we may substitute Dyp(z,z) =
(DyD3m)(z,z,z). However, in general (D, D, p)(z,z) #
(D2 DyD3m)(z, x, z) = (Dy Dy Dym)(z, z, z).

PROOF. As a first step we shall abbreviate (D, p)(z,z) by P(z). Then
we have

(1) (VXY)E = _P(z)(X:®Yz)+Y;(Xz).
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Now we calculate T(X,Y), = (VxY), - (VyX): - [X, Y], =
-P(z)(X:®Y: - Y, ® X,;)+Y!(X;) - X.(Yz) - [X,Y]:, which in view
of equation (7) in Section 1 is exactly assertion (i) above.

The calculation of the curvature is more involved. First we calculate
above. Now (VyU), = —P(z)(Y: ® U;) + U,(Y:) by the same token.
We need U(u) for which we have to calculate the derivative of z — U,
= -P(z)(X; ®Y;) = —P(z)V; with V; = X; ® Z,. Then by Lemma 1.2
we have
(2) Uye(u) = — P'(z)(u)(Vz) — P(z)(V(u))

= - P(2)(w)(X; ® Z;) ~ P(z)(X4(x) ®
+X:® Z;_.(u)),
in view of the product rule. Next we have to calculate the derivative of
z — Uz, = Z,(X,) for which we again invoke Lemma 1.2:

(3) Uso(u) = Z7 (u)(X:) + Z5 (X7 (u)).
This allows us to write down, using (2) and (3):

(4) U;(Yx) =U;x(Y:) + szz(yx)
= — P'(z)(Yz)(X: ® Z.) — P(z)(X;(Y:) ® Z;)
— P(z)(Xz ® Z;(Yz)) + 2 (Yo )(X:2) + Z2(X2(Y2))

In view of

(5) —-P(z)(Y: ® U:) = - P(z)(Y: ® -P(z)(X: ® Z,))
— P(z)(Y: ® Z.':(Xz))

we calculate (VyU), collecting (5) and (4) :

(VyVxZ), = P(z)(Y: ® P(z)(X: ® Z;)) (row 1)
— P(z)(X: ® Z.(Y:) + Y: ® Z'(X.)) (row 2)

(6) - P(z)(X;(Y:) ® Z:) (row 3)
— P'(z)(Y2)(X: © Zz) (row 4)
+ Z.(X:(Y2)) (row 5)
+ Z; (Y:)(X:) (row 6).

As a next step we have to exchange X and Y in (6) and subtract
(6) from the result to obtain (VxVyZ); — (VyVxZ);. Since row 2 is
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symmetric in X and Y, it will drop out in this process. Also row 6 is
symmetric in X and Y by Z7(Y;)(X:) = Z](Y: ® X;) in view of relation
(5) in Section 1. Hence row 6, too, will drop out in the process. We must
record the rest:

(VXVYZ)z = (VYVXZ): !
=P(z)(X; @ P(z)(Y: ®2;:)-Y: ® P(z)(X: ® Z.))(row 1)

(1) = P()(X,Y]: ® Z;) (row 2)
— P'(z)(X:)(Yz ® Z:) + P'(2)(Ye)(X: ® Z2) (row 3)
+Z,([X,Y]:) (row 4),

where, in rows 2 and 4, we have used Y}(X;)—-X.(Y;) = [X, Y], according
to (7) in Section 1.

As a next step we have to calculate (V[x y}Z).. In view of (1) above
this is done quickly :

(8) (V[X,Y]Z)z = P(J:)([X, Y]z @ Zz) (I‘OW 1)
+ Z.,([X,Y]:) (row 2).

In order to find R(X,Y)(Z),, by 1.5.1i7, we have to subtract (8) from (7),
and we notice that row 2 of (7) and row 1 of (8) cancel, and that row 4
of (7) and row 2 of (8) cancel. Thus R(X,Y)(Z), is the sum of rows 1
and 3 in (7). In order to recognize that this result will prove assertion (i1)
we have to recall, firstly, that P(z) = (D;p)(z, z); this will take care of
row 1 in (7) and the first summand in (#2). Secondly, we have to evaluate

P'(z)(u) : From P(z) = (D;p)(z,z) we derive

(9) P'(z)(u) = (D3p)(z, 2)(u) + (D2 D1p)(z, z)(u),

and in row 3 of (7) we have to evaluate P'(z)(u)(v)(w) = P'(z)(u @vQ@w)

at (-X,®Y;+Y;:®X,;)® Z,. If we momentarily fix z and set ¢(y) =
p(y,z), then (D}p)(y,z) = ¢"(y), and by condition (5) in Section 1 we have
¢"(y)(u®v—v®u) =0forally € B and u,v € L. Hence (D3p)(z,z)(—X,®
Y:+Y;®X;) =0 and hence row 3 in (7) reduces to (D2 D, p)(z,z)(— X, ®
Y,®2Z,+Y,®X,®Z,) which gives exactly the second summand of (:1).
The proof is complete, since the Complement is straightforward from the
definitions. O

A linear transport family p on B will be called associative if
p(z,y)p(y,z) = p(z, z) and if p(z,y) = p(y,z) holds. We then fix a point
e in B and define a smooth family of linear maps #(z) : L — L by setting

t(z) = p(z,e). Then we have p(z,y) = p(z,e)p(e,y) = t(z)t(y)~! and
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t(e) = p(e,e) = 1. Conversely, if a smooth family #(z) of linear maps is
given for z € B and t(e) = 1, then p defined by p(z,y) = t(z)t(y)~' is a
linear associative transport family.

We calculate the partial derivatives D,p and D, D, p for such a family.
By the chain rule

(9) (D1p)(z,y)(u) = t'(z)(t(y) " u).
If we define a vector field Y by Y, = #(z)~'u, then by Lemma 1.3 we have
(10) Y;(v) = —t(z)7'¢'(z)(v)(t(z) "'u).

This gives

(11)  (D2D1p)(z,y)(u @ v @ w) = —t'(z)(t(y) "' (y)(u)(t(y) " v)(w).
Now we calculate the curvature R(X,Y)(Z), =

= t'(z)(t(z) 7" X, )(#'(z)(t(2) T Y2 )( 22 ) -
—t'(z)(t(z)71Ye ) (¢ (z)(t(2) ' X2 )(22)+
+t'(z)(t(x) 7 (2 )( Xz ) () Y2 )(22) -

—t'(z)(t(z) 't (2)(Y2)(t(z) "' X:2)(Z:) = 0.

We therefore obtain the following

Theorem 2.7. The curvature tensor field associated with an associa-
gve linear transport family vanishes identically. Its torsion field is given
A4
I(X,Y), = t'(::)(t(a:)_lY,)(X,) = t'(a:)(t(:r)_lX,](Y,),

where p(z,y) = t(x)t(y)™. O

In this sense, the curvature is a measure of the non-associativity of
the linear transport field.

3. The affine connections associated with a local
analytical loop

In this Section we have to refer to some background material which
has been discussed in greater detail in HOFMANN and STRAMBACH 1987
and 1990. In these sources we gave references to other literature, notably
from the schools of AKIVIS and SAGLE. We recapitulate the definition:

Definition 3.1. A local analytical loop is an open neighborhood B of
0 in a finite dimensional real vector space L together with formal power
series in two variables on L which converges on B x B and thus defines an
analytical function

(z,y) » zoy=z+y+4q(z,y) +r(z,2,y) + s(z,y,y)+
homogeneous summands of degree 4 or more:
BxB-—-L

with a bilinear map ¢: L x L — L and two trilinear maps
r,s:LxLxL— L.
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In a local analytical loop we have 0oz = 200 = z for all z € B, and
for all a, b € B which are close enough to 0 the equations

(1) aoy=>b and zoa=1b

have unique solutions y = a \ b and z = b/a which depend analytically on
a and b.

We may and will assume in the following that B is chosen so small,
that the analytical functions (z,y) — z \y, z/y are well defined and
analytic on B x B.

We need an explicit formula for z/y in the sense that we have to know
the expansion of z/y up to degree 3.

Lemma 3.1.

a) z/y=z—-y—q(z,y)+aly,y)+
+q(q(z,y),y) — a(y,¥),y)-
—r(z,z,y) + r(z,y,y) +r(y,z,y) = r(y, ¥, ¥)—
=s(z,y,y) + s(y, ¥, y)+
+summands of higher homogeneous degree.

b) z\y=-z+y—q(z,y)+g(z,2)+
+4(z,9(z,y)) — 9(z,9(z; z))—
—s(z,y,y) + s(z,z,y) + s(z,y,z) — s(z, z,z)—
—r(z,z,y) + r(z,z,z)+
+summands of higher homogeneous degree.

These formulae are valid for all sufficiently small z and y.

PROOF. a) We denote the right hand side of the asserted equation
with R. For a proof we now calculate R o y up to terms of homogeneous
degree three. The straightforward calculation then shows that Roy = y+
summands of homogeneous degree four or beyond. But this proves a).

b) is proved analogously. O

Lemma 3.2. For all sufficiently small z,y,z we have

(z/y)oz=z—y+z—q(z,y) +9(y,y) + 9(z,2) — q(y,2)+
+a(q(z,v),y) — 9(9(y,¥), y) —9(a(z, ), 2) + 9(q(y,y), 2)—
—r(z,z,y) +r(z,y,y) + r(y,z,y) — r(y,y, )+
+r(z,z,2) - r(z,y,2) —r(y,z,2) + r(y,y,2)—

—-s(z,y,y) + s(y,y,y) + s(z,2,2) — s(y,2,2)+
+summands of higher homogeneous degree.
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PROOF. We substitute the expression for u = z/y according to for-
mula 3.1.a into the series for u o z according to 3.1 and obtain the result
by straightforward computation. 0O

Now we assume that B is chosen so small, that for all z,y, z the ex-
pression m(z,y, z) = (z/y)oz is well-defined and thus gives us a transitive
family m(z,y) : B — L of diffeomorphisms given by m(z,y)(z) = (z/y)oz=.
In the Introduction, we have called this family the second left canonical
family of the local analytical loop. According to Section 2, there is an affine
connection V associated with this family which is expressed in terms of
the associated linear transport family

p(z,y) = (Dsm)(z,y,y) = m(z,y) (),

and its partial derivative

(D1p)(z,y) = (D1D3m)(z, y,y).

Finally, for the computation of the associated curvature according to The-
orem 2.6, we also need a computation of (D, D, p)(z, ) which we shall give
in lemma 3.5 below.

Lemma 3.3. (D3m)(3! Y, Z)(w) =w+ q(Is w) o5 Q(ys w)-

—q(q(z, y),w) + q(q(y, y), w)+
+r(z,z,w) — r(z,y,w) — r(y,z,w) + r(y,y,w)+
+s(z,w, z) + s(z, z,w) — s(y,w, 2) — s(y, z,w)+
+summands whose homogeneous degree

in z,y, 2 1s 3 or more.

PROOF. This follows directly from Lemma 3.2: In order to form the
partial derivative with respect to z and to evaluate it at w all terms not
containing z vanish; in the terms which are linear in z we substitute w for
z, and in the terms which are quadratic in z we proceed according to the

Leibniz Rule:
If F: Ly x...x L, — L is a multilinear map, then

F'(Ile-” !xﬂ)(ul ®®un) = F(uls:c?s"' 1xﬂ)+
+F(a:1,u2,:c3,... smn)'l' +F(Jf1,.-. 1$n—lsun)-

Lemma 3.4. (D, Dym)(z,y,2)(v Q@ w) =
=q(v,w) — q(q(v,y), w)+
+r(v,z,w) + r(z,v,w) — r(v,y,w) — r(y,v,w)+
+s(v,w, z) + s(v, z,w)+
+summands whose homogeneous degree in z,y, z is 2 or more.

PROOF. Proceed as in Lemma 3.3.
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Lemma 38.5. (D;Dp)(z,y)(u@v@w) =

= —q(q(v,u),w) — r(v,u,w) — r(u,v,w)+
+s(v,w,u) + s(v,u,w)+
+summands whose homogeneous degree

in ¢ and y is 1 or more.

PROOF. From Lemma 3.4 we obtain (D, p)(z,y) =
= (Dl D3m) (3"1 y$y) o Q(us v) + Q(Q(Ut y)s w) +r(v,z,w) + r(z, v, w)
—r(v,y,w) — r(y,v,w) + s(v,w,y) + s(v,y,w) +...

Now we have to compute the derivative of this expression with respect
to y and to evaluate at u. The procedure is as in Lemma 3.3.

It is very instructive at this point to observe the warning in the Com-
plement to Theorem 2.6. A calculation of
(D2;DyDym)(z,y,2)(u @ v ® w) shows that this expression equals
q(q(v,u),w) — r(v,u,w) — r(u,u,w)+ summands of degree 1 or more in
z,y, 2. In this way we lose the s—-terms, and the result differs from
(D2 Dy p)(z,y)(u @ v @ w).

But now we are ready to compute the torsion and curvature accord-
ing to Theorem 2.6. In fact from 2.6.: and the value for (D;p)(z,z) =
(DyD3m)(z, z,z) from 3.4 we obtain

(22 -) I(X,Y): =q(Yz, X:) — 9(X:,Y:)
—q(q(Yz,z), X;) + q(9( Xz, z), Y2 )+
+8(Yz, Xz, 2) — 8(X:, Yz, 2)+
+s(Ye,z,X;) — 8(X;,2, Y )+
+summands which are

at least quadratic in z.

In particular, for z = 0 we obtain
(%0) T(X,Y)o = ¢(Yo, Xo) — ¢(Xo,Ys).

In principle, Theorem 2.6.i¢ and 3.4 combined with 3.5 allow us to compute
the curvature R(X,Y)(Z), through the linear terms. We are, however,
interested in the evaluation at 0 and thus obtain

(120 +) R(X,Y)(Z)o = g(Xo,g(Yo, Zo)) — q(Yo,9(Xo, Zo))
+ ¢(9(Yo, Xo), Zo) — 9(9(Xo,Ys), Zo)—
— 8(Yo, Zo, Xo) + 8(Xo, Zo,Ys)—
— 8(Yo, Xo, Zo) + s(Xo, Yo, Zo).
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(Notice that the sum r(u,v,w) + r(v,u,w) is symmetric in u and v and
thus drops out upon antisymmetrizing in these two variables!)

At this point we pause for a moment with the differential geometry of
our local analytical loop and recall its Akivis algebra which was mentioned
in the Introduction. If we have a local analytical loop in the sense of
Definition 3.1, we may identify L with the tangent space of this loop at
the identity 0. Then L carries an Akivis algebra structure with respect to

the
commutator bracket [z,y] = limt~?((tu o tv)/(tv o tu)) for t — 0,

and the
associator bracket (z,y,z) = limt~3(((tu o tv) o tw)/(tu o (tv o tw)))
for
t— 0.
For more details we refer to Hofmann and Strambach 1986. There
one also finds the following result (Theorem IX.6.6.), due to Akivis and

Shelekhov 1971a):
Lemma 3.6.

(i) [u,v] = gq(u,v) — q(v,u)
(212) (u,v,w) = g(q(u,v),w) — q(u,q(v,w))+
+r(u,v,w) + r(v,u,w) — s(u,v,w) — s(u, w,v),

where q,r and s are asin 3.1. 0O
The following is then an immediate consequence:

Lemma 3.7. In the Akivis algebra of a local analytical loop we have
the identity

(v22) e (us v, w) + (v, u, w) =q(u, g(v,w)) — q(v, g(u, w))+
+q(g(v, u),w) — g(g(u, v), w)-
- 8(v,w,u) + s(u, w,v)—
- s(v,u,w) + s(u,v,w). O

We recognize immediately that the right had side of this formula
agrees with the expression we found for the curvature R(X,Y)(X)o in
0 if we set u = Xo,v = Yy and w = Z;. We have now arrived at Theorem
A in the introduction. We summarize this in the following statements:

Definition 3.8. Let a local analytical loop (B,L,0) be given as in
Lemma 3.1 and assume that B is small enough so that the analytical
functions (z,y) — z oy, z/y, z\y: Bx B — L and (z, v, z) (z/y)oz:
B x B x B — L are well defined. Then the affine connection given by
(VX)(Y): = —(Dyp)(x,2)(X, ® Ye) + Yi(X.) = Y(X.) + a(Xe, Y)-
q(¢(X;,z), Yz )+s(X;, Yz, 2)+3(X,,z, Y, )+ terms of higher order in z will
be called the second left canonical connection of the analytical loop. The
torsion and curvature computed relative to this connection will be called
the second left canonical torsion and the second left canonical curvature.
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Theorem 3.9. The Akivis algebra and the second left canonical tor-
sion and curvature of a local analytical loop are linked by the following
equations:

(i) T(X,Y)o =—[Xo,YoI,
(”) R(XsY)(Z)O — _(X(h },(h ZO) . & (YO)XO': ZO) O

As we have indicated in the introduction, we call first left canonical
connection the one which is associated with the associative transitive fam-
ily of diffeomorphisms m(z, y) given by m(z,y, 2) = zo(y\ z). By Theorem
2.7, its curvature vanishes identically, and its torsion in 0 is readily calcu-
lated to agree with that of the second left canonical connection.

Of course, we can develop the whole theory based on right transla-
tions. The following remarks show, how that is reduced to the present
one.

fzoy=z+y+gq(z,y)+r(z,z,y)+3s(z,y,y)+... describes the mul-
tiplication of a local analytical loop, we can define a new local analytical
loop

zo*y=z+y+4q(z,y) +r*(z,z,y) + s*(z,y,y) + ...

by setting ¢*(z,y) = q(y,2),r*(2,y,2) = s(z,y,2), and s*(z,y,2) =
r(z,y,z). Then z o*y = yoz. If p, is the local right translation of the
original loop given by p,(y) = yoz = z o* y, then o, = A}, and the right
canonical affine connection on B for the given local analytical loop is the
left canonical affine connection of the local analytical loop defined by o*.
Its commutator bracket [u,v]* equals — [u,v]l, and its associator bracket
is (u,v,w)* = ¢*(¢*(u,v),w) — ¢*(u,¢*(v,w)) + r*(u,v, w) + r*(v,u,w)
—8*(u,v,w) — s*(u,w,v) = g(w, (v, w)) — g(q(w,v),u) + s(w,v, u)

+s(w, u,v) — r(w,v,u) — r(v,w,u) = —(w,v,u).

Consequently —(u,v,w)* + (v,u,w)* = (w,v,u) — (w, u,v).

These remarks give us the following corollary of Theorem 3.9.

Corollary 3.10. The Akivis algebra and the second right canonical
torsion and curvature of a local analytical loop are linked by the following
equations:

(1) T*(X,Y)o = [X,,YoD,
(i1) R*(X,Y)(Z) = (Zo, Yo, Xo) — (Z0, X0, Yo). O

The following is an immediate consequence of Theorem 3.9:

Corollary 3.11. If the associator bracket of the Akivis algebra of a
local analytical loop satisfies

(B) (u,u,v) =0 forall u,v,
then the second left canonical curvature in is computed as follows:

R(X,Y)(2)o = —2(Xo, Yo, Zo). O
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Condition (B) which says that the associator bracket is skew sym-
metric in its first two arguments is satisfied in the Akivis algebras of all
analytical local left Bol loops (see SABININ and MIKHEEV 1985) and all
homogeneous loops (KIKKAWA 1975, HOFMANN and STRAMBACH 1986a).
In these cases, the curvature and the torsion determine the Akivis algebra
completely.

At this point it is a natural impulse to ask whether this is always
the case. The answer is no. A closer look shows that this is an algebraic
question which we discuss in the following remarks.

Suppose that L is an Akivis algebra; we consider the vector space
E =Hom(L® L ® L, K) over the ground field K (which is R in the case
of our application). We have a distinguished element A € E given by
A(u ® v ® w) = (u,v,w). The group S3 operates on E via (o~ f)(z; ®
2 @23) = f(To(1) ®T(2) ®T4(3)) and thus makes E into an R-module on
the left, where R = K|[S;] is the group algebra of S; over K. We denote
with 7 € S3; the transposition (12) and with 4 the cyclic permutation
(123). Theorem 3.7 tells us that if we know the left canonical curvature
of a local loop whose Akivis algebra is L, then we know (1 — 7)A since
(1-7)A)(u@vRw) =A(uRVw)— A(v@u@w) (u, v, w) — (v, u,w).
Since we are allowed to perform all permutations on the arguments, we
know in fact the submodule R(1 — 7).A generated by (1 — 7) - A in the
R-module E. If 7' denotes the transposition (23), from Corollary 3.10 and
the same argument we know the R-module R(1 — 7') - A; and 7/ = 7.

Lemma 3.12. If e = {E{0 : 0 € S3} denotes the symmetrisation
operator then we have the following conclusions:

(i) e is a central idempotent, and R = Re ® R(1 — e).
(127) dim Re=1 and R(1 —e) = R(1 —7)+ R(1 — ~71).

PROOF. (1) is immediate frorn the definitions (see also HOFMANN and
STRAMBACH 1986)
(#2) dim Re = 1 is equivalent to dim R(1 — e¢) = 5 and was shown in
HOFMANN and STRAMBACH 1986.
Since (1 —7)e = (1 —y7)e =0, we have R(1 —7)+ R(1 —v7) C R(1 —e).
But the five elements 1 — 7, v — 47, 42 — 427, 1 — 47, and v — 4?7 are
}irﬁearly independent, whence dim (R(1 — 7) + R(1 — 7)) > 5, and (¢1)
ollows.

This gives us the following result:

Proposition 3.13. If L is an Akivis algebra over K,
E = Hom(L® L ® L,K) as an R = K|[S;] left module for the natu-
ral action of S3 on E, and if A(u @ v @ w) = (u,v,w) then the R~
module generated by the two forms u @ v @ w — (u,v,w) — (v,u,w),
(u,v,w) — (u,w,v) is cyclic and is, in fact R-(1 — e)A with the symmetri-
sation operator e of 3.12. Fhrthermore, R:-eA = K -eA is one-dimensional.
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Finally the following two statements are equivalent:

(1) A€R(1-e)A
(2) eA=0.

PRrROOF. The first two assertions follow from Lemma 3.12, and we
have to show that (1) and (2) are equivalent. From Lemma 3.12 we know
that R-A = KeA+ R(1—e)A. But this sum is direct, since keA = r(1—e¢)A
implies ke A = e(keA) = r-e(1—e)A = 0. Hence A € R(1—e¢)A is equivalent
toed=0. O

We have seen before that for the case that L is the Akivis algebra
of a local analytical loop, from the curvature and torsion we obtain the
submodule R(1 — e)A. Proposition 3.3 says that from this information we
can retrieve A if and only if eA = 0. Thus, in order to show that this is
not generally possible, we have to exhibit an example of a nonzero A with
eA # 0. There are in fact 1-dimensional examples of this type:

Ezample 3.14. Let L = R and consider the local analytical loop o :
B x B — R defined on a sufficiently small neighborhood of 0 by the

(globally defined) multiplication zoy = z + y + z?y. Then A(u@ v w) =
(u,v,w) = 2uvw, whence 0 # A = eA since A is invariant under all
permutations. 0O

4. Supplements

We have observed that torsion and curvature for the second left canon-
ical connection do not completely determine the Akivis algebra of a local

analytical group. In fact, the algebraic arguments we noted in 3.13 show
that no curvature tensor can determine the associator bracket in general.
The first part of this section provides a general proof of Theorem C' of the
Introduction in the following form:

Theorem 4.1. Let u: BxB — L, u(z,y) = zoy be a local analytical
loop and set k(z,y) = Azoy ~* Az Ay, K(2, ¥, 2) = K(z,y)(2) =
=(zoy)\(zo(yoz)). Then

(1) (D1Dap)(0,0)(u®@v —v@®u)= [u,v]
(12) (Dy1DyD3%)(0,0,0)(u @ v ®@ w) = —(u,v,w).

PROOF. (2) From Definition 3.1 we calculate directly that
(D1Dzp)(z, y)(u®v) = g(u,v)+r(u,z,v)+r(z,u,v)+s(u,v,y)+s(u, y,v)
+ summands of homogeneous degree 2 or more in z and y.

Hence (D; D2p)(0,0) = g(u,v) and (7) follows.

Before we complete the proof by showing (iz) we derive a result which

is of interest in itself and from which (ii) will follow readily.
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Proposition 4.2. For all sufficiently small elements in a local analyt-
ical loop according to 3.1 we have

(zoy)\(zo(yoz2)) =2~ (z,y,2)
+ summands of homogeneous degree 4 or more.

PROOF. The proof is by straightforward calculation. In the following
indications we compute modulo summands of homogeneous degree 4 or
more.

a)zo(yoz)=z+y+z+4q(z,y)+q(z,2) +9(y,2) + (2, 9(y,2)) +
r(z,z,y) + r(z,z,2) + r(y,y,2) + s(z,y,y) + s(z,y, 2)
+s(z, z,y) + s(z, 2, 2) + s(y, 2, 2).

b) We set u =z oy according to 3.1 and v=z0(yo02) acoordlng to
a) above and substitute these expressions into the power series for u \ v
according to 3.1.b, recording only summands up to homogeneous degree 3.

u\v=—u+v—q(u,v)+q(u,u)+ q(u,q(u,v))-
—q(u,q(u,u)) — s(u,u,u) — s(u,v,v) + s(u, u,v) + s(u,v,u)+
+r(u,u,u) — r(u,u,v) =
=-(z+y+4a(z,y) +r(z,z,y)+
+s(z,y,9)) +z+y+2+4q(z,y) +a(z,2) + gy, 2)+
+4(z,9(y, 2)) + r(z, 2, 2) + r(y, 9, 2) + s(z,y,y) + s(z,y,2)+
+3s(z, z,y) + s(z, z,2) + s(y,2,2)—
—q(z+y+q(z, y), z+y+2+9(z, y)+9(z, 2)+q(y, 2)+
+e(z+y+q(z, y), z+y+q(z,y))+
+a(z+y+9(z,y), 9(z+y,z+y+2))—
—q(z+y+4(z,y), 9(z+y,z+y))—
—.s(:c+y, Ir+Yy, -'1'+'y) — s(:c+y, Ir+y+z, x+y+z)+
+3(z+y, T+Y, T+y+2) + s(z+y, T+y+2,2+y)+
+r(z+y, T+y, z+y) — r(z+y, T+y, T+y+2)

An evaluation of this sum results in enough cancellation to yield the as-
serted result. O

Now we can readily complete the Proof of part (iz) of Theorem 4.1.
Indeed if we set k(z,y,2) = k(z,y)(z) = (zo0y) \ (z o(y o 2)), then
Proposition 4.2 implies (D; Dy D3%)(z,y,2) (u®@v @ w) = —(u,v,w) +...
whence (D;D;D;3%)(0,0,0) (u ® v ® w) = —(u,v,w). This completes the
proof of 4.1. 1.

In the remainder of this section we investigate a third transitive family
of local diffeomorphisms which was suggested by Kikkawa 1985 in the
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special case of loops with the so—called left inverse property. This family
is defined by

III) m(z,y)(z) =yo((y\z)o(y\2)),

which is to be seen in competition with the first left canonical family
I) m(z,y)(z) =z0(y\2),

and the second left canonical family
IN) m(z,y)(z) = (z/y)oz. h= e
The general process we have described in this paper associates with
the Kikkawa family a connection for which we can calculate the torsion
and the curvature. This we shall outline in the following.

Proposition 4.3. For all sufficiently small elements in a local analyt-
ical loop according to 3.1 we have, except for summands of homogeneous
degree 4 or more :

vo((y\z)o(y\z))=z—y+z+q(z—y,z—y)-
—Q(-T-' o | y!Q(yiz = y)) T (y,:c st | D y)+
+1’($, I,z — y) S r(y, Y,z = y)+
+s(z—y,z—y,z—y)+...

PROOF. The proof is by straightforward calculation, although it is
advisable to organize one’s bookkeeping. By Lemma 3.1. b we obtain
explicit expressions for y \ z and y\ z, e.g.

y\z=z-y—q(y,z-y)+ae(y,9y,2) — 9(y,y)) — s(y;z — ¥,z — y)
—-r(y,y,:z:—y)+... 4

With these expressions we go into formula a) in the proof of 4.2 and find

yo((y\z)o(y\z2))=z-y+z2+g9(z—-y,z—y)
—glz—nalv,2-y))+R+-..
where
R=—q(q(y,z—y),z—y) +49(y,9(z —y,z —y))+

tr(z—y,z—y,z—y)+s(z—y,z2—y,z —y)+
+s(y,z -y, z2—y)+s(y,z—-y,z—y) =
=(—q¢(q9(y,z —y),z —y) + q(y,9(z —y,2 — y))—
—r(p,z—y,z—y)—r(z -y, ¥,z —y)+
+s(y,x -y, 2 —y) +3(y,z2 -,z —y)) +r(z,2,z — y)—
-r(y,4,2—y)+s(z-y,z2—y,2—y)

g‘%e assertion now follows from the formula for the associator bracket in
i O
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From the transitive family m(z,y) we derive the associated linear
transport family p(z,y) according to the formula p(z,y)(w)
= (Dsm)(z,y,y)(w) with m(z,y,z) =y o((y \z) o(y \ 2)). We obtain in
this fashion
p(z, y)(w) =w+g(z -y, w) —q(z — y,4(y, w)) = (y,a: i w)
+r(z,z,w) — r(y,y,w)

(noticing that the s-terms drop out).
This allows us to calculate

(D1p)(z,y)(v ® w) = g(v,w) — q(v,4(y,w)) — (y, v, w)
+ r(z,v,w) + r(v, z,w),

and, as a consequence,

(D2D1p)(z,y)(u @ v @w) = —q(v, Q(“s w)) = (u!vrw)
+r(u,v,w) + r(v,u,w).

Theorem 4.4. Let o : B x B — L be a local analytical loop and T

and R the torsion and curvature derived from the connection associated
with the Kikkawa family III) of local diffeomorphisms. Then

(1) T(X,Y)o =—[Xo,Yol,
(“‘) R(X$ Y)(Z)g —~ (th }’Eh Yl..'l) P (Yl-hxﬂs zﬂ)
PROOF. By Theorem 2.6 we have

T(X,Y)o = (D1p)(0,0)(Yo ® Xo — Xo ® Yp) =

= q(Yo, Xo) — q(Xo, Yo) = LYy, Xo1 by 3.6.

Likewise, from Theorem 2.6 we obtain
R(X,Y)(Z)o = (D1p)(0,0)(Xo ® (D1p)(0,0)(Yo ® Zo)-
— Yo ® (D1p)(0,0)(Xo ® Zo))—
—(D2D1p)(0,0)(Xo @Yo ® Zp — Yo ® Xo ® Zo) =
= ¢(Xo,¢(¥o, 2o)) — g(¥o, 9(Xo, Z0)) + (Xo, Yo, Zo)—
— (Yo, Xo, Zo) + ¢(Yo,9(Xo, Zo)) — ¢(Xo,4(Yo, Zo)). O

We observe that the curvatures calculated in Theorem 3.9 and in
Theorem 4.4 differ by a minus sign.

The preceding results show the dependence between the Akivis algebra
of a locaf analytical loop and torsion and curvature may be based on
various transitive families of local diffeomorphisms, but the first and the
second left canonical family remain the most natural ones.



Torsion and curvature in smooth loops 213

Literature

[1] M.A. Akivis, Canonical expansions of the equations of a local analytic quasi—
group, (Russian). Dokl. Akad. Nauk SSSR 188 (1969), 967-970. Translated
in : Sov. Math. 10 (1969), 1200-1203.

[2] M.A. AK1vis, Local differentiable quasigroups and three-webs of multidimensional
surfaces, (Russian). In : Studies in the Theory of Quasigroups and Loops. (Rus-
sian). Stiintsa: Kishinev (1973), 3-12.

[3] M.A. Ak1vis, Local algebras of a multidimensional web, Sib. Mat. Zh. 17 (1976),
5-11. Translated in Sib. Math. J. 17 (1976), 3-8.

[4] M.A. Akivis and A.M. SHELEKHOV, The calculation of curvature and torsion
tensor for a multidimesional 3-web and the associator of its local quasigroup, Sib.
Mat. Zh. 12 (1971), 953-960. Translated in Sib. Math. J. 12 (1972), 685-689.

[5] M.A. AK1vis and A.M. SHELEKHOV, On local differentiable quasigroups and con-
nections related to a 3-web of multidimensional surfaces, Sib. Mat. Zh. 12
(1971a), 1181-1191. Translated in Sib. Math. J. 12 (1972), 845-852.

[6] M.A. AK1vis and A.M. SHELEKHOV, Local analytic quasigroups and loops, (Rus-
sian). Kalinin Gosud-Univ. Kalinin, 1980, p. 31.

[7] N. BOURBAKI, Variétés différentielles et analytiques, Diffusion C.C.L.S.:

Paris 1983.

[8] S.S. CHERN, Eine Invariantentheorie der Dreigewebe aus r—-dimensionalen
Mannigfaltigkeiten im Rj,, Abhandl. Math. Sem. Univ. Hamburg 11 (1936),
333-358.

[9] H. FREUDENTHAL, Oktaven, Ausnahmegruppen und Oktavengeometrie. 2nd ed.
Utrecht : 1960, Reprint in Geometriae Dedicata 19 (1985), 7-63.

[10] V.V. GOLDBERG, Local differentiable quasigroups and webs, in: The Theory of
Quasigroups and Loops, Chapter X Heldermann Verlag, Berlin 1990.

[11] W. GRAEUB, Liesche Gruppen und affin zusammenhangende Mannigfaltigkeiten,
Acta Math. 106 (1961), 65-111.

[12] S. HELGAsON, Differential Geometry, Lie Groups, and Symmetric Spaces, Aca-
demic Press: New York - San Francisco — London 1978.

[13] K.H. HoFMANN and K. STRAMBACH, Lie’s fundamental theorems for local ana-
lytical loops, Pac. J. Math. 123 (1986), 301-327.

(14] K.H. HOFMANN and K. STRAMBACH, The Akivis algebra of a homogeneous loop,
Mathematika 33 (1986a), 87-95.

(15] K.H. HOFMANN and K. STRAMBACH, Topological and analytical quasigroups and
loops and related structures, in: The Theory of Quasigroups and Loops Chapter
IX Heldermann Verlag, Berlin 1990. :

[16] M. KIKKAWA, Geometry of Homogeneous Lie Loops, Hiroshima Math. J. 5 (1975),
141-178.

[17] M. KikKAWA, Canonical Connections of Homogeneous Lie Loops and 3-webs,
Mem. Fac. Sci. Shimane Univ. 19 (1985), 37-50.

[18] W. KLINGENBERG, Riemannian Geometry. Studies in Mathematics 1, Walter de
Gruyter: Berlin - New York 1982.

[19] O. Loos, Uber eine Beziehung zwischen Mal’cev-Algebren und Lie-Tripelsys-
temen, Pac. J. Math. 18 (1966), 553-562.

[20] P.T. NAGY, Moufang Lie loops and homogeneous spaces, Aequationes Math. 1986,
to appear



214 K. H. Hofmann and Karl Strambach : Torsion and curvature in smooth loops

[21] P.T. NAGY, On the canonical connection of a 3-web, Publ. Math. Debrecen 32
(1985), 93-99.

[22] L.V. SABININ, Methods of non-associative algebras in differential geometry. (Rus-
sian). Supplement to a russian translation of Kobayashi and K. Nomizu: Founda-
tions of differential geometry, Vol. 1., Nauka: Moscow 1981.

[23] L.V. SABININ and P.O. MIKHEEV, Analytic Bol loops. (Russian). Webs and
quasigroups, pp. 102-109, Kalinin Gos. Univ., Kalinin 1982.

[24] L.V. SABININ and P.O. MIKHEEV, Theory of smooth Bol loops, Izdatelstvo Uni-
versitate drushby Narodov: Moscow 1985.

[25] A.A. SAGLE, Mal’cev algebras, Trans. Amer. Math. Soc. 101 (1961), 426-458.

[26] A.A. SAGLE, Simple Mal’cev algebras over fields of characteristic zero, Pac. J.
Math. 12 (1962), 1057-1078.

[27] A.A. SAGLE, On anti-commutative algebras and analytic loops, Canad. J. Math.
17 (1965), 550-558.

[28] H. SALzZMANN, Topologische projektive Ebenen, Math. Z. 67 (1957), 436-466.

K. H. HOFMANN

FACHBEREICH MATHEMATIK TECHNISCHE HOCHSCHULE DARMSTADT
SCHLOSSGARTENSTR.

7 D-6100 DARMSTADT

FEDERAL REPUBLIC OF GERMANY

ELECTRONIC ADDRESS: XMATDA419DDATHD21.BITNET

KARL STRAMBACH o

MATHEMATISCHES INSTITUT UNIVERSITAT ERLANGEN-NURNBERG
BISMARCKSTRASE 1 1/2

D-8520 ERLANGEN

FEDERAL REPUBLIC OF GERMANY

ELECTRONIC ADDRESS: @ CNVE. RRZE. UNI-ERLANGEN. DBP. DE

(Received November 24, 1987)



