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Throughout the paper G always denotes a solvable group of finite or-
der. We shall use the notations of [6]. We shall investigate some properties

of the functions a(r) and é(r) of [3] and [5]:
a(r) = max{d.l. (G/ Kerx)| x € Irr(G), x(1) < f+}

where

cd(G)={fi < fa-+ < fa}

(1)=1, ér)=a(r)—a(r—-1) forr=2,...,n.

We know from [5] that (i) <3 for:=1,...,n and according to (3]
aft) £ 2ifor i =1,...n. Our aim is to find properties which enable us to
say somewhat more about these functions.

Let us introduce the following

Hypothesis 1. Let ¢ € Irr(G) and M<G. If M < Ker x for all x € Irr(G)
such that x(1) < ¥(1) then M’ < Ker.

Hypothesis 1°. The same as Hypothesis 1 but M must be a member of
the derived series of G.

Remark 1. According to [1], all solvable groups of odd order satisfy
Hypoyhesis 1. We can see easily that M—groups also satisfy it since if
¥ € Irr(G) then ¥ = AC for some ) € Irr(H) linear character of H < G. If
¢ is not linear then every nonprincipal irreducible constituent of 1§ has
degree less than 1(1). So M < Ker1§ < H. But then M’ < H' < Ker )\
and so also M’ < Ker . It is trivial that Hypothesis 1 yields Hypothesis 1.
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First we prove the following simple

Lemma 1. If the group G satisfies Hypothesis 1’ then §(:) < 1 for
¢t = 1,...,n and consequently a(i) < ¢ for i = 1,...,n. Conversely, if
6(1) <1 fori=1,...,n then Hypothesis 1’ is satisfied in G.

PROOF. We use induction. (1) = 1 by definition. Let us sup-
pose that Hypothesis 1’ is satisfied in G and from this we have already
proved that 6(z) <1 for ¢ = 1,...,r — 1. By the definition of the function
a, G~ < Kery for all x € Irr(G) satisfing x(1) < fr—1. From Hy-
pothesis 1’ we have that G*("~1)+! < Kery for all ¢ € Irr(G) satisfying

Y(1) < fr. Soa(r) <a(r —1)+ 1 thatis §(r) < 1. As a(r) = Y 6(i) <r,
1

the first part of the statement is proved.

Conversely, if 6(i) < 1fori = 2,...,n then a(i) < a(i — 1) + 1 so
Ge(—D)+1 < Kery for all x € Irr(G) satisfying x(1) < f; and from this
Hypothesis 1’ easily follows.

Corollary 1. Groups of odd order and M—-groups satisfy 6(i1) < 1 and
sl sSsri =10

PRrooF. Follows from Remark 1 and Lemma 1.
Now we weaken our hypotheses:

Hypothesis 2. Let M 4 G and let us suppose that M < Ker x for all
x € Irr(G) satisfying x(1) < fr—1. If there exists a ¥ € Irr(G) for which
M' £ Kery and (1) = f, then M" < Ker? for all ¥ € Irr(G) satisfying
Y¥(1) < fr4+1. Here r < n and we define f,4+; to be equal to f,.

Hypothesis 2°. The same as Hypothesis 2 but M must be a member of
the derived series of G.

Before dealing with Hypothesis 2 or Hypothesis 2’ we introduce a
further weakening of them, namely

Hypothesis 2 *. Let M « G and x € Irr(G). Let us suppose that M <
Ker ¢ for all ¢ € Irr(G) such that (1) < x(1); then M" < Ker x.

Hypothesis 2*’. The same as Hypothesis 2* but M must be a member
of the derived series of G.

Remark 2. It is easy to see that Hypothesis 1 yields Hypothesis 2 and
_I-Iyplotzhezsés 2 yields Hypothesis 2*. The same is true for Hypothesis i’ for
y 1.2 2%,

As we can see e.g. in the case of SL(2,3) Hypothesis 2 does not yield
Hypothesis 1’. Here a(1) =1, a(2) =3, a(3) =3 and §(1) =1, §(2) =2
and 4(3) = 0.

Now we have a similar statement as in Lemma 1:
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Lemma 2. Hypothesis 2*’ is equivalent to §(i) <2 fori =1,...,n.
PRroOOF. Easy to prove.
For Hypothesis 2’ we can prove more:

Lemma 8. If G satisfies Hypothesis 2’ then §(1) <2 fori =1,...,n
and if for somer < n é(r) =2 then §(r +1) =0.

PROOF. The first statement follows from Lemma 2. If §(r) = 2 for

some r < n then by Hypothesis 2° G*("~1)+2 < Ker for every 9 € Irr(G)
satisfying ¥(1) < fr4+1. So we have that a(r + 1) < a(r — 1) + 2 that is
o(r+1)+46(r)<2.S0é(r+1)=0.

In a similar way as in the proof of Corollary 9 of [3] we get the following

Theorem 1. If G satisfies Hypothesis 2’ then a(r) < r + 1 for all
r<n.Ifforanr 6(r) <1 is also true then a(r) <.

PROOF. By Lemma 3 we have that (1) <2fori=1,...,n. If
6(1) <1for all: =1,...,n then we are done by Lemma 1. If §(z) = 2 for
some ¢ < n then by Lemma 3 we have that §(z + 1) = 0. Set

S={ili<r, 8G) =2},
T={ili<r, i-1€S)

Then TN S =0 and |S| = |T).
Soa(r) =36 <1+6(r)+2|S|4+0-|T|+1-(r—|TUSU{L,r}|) =
1

r if (r)=0andreToré(r)=1
=<¢r—1 if §(r)=0andrgT
r+1 if §(r)=2.

Corollary 2. If a group G satisfies Hypothesis 2’ then d.l.(G) <
|e.d.(G)| + 1. If in addition é(n) < 1 then d.l.(G) < |e.d.(G)|.

Corollary 3. If for a group G d.I.(G) < 3 then a(i) < ¢ 4+ 1 for
¢ = 1,...,n. This bound is strict. These groups satisfy §(n) < 1 and
d.l.(G) < |e.d.(G)|.

PROOF. As for these groups Hypothesis 2’ is easily seen to be satisfied,
the first statement follows from Theorem 1. a(i) =i+ 1 for i = 2 in
SL(2,3). It is easy to see that §(n) < 1 so the last assertion also follows
from Theorem 1.
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Remark 3. Although we cannot prove in general that Hypothesis 2’
yields d.l.(G) < |c.d.(G)|, we mention that it is true e.g. in the case of
Frobenius groups. Frobenius groups satisfy Hypothesis 2’ if and only if
their complement H satisfies it and éy(|e.d.(H)|) < 1.

Let us introduce for ¢ € Irr(G)

~ Hypothesis 2 (). Let ¢(1) = f,. Let M G such that M < Ker x for
all x € Irr(G) such that x(1) < fr—;. If M’ £ Kery then M" < Kerd for
all ¥ € Irr(G) such that ¥(1) < f,4+,. Here fo4, is defined to be equal to
fa-

Using Lemma 7 of [3] we can prove the following

Lemma 4. If G is a finite solvable group such that 3,5 } |G| and
Y € Irr(G) is faithful and primitive then Hypothesis 2 () is satisfied in
G.

PROOF. Let M 4 G such that M 4 G such that M < Ker x for all
X € Irr(G) such that x(1) < ¥(1). Let us assume that M" # 1. Then
[M, M'] # 1 either.

By Lemma 7 of [3] there exists an w € Irr(G) such that ¥(1) <
w(l) € 3/2¢(1) and M £ Kerw. Also ¥(1) = 2 or ¥(1) = 4. So either
2 <w(1) £3/2-2 = 3, which yields that w(1) = 3,0r4 < w(1) < 3/2-4 =6,
which yields w(1) = 5 or 6. As w(1) | |G|, these are all impossible. So
M" =1 and we are done.

Remark 4. Hypothesis 2*’ does not hold for all solvable groups as we
can see in the example of GL(2,3). Here we have a(1) = 1, a(2) = 4,
a(3) = 4, a(4) = 4 and §(1) = 1, 6(2) =3, §(8) =0, 6(4) = 0. So for
1—2wehavea(z)-—1+2and6(z)-

Now we prove a sufficient condltlon for Hypothesis 2*. This can be
considered as an extension of part b/ of Theorem 6 in [5].

Theorem 2. Let G be a finite solvable group such that 3,5 { |G| then
Hypothesis 2 * is satisfied in G.

PROOF. Let G be a counterexample of minimal order. Let M < G,
x € Irr(G); we suppose that M" £ Ker y and M < Kery for all ¢ € Irr(G)
with ¢(1) < x(1). By Lemma 4, x cannot be faithful and primitive.

If Ker x > 1 then by the inductive hypothesis applied to x,
M Ker x/ Ker x and G/ Kery M" < Ker x, which is a contradiction.

If x is not primitive then y = a© for an a € Irr(H) for some H < G.
As 1§ € Irr(G), M < Ker1§ < H. If v € Irr(H) such that v(1) < (1)
then as ¥9(1) < x(1) we have M < Kerv® < Kerv and by the inductive

hipothesis applied to M, H and a we get M" < Kera so M" < Kery,
and thus we have a final contradiction.
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In [4] we have proved that Hypothesis 1 is inherited by direct products.
Similarly, one can prove easily that this is also true for Hypothesis 2*,
namely we have the following

Lemma 5. Let G = G; x G where G; 1 = 1,2 satisfy Hypothesis 2*.
Then G satisfies it as well.

Now we have an analogous statement as Theorem 1.5 in [4]:

Theorem 3. Let G be a finite solvable group such that for every
z € G*, Cg(z) is the direct product of a {3,5}-group and of a {3,5}’
group. Then G satisfies Hypothesis 2 *.

PROOF. Using the above Remark 1 and Lemma 5 with Theorem B
and Lemma 2 of [2] the proof is similar to that of Theorem 1.5 in [4].
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