Another version of a common fixed point theorem

By ROY O. DAVIES (Leicester)

Abstract. The existence of a unique common fixed point for two weakly commuting self-mappings in a Banach space, of which one is linear and non-expansive, is established under a contraction hypothesis which is shown to be weaker than that in a similar theorem of DIVICCARO, FISHER, and SESSA.

The main result of the present paper is the following.

Theorem 1. Let T and I be two self-mappings of a non-empty closed convex subset C of a Banach space X, satisfying the inequality

(1)
$$||Tx - Ty|| \le \alpha \cdot ||Ix - Iy|| + \beta \cdot \max[||Tx - Ix||, ||Ty - Iy||] + \gamma \cdot \max[||Ix - Iy||, ||Tx - Ix||, ||Ty - Iy||]$$

for all x, y in C, where $\alpha, \beta, \gamma > 0$ and $\alpha + \beta + \gamma = 1$. Further, let I weakly commute with T, that is, $||TIx - ITx|| \le ||Tx - Ix||$ for all x in C, and let I be linear and non-expansive in C. If I(C) contains T(C), then the equations x = Ty = Iy have a unique solution for $x \in C$, and x is a common fixed point of T and I, at which T is continuous.

The above theorem is the same as that in the paper [1] by DIVICCARO, FISHER, and SESSA – to which the reader is referred for a more general discussion – except that we have given a slightly more precise statement about the common fixed point, and (more importantly) instead of (1) their 'contraction' condition was

$$(\mathrm{I}) \ \|Tx - Ty\|^p \leq a \cdot \|Ix - Iy\|^p + (1-a) \cdot \max[\, \|Tx - Ix\|^p, \|Ty - Iy\|^p],$$

where $0 < a < 1/2^{p-1}$ and $p \ge 1$. The following will also be proved here.

Theorem 2. Condition (I) with 0 < a < 1 and $p \ge 1$ implies (1) for a certain triple $\alpha, \beta, \gamma > 0$ with $\alpha + \beta + \gamma = 1$.

Thus our Theorem 1 not only implies the theorem of [1], but also implies that the condition $0 < a < 1/2^{p-1}$ in [1] can be relaxed to 0 < a < 1.

I am grateful to BRIAN FISHER for useful comments.

PROOF OF THEOREM 1. This closely follows the proof in [1], with one significant extra feature, but for completeness we give most of the details, since the use of (1) instead of (I) makes a number of changes necessary.

Let x_0 be an arbitrary point of C. Applying the fact that $I(C) \supseteq T(C)$, inductively define points x_1, x_2, \ldots in C by choosing as x_{r+1} any point of C such that

(2)
$$Ix_{r+1} = Tx_r (r = 0, 1, 2, ...).$$

Write $c_r = ||Ix_r - Ix_{r+1}|| \ (r = 0, 1, 2, ...)$ and observe that from (1) with $x = x_r$, $y = x_{r+1}$, and applying (2) where appropriate – we shall do this in future without special mention – we have for $r \ge 0$

(3)
$$c_{r+1} \le \alpha \cdot c_r + \beta \cdot \max\{c_r, c_{r+1}\} + \gamma \cdot \max\{c_r, c_r, c_{r+1}\}.$$

From (3) it follows that if $c_r \leq c_{r+1}$ then $c_{r+1} \leq \alpha \cdot c_r + (\beta + \gamma) \cdot c_{r+1}$ and therefore $c_{r+1} \leq c_r$ and so $c_{r+1} = c_r$. Consequently

$$(4) c_0 \geq c_1 \geq c_2 \geq \dots.$$

We now introduce the extra feature referred to earlier, which if incorporated in the proof in [1] would have made it immediately possible to relax the condition on a to 0 < a < 1. Write $d_r = ||Ix_r - Ix_{r+2}|| \ (r = 0, 1, 2, ...)$. Observe that from (1) with $x = x_r$, $y = x_{r+2}$, and using (4), for $r \ge 0$ we have

(5)
$$d_{r+1} \le \alpha \cdot d_r + \beta \cdot \max\{c_r, c_{r+2}\} + \gamma \cdot \max\{d_r, c_r, c_{r+2}\} \le$$

$$\le \alpha \cdot d_r + \beta \cdot c_0 + \gamma \cdot \max\{d_r, c_0\} \le \max\{d_r, c_0\}.$$

It follows that $\max\{d_{r+1}, c_0\} \leq \max\{d_r, c_0\}$; thus $(\max\{d_r, c_0\})$ is a decreasing sequence, and consequently d_r is bounded, that is, $\limsup d_r$ is a finite number d. Taking the upper limit on both sides of (5), we conclude that $d \leq \alpha \cdot d + \beta \cdot c_0 + \gamma \cdot \max\{d, c_0\}$, from which it follows that $d \leq c_0$. Thus we have proved that

(6)
$$\limsup d_r \le c_0.$$

Now let $\varepsilon > 0$ be chosen so small that

$$(7) \qquad (\alpha + \gamma)\varepsilon/4 \le \alpha c_0/8 ;$$

in view of (6) we can choose r so large that

$$(8) d_r \le c_0 + \varepsilon.$$

Define a point z by $z = \frac{1}{2}x_{r+1} + \frac{1}{2}x_{r+2}$. (The point z used in [1] corresponded to r = 1, and instead of (6) a weaker, but more complicated, estimate was used.) Since C is convex, z is in C, and since I is linear, $Iz = \frac{1}{2}Ix_{r+1} + \frac{1}{2}Ix_{r+2}$. From (4) and (8) we have

(9)
$$||Iz - Ix_r|| = \left\| \frac{1}{2} (Ix_{r+1} - Ix_r) + \frac{1}{2} (Ix_{r+2} - Ix_r) \right\| \le c_0 + \frac{1}{2} \varepsilon.$$

From (4) again we have

(10)
$$||Iz - Ix_{r+1}|| = \left\| \frac{1}{2} (Ix_{r+2} - Ix_{r+1}) \right\| \le \frac{1}{2} c_0.$$

Write $\lambda = ||Tz - Iz||$. By the triangle inequality

$$\lambda = \left\| \frac{1}{2} (Tz - Ix_{r+1}) + \frac{1}{2} (Tz - Ix_{r+2}) \right\| \leq \frac{1}{2} \|Tz - Tx_r\| + \frac{1}{2} \|Tz - Tx_{r+1}\|.$$

Apply (1) to each term on the right, and use (4), (9), and (10): this gives

$$\begin{split} \lambda \leq & \frac{1}{2} [\alpha \cdot \|Iz - Ix_r\| + \beta \cdot \max\{\lambda, c_r\} + \gamma \cdot \max\{\|Iz - Ix_r\|, \lambda, c_r\}] + \\ & + \frac{1}{2} [\alpha \cdot \|Iz - Ix_{r+1}\| + \\ & + \beta \cdot \max\{\lambda, c_{r+1}\} + \gamma \cdot \max\{\|Iz - Ix_{r+1}\|, \lambda, c_{r+1}\}] \leq \\ \leq & \frac{1}{2} \left[\alpha \left(c_0 + \frac{1}{2} \varepsilon \right) + \beta \cdot \max\{\lambda, c_0\} + \gamma \cdot \max\left\{\lambda, c_0 + \frac{1}{2} \varepsilon\right\} \right] + \\ & + \frac{1}{2} \left[\alpha \cdot \frac{1}{2} c_0 + \beta \cdot \max\{\lambda, c_0\} + \gamma \cdot \max\{\lambda, c_0\} \right] \leq \\ \leq & 3\alpha c_0 / 4 + (\alpha + \gamma) \varepsilon / 4 + (\beta + \gamma) \cdot \max\{\lambda, c_0\}, \end{split}$$

and hence by (7)

(11)
$$\lambda \leq 7\alpha c_0/8 + (\beta + \gamma) \cdot \max\{\lambda, c_0\}.$$

It follows from (11) that $\lambda \leq A \cdot c_0$ where $A = 7\alpha/8 + \beta + \gamma$. Thus we have shown that there exists a constant A < 1 such that for every x_0 in C we can find z in C with $||Tz - Iz|| \leq A \cdot ||Tx_0 - Ix_0||$; we now argue similarly to [1], with minor modifications.

It follows first of all that $\inf\{\|Tx - Ix\| : x \in C\} = 0$. Therefore the sets $K_n = \{x \in C : \|Tx - Ix\| \le 1/n\} \ (n = 1, 2, ...)$ are non-empty, and moreover $K_1 \supseteq K_2 \supseteq K_3 \supseteq ...$. Therefore the closures $\overline{IK_n}$ are non-empty subsets of C satisfying $\overline{IK_1} \supseteq \overline{IK_2} \supseteq \overline{IK_3} \supseteq ...$. For $x, y \in K_n$, by the triangle inequality we have

$$||Ix - Iy|| \le ||Ix - Tx|| + ||Tx - Ty|| + ||Ty - Iy|| \le ||Tx - Ty|| + \frac{2}{n}$$

and therefore by (1)

$$||Tx - Ty|| \le \alpha \left(||Tx - Ty|| + \frac{2}{n}\right) + \beta \cdot \frac{1}{n} + \gamma \left(||Tx - Ty|| + \frac{2}{n}\right) < (\alpha + \gamma) \cdot ||Tx - Ty|| + \frac{2}{n},$$

whence

(12)
$$||Tx - Ty|| \le 2/\beta n$$
, $||Ix - Iy|| \le (2 + 2/\beta)/n$.

Hence $(\overline{IK_n})$ is a decreasing sequence of non-empty closed subsets of C with diameters tending to zero, and so their intersection is a one-point set $w \in C$:

(13)
$$\bigcap_{n=1}^{\infty} \overline{IK_n} = \{w\}.$$

If $x \in K_{2n}$, then because T, I are weakly commuting and I is non-expansive (this is the first point at which we use these hypotheses)

$$||T(Ix) - I(Ix)|| \le ||TIx - ITx|| + ||ITx - IIx|| \le 2||Tx - Ix|| \le \frac{1}{n}$$
;

we have shown that

(14)
$$IK_{2n} \subseteq K_n \qquad (n = 1, 2, \dots).$$

Choose a positive integer M so large that $\alpha M > 1$; we shall prove that

$$(15) \overline{K_{Mn}} \subseteq K_n (n=1,2,\ldots).$$

Let x_0 be any element of $\overline{K_{Mn}}$; then $x_0 = \lim x_r$ where each $x_r \in K_{Mn}$, and by continuity $Ix_r \to Ix_0$ as $r \to \infty$. Write $A = \lim \sup ||Tx_r - Tx_0||$. By the triangle inequality

 $||Tx_0 - Ix_0|| \le ||Tx_0 - Tx_r|| + ||Tx_r - Ix_r|| + ||Ix_r - Ix_0||$ and therefore (taking the upper limit on the right)

(16)
$$||Tx_0 - Ix_0|| \le A + \frac{1}{Mn}.$$

By (1) we have

$$||Tx_r - Tx_0|| \le \alpha \cdot ||Ix_r - Ix_0|| + \beta \cdot \max\{||Tx_r - Ix_r||, ||Tx_0 - Ix_0||\} + \gamma \cdot \max\{||Ix_r - Ix_0||, ||Tx_r - Ix_r||, ||Tx_0 - Ix_0||\}$$

and hence by (16), and taking upper limits,

$$A \leq (\beta + \gamma) \cdot \max \left\{ \frac{1}{Mn}, \|Tx_0 - Ix_0\| \right\} \leq (\beta + \gamma) \cdot (A + \frac{1}{Mn}),$$

from which it follows that $A \leq (\beta + \gamma)/\alpha Mn$, whence by (16)

$$||Tx_0 - Ix_0|| \le 1/\alpha Mn \le 1/n.$$

This establishes (15).

From (13), (14), (15) we see that

(17)
$$w \in \bigcap_{n=1}^{\infty} \overline{IK_{2Mn}} \subseteq \bigcap_{n=1}^{\infty} \overline{K_{Mn}} \subseteq \bigcap_{n=1}^{\infty} K_n.$$

Therefore Tw = Iw. But it also follows from (17) and (13) that

$$Iw \in \bigcap_{n=1}^{\infty} IK_n \subseteq \bigcap_{n=1}^{\infty} \overline{IK_n} = \{w\};$$

this implies that w = Iw, so w is a common fixed point of T and I. The solution x = w of the equations x = Ty = Iy is unique since if x = w' is any solution then $w' \in IK_n$ for all n and hence w' = w.

Finally, let $x_n \to w$ as $n \to \infty$. Since Tw = Iw and I is non-expansive,

 $||Tx_n - Ix_n|| \le ||Tx_n - Tw|| + ||Tw - Ix_n|| \le ||Tx_n - Tw|| + ||w - x_n||.$ Applying (1), we have

$$||Tx_{n} - Tw|| \leq \alpha ||Ix_{n} - Iw|| + \beta \cdot \max\{||Tx_{n} - Ix_{n}||, ||Tw - Iw||\} + \gamma \cdot \max\{||Ix_{n} - Iw||, ||Tx_{n} - Ix_{n}||, ||Tw - Iw||\} \leq$$

$$\leq \alpha \cdot ||x_{n} - w|| + (\beta + \gamma)(||Tx_{n} - Tw|| + ||x_{n} - w||) \leq$$

$$= ||x_{n} - w|| + (\beta + \gamma)||Tx_{n} - Tw||,$$

and therefore $||Tx_n - Tw|| \le (1/\alpha)||x_n - w||$, proving the continuity of T at w.

Remark 1. Since x=w is the unique solution of the equations x=Ty=Iy it is automatically the unique common fixed point of T and I. It is not necessarily the unique fixed point of I or T, as is shown by examples in which $C=X=\mathbb{R}$ with the Euclidean norm and Ix=x, $Tx=\alpha x$ or Ix=-x, Tx=x respectively.

Remark 2. Theorem 1 becomes false if either of the first two terms on the right hand side of (1) is omitted, that is, if either of the conditions $\alpha > 0$, $\beta > 0$ is weakened to $\alpha \ge 0$, $\beta \ge 0$ respectively. This can be shown by simple examples in which $C = X = \mathbf{R}$ with the Euclidean norm, Ix = x, and $Tx = \delta x + 1$ for some small $\delta > 0$; here T and I have no common fixed point. If the third term in (1) is omitted we obtain a stronger condition than (1).

PROOF OF THEOREM 2. It is clearly sufficient to show that if 0 < a < 1 and $p \ge 1$ then there exist constants $\alpha, \beta, \gamma > 0$ with $\alpha + \beta + \gamma = 1$ such that for $W, X, Y, Z \ge 0$

$$(17) W^p \le a \cdot X^p + (1-a) \cdot \max(Y^p, Z^p)$$

implies

$$W \le \alpha \cdot X + \beta \cdot \max(Y, Z) + \gamma \cdot \max(X, Y, Z).$$

Considering the maximum possible value of W permitted by (17), we see that this is the same as proving the inequality

(18)
$$a \cdot X^{p} + (1 - a) \cdot \max(Y^{p}, Z^{p}) \leq \\ \leq \left[\alpha \cdot X + \beta \cdot \max(Y, Z) + \gamma \cdot \max(X, Y, Z)\right]^{p}.$$

By symmetry we may assume that $Z \leq Y$. Then (18) becomes

(19)
$$a \cdot X^p + (1-a)Y^p \le \left[\alpha \cdot X + \beta \cdot Y + \gamma \cdot \max(X,Y)\right]^p.$$

We first find the conditions on α, β, γ for (19) to hold whenever $0 \le X \le Y$, in which case (19) can be rewritten as

(20)
$$f(X,Y) \equiv [\alpha \cdot X + (1-\alpha)Y]^p - [a \cdot X^p + (1-a)Y^p] \ge 0.$$

For this inequality to be true for X = 0 it is necessary that

(21)
$$(1-a) \le (1-\alpha)^p$$
, that is, $\alpha \le 1 - (1-a)^{1/p}$.

Moreover for Y = X the inequality (20) becomes an equality, while

$$\partial f(X,Y)/\partial Y = (1-\alpha)p[\alpha \cdot X + (1-\alpha)Y]^{p-1} - (1-a)pY^{p-1} \ge pY^{p-1}\{(1-\alpha)^p - (1-a)\},$$

which is non-negative provided that (21) is satisfied. Thus (21) is necessary and sufficient for (19) to hold whenever $0 \le X \le Y$.

It is now clear by symmetry that (19) will hold for $0 \le Y \le X$ if and only if

$$\beta \le 1 - a^{1/p}.$$

Finally we can now conclude that provided (21) and (22) are satisfied and α, β are also chosen so small that $\gamma = 1 - (\alpha + \beta)$ is positive, all our conditions are met. The proof is complete.

References

[1] M. L. DIVICCARO, B. FISHER and S. SESSA, A common fixed point theorem of Greguš type, *Publicationes Math. (Debrecen)* 34 (1987), 83-89.

ROY O. DAVIES DEPARTMENT OF MATHEMATICS THE UNIVERSITY, # LEICESTER LE1 7RH ENGLAND

(Received May 3, 1988)