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Nonstable representable K-theory for σ-C�-algebras

By Tianzhou Xu (Beijing)

Abstract. In this paper, Thomsen’s nonstable K-theory for C∗-algebras is ex-
tended to σ-C∗-algebras (countable inverse limits of C∗-algebras). We show that the
homotopy groups of the group of quasi-unitaries in σ-C∗-algebras form a homology
theory on the category of all σ-C∗-algebras which becomes topological K-theory when
stablized.

0. Introduction

The purpose of this paper is to extend non-stable K-theory for C∗-
algebras to a generalized homology theory on the category of σ-C∗-algebras
defined in [1] and studied in [10]. We hope that these homotopy groups
define invariants that are finer and contain more information than the
invariants given by representable K-theory or KK-theory without being
completely hopeless to calculate.

This paper is organized as follows. In Section 1, we present some basic
definitions and propositions, conventions and notation which will be used
throughout the paper, and prove several technical results which are needed
for the development of non-stable representable K-theory. In Section 2 we
define non-stable representable K-theory for σ-C∗-algebras and prove its
more elementary properties. In particular, we show that the homotopy
groups of the group of quasi-unitaries in σ-C∗-algebras leads to a long
exact sequence and, thus, to a homology theory on the category of all
σ-C∗-algebras. In Section 3 we define a σ-C∗-algebra A to be RK-stable
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when, roughly speaking, the non-stable RK-groups of A agree with the
Phillip’s representable K-theory groups. The main purpose of this section
is to show that if a σ-C∗-algebra contains a RK-stable ideal such that the
corresponding quotient is also RK-stable, then it must itself be RK-stable.

1. Generalized invertibles and unitaries in σ-C∗-algebras

Suppose that A ∼= lim←−An is a σ-C∗-algebra, we will name the associ-
ated maps as follows: πm,n : Am → An, for m ≥ n, are the maps of the
system, with πn = πn+1,n : An+1 → An; also κn : A → An is the canoni-
cal homomorphism; and finally (pn) is the associated family of seminorms
on A, determined by pn(a) = ‖κn(a)‖.

Let A = lim←−An be a unital σ-C∗-algebra. Then a ∈ A is invertible
if and only if κn(a) is invertible in An for every n. It follows that inver-
sion is continuous on the set Inv(A) of invertible elements of A. (See [6,
Proposition 2.8])

Definition 1.1. Let A be a σ-C∗-algebra and let X be a topological
space. Then C(X,A) denotes the algebra of all continuous functions from
X to A, with the pointwise operations and the topology of uniform con-
vergence in each seminorm on A on each compact subset of X. For A = C,
we just write C(X). We will usually only use compact spaces X.

Lemma 1.2. Let X be a compact Hausdorff space. Then the functor

A → C(X, A) from σ-C∗-algebras to σ-C∗-algebras sends homomorphisms

with dense range to homomorphisms with dense range, and preserves short

exact sequences.

Proof. This is a particular case of [11, Lemma 1.4]. ¤

Let A be a σ-C∗-algebra (not necessarily unital). Define a composition
in A by

(1.1) a • b = a + b− ab, ∀a, b ∈ A.

Definition 1.3.

gI(A) = {a ∈ A | ∃b ∈ A : a • b = b • a = 0},
gU(A) = {a ∈ A | a • a∗ = a∗ • a = 0}.



Nonstable representable K-theory for σ-C∗-algebras 227

Elements of gI(A) and gU(A) will be called quasi-invertibles and qua-
siunitaries, respectively. We denote by gI0(A) or gU0(A) the path compo-
nent of the identity in gI(A) or gU(A), respectively. With these definition,
we may consider these groups. Palmer [15] who seems to have been the
first to consider these groups. If A is a unital σ-C∗-algebra, we write
Inv(A) for the group of invertibles in A and U(A) for the unitary group
in A.

Lemma 1.4. Let B be a σ-C∗-algebra with unit 1 and A ⊆ B a closed

two sided ideal in B. Then

gI(A) = (1− Inv(B)) ∩A, gU(A) = (1− U(B)) ∩A.

Proof. Let a ∈ Inv(B), there exists b ∈ B such that ab = ba = 1.
Since (1− a) • (1− b) = (1− b) • (1− a) = 0, it follows that (1− Inv(B))∩
A ⊆ gI(A). Conversely, if c ∈ gI(A) then there is a d in A such that
c•d = d• c = 0. Set a = 1− c and b = 1−d. Then a ∈ Inv(B) and ab = 1.
We conclude that

gI(A) ⊆ (1− Inv(B)) ∩A. ¤

Since any σ-C∗-algebra can be embedded as an ideal of a unital σ-C∗-
algebra, it follows immediately from Lemma 1.4 that both gI(A) and
gU(A) are groups with the composition • given by (1.1).

Lemma 1.5. Let φ: A → B be a surjective homomorphism of C∗-
algebras. Then φ(gU0(A)) = gU0(B).

Proof. This follows immediately from Theorem 1.9 of [21]. ¤

Theorem 1.6. Let φ : A → B be a surjective map of σ-C∗-algebras.

Then φ(gU0(A)) = gU0(B).

Proof. Obviously we only need to show that gU0(B) ⊆ φ(gU0(A)).
Let I = Ker(φ). Using Proposition 5.3(2) of [10], we can write the exact
sequence

0 −→ I −→ A
φ−→ B −→ 0

as the inverse limit of exact sequences

0 −→ In −→ An
φn−→ Bn −→ 0,
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with surjective maps πn : An+1 → An, σn : Bn+1 → Bn, κn : A → An,
and λn : B → Bn. We can also assume that In+1 → An, and I → In are
surjective.

Now let v ∈ gU0(B). Let t → b(t) be a continuous path in gU(B)
with b(0) = 0 and b(1) = v, and regard b as an element of C([0, 1], B).
Note that in fact b ∈ gU0(C([0, 1], B)). Define bn ∈ gU0(C([0, 1], Bn)) by
bn(t) = λn(b(t)). We construct inductively a coherent sequence of contin-
uous paths an ∈ gU0(C([0, 1], An)) such that an(0) = 0 and φn(an(t)) =
bn(t) for all t ∈ [0, 1] and all n. Begin by using Lemma 1.5 to choose z ∈
gU0(C([0, 1], A1)) whose image in C([0, 1], B1) is b1, and set a1(t) = z(t).

For the induction step, suppose we have found an such that

an(0) = 0, φn(an(t)) = bn(t), πn−1(an(t)) = an−1(t)

for t ∈ [0, 1].

As above, find x, y ∈ gU0(C([0, 1], An+1)) such that

x(0) = y(0) = 0, φn+1(x(t)) = bn+1(t) and πn(y(t)) = an(t).

Since b ∈ gU0(C([0, 1], B)), we have b • b∗ = b∗ • b = 0. Similarly x • x∗ =
x∗ • x = 0, because

φn ◦ πn = σn ◦ φn+1, σn ◦ λn+1 = λn.

Then

φn ◦ πn(y(t) • x∗(t)) = φn ◦ πn(y(t)) • φn ◦ πn(x∗(t))

= φn(an(t)) • σn ◦ φn+1(x∗(t))

= φn(an(t)) • σn(b∗n+1(t))

= bn(t) • σn(b∗n+1(t))

= λn(b(t)) • σn ◦ λn+1(b∗(t))

= λ(b(t)) • λn(b∗(t))

= λn(b(t) • b∗(t)) = 0.

With c(t) = πn(y(t)•x∗(t)), we then have c ∈ C([0, 1], In). Since c(0) = 0,
we in fact have c ∈ gU0(C[0, 1], In). So, by Lemma 1.5, there is z ∈
gU0(C([0, 1], In+1)) whose image in C([0, 1], In) is c, and as usual we may
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insist that z(0) = 0. For each t, the quasi-unitary φn+1(z(t)) is a scalar
multiple of the zero in Bn+1, in fact, be 0 since σn ◦ φn+1(z(t)) = φn ◦
πn(z(t)) = 0. Now define an+1(t) = z(t) • x(t). It is immediately verified
that an+1(0) = 0, φn+1(an+1(t)) = φn+1(z(t) • x(t)) = φn+1(x(t)) =
bn+1(t), and

πn(an+1(t)) = πn(z(t) • x(t)) = πn(z(t)) • πn(x(t))
= c(t) • πn(x(t)) = πn(y(t) • x∗(t)) • πn(x(t))
= πn(y(t) • (x∗(t) • x(t))) = πn(y(t) • 0)
= πn(y(t)) = an(t),

as desired. This completes the induction step.
To finish the proof, let a(t) ∈ gU(A) be the element defined by the

coherent sequence (an(t)), and set u = a(1). Then φ(u) = v and u is a
continuous path in gU(A) connecting u to the identity. ¤

Notation 1.7. We let X be a compact Hausdorff space. If A is a σ-C∗-
algebra, we denote by C(X, gU0(A)) the group of all continuous functions
from X to gU0(A). Then the analog of Lemma 1.9 in [11] is:

Corollary 1.8. Suppose that X be a compact Hausdorff space, A and
B are σ-C∗-algebras. Then A → B surjective implies C(X, gU0(A)) →
C(X, gU0(B)) surjective.

Proof. This follows from Theorem 1.6 and an easy modification of
the argument in Lemma 1.9 of [11]. ¤

Finally, in this section we have the following:

Theorem 1.9. Let

0 −→ I
i−→ A

φ−→ B −→ 0

be a short exact sequence of σ-C∗-algebras. Then the sequences

0 −→ i−1(gU0(A)) i−→ gU0(A)
φ−→ gU0(B) −→ 0

and

0 −→ gU(I) i−→ gU(A)
φ−→ φ(gU(A)) −→ 0

are both exact sequences of topological groups.

Proof. Using Theorem 1.6, in both cases, it is straightforward to
check that the sequences are exact. ¤
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2. Nonstable representable K-theories on σ-C∗-algebras

Let X be any topological space and A is a σ-C∗-algebra. Choose a
base point + ∈ X. We can then consider the group [X, gU(A)] consisting
of the homotopy classes of base point preserving continuous maps from X
to gU(A). The base point of gU(A) is the neutral element 0 ∈ gU(A).
Given a continuous base point preserving map f : X → gU(A), we let [f ]
denote its class in [X, gU(A)].

It is clear that the group structure of gU(A) gives [X, gU(A)] the
structure of a group in the obvious way, and that [X, gU(·)] is a covariant
and homotopy invariant functor from the category of σ-C∗-algebras to the
category of groups (not necessarily abelian).

Let SA denote the suspension of a σ-C∗-algebra A, i.e.,

SA = {f : [0, 1] → A : f(0) = f(1) = 0} ∼= C0(R)⊗A.

For n > 1, we set SnA = S(Sn−1A) — the nth suspension of A (to be
C0(Rn)⊗A). For any topological group G, we let ΩG denote the space of
loops in G based at the identity. ΩG is equipped with the compact-open
topology.

Lemma 2.1. gU(SA) is homeomorphic as a topological group to
ΩgU(A).

Proof. Let πt : SA → A be the ∗-homomorphism obtained by eval-
uation at t ∈ [0, 1]. It is then straightforward to see that the map which
takes f ∈ gU(SA) to the loop f̂(t) = πt(f), t ∈ [0, 1], in gU(A) is a
homeomorphism of topological group. ¤

It follows that we have a natural isomorphism [SX, gU(A)] '
[X, gU(SA)] (where SX is the reduced suspension of X). In particular,
[X, gU(S·)] is abelian. Hence, for any space X, we obtain a homotopy
invariant covariant functor from the category of σ-C∗-algebras to the cat-
egory of abelian groups, namely [X, gU(S·)].

Lemma 2.2. Let A be a σ-C∗-algebra. Then

[Sn, gU(A)] ' πn(gU(A)) ' π0(gU(SnA)),

where Sn is the n-sphere, n = 0, 1, 2, . . . .

Proof. This is trivial for n = 0 since S0 consists of two points and
S0A = A by definition. Since [Sn, gU(A)] ' [Sn−1, ΩgU(A)], then it
follows from Lemma 2.1 by induction. ¤
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Definition 2.3. For any σ-C∗-algebra A and any n = 0, 1, 2, . . . .
We set

RKn(A) = πn+1(gU(A)).

For each n, RKn is a homotopy invariant functor from the category
of σ-C∗-algebras to the category of abelian groups.

Lemma 2.4. Let A ∼= lim←−An be a σ-C∗-algebra and X be any topo-

logical space, then

gU(A) = lim←− gU(An);(2.4.1)

C(X, lim←− gU(An)) = lim←−C(X, gU(An)).(2.4.2)

Proof. The proof is omitted. ¤

The following theorem generalizes Proposition 2.1 of [21].

Theorem 2.5. Let

0 −→ I
i−→ A

φ−→ B −→ 0

be a short exact sequence of σ-C∗-algebras and X a compact Hausdorff

space. Then

[X, gU(I)] i∗−→ [X, gU(A)]
φ∗−→ [X, gU(B)]

is exact at [X, gU(A)].

Proof. Using Proposition 5.3(2) of [10], we can write the exact se-
quence

0 −→ I
i−→ A

φ−→ B −→ 0

as the inverse limit of exact sequences

0 −→ In
in−→ An

φn−→ Bn −→ 0,

with surjective maps πn : An+1 → An, σn : Bn+1 → Bn, κn : A → An,
and λn : B → Bn. We can also assume that In+1 → In and I → In+1 are
surjective.

It is immediate that φ∗ ◦ i∗ = 0, so let f : X → gU(A) be a (base
point preserving and continuous) map and assume that φ∗([f ]) = 0, i.e.,
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φf : X → gU(B) is homotopic to the constant map. We want to conclude
that f is homotopic to a map of the form ig, where g : X → gU(I). By
the assumption, there is a continuous function F : X × [0, 1] → gU(B)
such that

F (x, 1) = φf(x), x ∈ X,(2.5.a)

F (+, t) = 0, t ∈ [0, 1],(2.5.b)

F (x, 0) = 0, x ∈ X.(2.5.c)

In particular, F maps into gU0(B). Note that in fact F : X × [0, 1] →
gU0(B). Define Fn : X × [0, 1] → gU0(Bn) by Fn(x, t) = λn(F (x, t)). By
the definition of Fn, we see that

Fn(x, t) = λn(F (x, 1)) = λnφf(x), x ∈ X,(2.5.i)

Fn(x, 0) = 0, t ∈ [0, 1],(2.5.ii)

Fn(x, 0) = 0, x ∈ X.(2.5.iii)

So, by the proof of Proposition 2.1 [21], we can find a continuous map
Hn : X × [0, 1] → gU0(An) for each n such that

φnHn(t) = Fn(x, t), (x, t) ∈ X × [0, 1],(i)

Hn(x, 1) = κnf(x), x ∈ X.(ii)

After substituting Hn by the map (x, t) → Hn(x, t) • Hn(+, t)∗, we can
furthermore assume that

(iii) Hn(+, t) = 0, t ∈ [0, 1].

we construct inductively a coherent sequence of continuous maps H̃n :
X × [0, 1] → gU0(An) such that

φnH̃n(x, t) = Fn(x, t), (x, t) ∈ X × [0, 1],(1)

H̃n(x, 1) = κnf(x), x ∈ X,(2)

H̃n(+, t) = 0.(3)
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Let H̃1(x, t) = H1(x, t), (x, t) ∈ X × [0, 1]. For the induction step, suppose
we have found H̃n such that

φnH̃n(x, t) = Fn(x, t), (x, t) ∈ X × [0, 1],(2.5.1)

H̃n(x, 1) = κnf(x), x ∈ X,(2.5.2)

H̃n(+, t) = 0,(2.5.3)

πn−1(H̃n(x, t)) = H̃n−1(x, t).(2.5.4)

Since πn : An+1 → An is surjective. Thus, we can find a continuous map
Q : X × [0, 1] → gU0(An+1) such that πn(Q(x, t)) = H̃n(x, t). Then,
because φn ◦ πn = σn ◦ φn+1 and σn ◦ λn+1 = λn, we have

φn ◦ πn(Q(x, t) •Hn+1(x, t)∗) = φn ◦ πn(Q(x, t)) • φn ◦ πn(Hn+1(x, t)∗)

= φn(H̃n(x, t)) • σn ◦ φn+1(Hn+1(x, t)∗)

= Fn(x, t) • σn(Fn+1(x, t)∗)

= λn(F (x, t)) • σn ◦ λn+1(F (x, t)∗)

= λn(F (x, t)) • λn(F (x, t)∗) = 0.

Put
C(x, t) = πn(Q(x, t) •Hn+1(x, t)∗),

we then have C : X×[0, 1] → In. Furthermore, we in fact have C ∈ C(X×
[0, 1], gU0(In)). So, there is a z ∈ C(X × [0, 1], gU0(In+1)) whose image
in C(X × [0, 1], gU0(In)) is C. After substituting z by the map (x, t) →
[z(x, t)•z(x, 1)∗]• [z(+, t)•z(+, 1)∗]∗, we can suppose that z(+, t) = 0 and
z(x, 1) = 0. For (x, t) ∈ X × [0, 1], the quasi-unitary φn+1(z(t)) is a scalar
multiple of the zero in Bn+1. Now define H̃n+1(x, t) = z(x, t)•Hn+1(x, t).
It is immediately verified that

φn+1(H̃n+1(x, t)) = φn+1(z(x, t) •Hn+1(x, t))(2.5.d)

= φn+1(z(x, t)) • φn+1(Hn+1(x, t))

= φn+1(Hn+1(x, t)) = Fn+1(x, t),

H̃n+1(x, 1) = z(x, 1) •Hn+1(x, 1) = κn+1f(x),(2.5.e)

H̃n+1(+, t) = z(+, t) •Hn+1(+, t) = 0,(2.5.f)
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πn(H̃n+1(x, t)) = πn(z(x, t) •Hn+1(x, t))(2.5.h)

= πn(z(x, t)) • πn(Hn+1(x, t))

= C(x, t) • πn(Hn+1(x, t))

= πn(Q(x, t) •Hn+1(x, t)∗)πn(Hn+1(x, t))

= πn(Q(x, t) • (Hn+1(x, t)∗ •Hn+1(x, t)))

= πn(Q(x, t)) = H̃n(x, t),

as desired. This completes the induction.
To finish the proof, let H : X× [0, 1] → gU(A) be the continuous map

defined by the coherent sequence (H̃n). Obviously, we have φH(x, t) =
F (x, t), H(x, 1) = f(x), and H(+, t) = 0 for x ∈ X, t ∈ [0, 1]. Thus, H

provides a homotopy between f and H( · , 0). But (2.5.c) and the above
imply that H(x, · ) lies in i(gU(I)) for all x ∈ X. ¤

Remark 2.6. If X is any compact Hausdorff space and A is a σ-C∗-
algebra, as usual let C(X, A) stand for the σ-C∗-algebra of all continu-
ous maps from X to A. Then it is known that C(X, A) is *-isomorphic
to C(X) ⊗ A [10]. Consider the quasi-unitary group gU(C(X,A)) with
the pointwise multiplication. It is clear that each quasi-unitary u=u(·)
of C(X,A) can be regarded as a continuous map from X to gU(A), i.e.,
gU(C(X,A)) ∼= C(X, gU(A)). Obviously, the identity component
gU0(C(X,A)) of gU(C(X, A)) is a normal subgroup of both C(X, gU0(A))
and C(X, gU(A)). Since gU0(A) is a normal subgroup of gU(A),
C(X, gU0(A)) is a normal subgroup of C(X, gU(A)).

We have the following long exact sequence, of course, it is really just
the long exact sequence of homotopy groups and the connecting map ∂

can therefore also be described, alternatively, in the usual way in terms of
loops.

Theorem 2.7. Let

0 −→ I
i−→ A

φ−→ B −→ 0

be a short exact sequence of σ-C∗-algebras. Then the following sequence

of groups is exact:

· · · −→ RKn(I) i∗−→ RKn(A)
φ∗−→ RKn(B) ∂−→ RKn−1(I) −→ · · ·

· · · −→ RK1(B) ∂−→ RK0(I) i∗−→ RK0(A)
φ∗−→ RK0(B).
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Proof. This follows from Lemma 2.2 and Theorem 2.5. ¤
For convenience, we describe the connecting homomorphism ∂ (cf. [2,

Theorem 21.4.3]). We begin by introducing a bit of notation. Given an
operator algebra A, define

IA =C[0, 1]⊗A;

CA ={ξ ∈ IA : ξ(0) = 0} the cone over A;

SA ={ξ ∈ CA : ξ(1) = 0} ∼= C0(R)⊗A the suspension of A.

If φ : A → B, then the mapping cone of φ is defined by

Cφ = {(ξ, a) ∈ CB ⊕A : ξ(1) = φ(a)}.

There is a natural mapping cone sequence

0 −→ SB
ι−→ Cφ

π−→ A −→ 0

defined by π(ξ, a) = a and ι(ξ) = (ξ, 0). Let

0 −→ I
i−→ A

φ−→ B −→ 0

be a short exact sequence of σ-C∗-algebras. Hence, there is a homomor-
phism e : I → Cφ given by

e(x) = (0, i(x)), x ∈ I.

Thus e∗ is invertible and ∂ = e−1
∗ ◦ i∗.

Corollary 2.8. {RKn} is a homology theory on the category of all

σ-C∗-algebras.

Proof. The proof is omitted. ¤
Theorem 2.9. For any σ-C∗-algebra A, RKn(K ⊗ A) is naturally

isomorphic to RKn(A), n = 1, 2, . . . .

Proof. By [9, Definition 1.1], [24, 7.2], Bott periodicity for repre-
sentable K-theory of σ-C∗-algebras [12, Theorem 3.4] and Remark 2.6, we
have

RK1(A) ∼= RK1(C0(R2)⊗A)
∼= [gU(K ⊗ C0(R2)⊗A)]
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∼= [gU(C0(R2)⊗K ⊗A)]
∼= [R2, gU(K ⊗A)]
∼= [S2, gU(K ⊗A)]
∼= π2(gU(K ⊗A)) = RK1(K ⊗A).

Similarly, we see that

RK2(A) ∼= RK1(SA)
∼= RK1(K ⊗ SA)
∼= RK1(S(K ⊗A))
∼= π2(gU(S(K ⊗A)))
∼= π0(gU(S3(K ⊗A)))
∼= π3(gU(K ⊗A))
∼= RK2(K ⊗A).

Consider the definition of the representable K-theory, by suspending and
by use of Lemma 2.2, we conclude that the case of higher n (n = 3, 4, . . . )
holds by induction. ¤

Corollary 2.10. If A is a C∗-algebra then RKn(K ⊗ A) is naturally

isomorphic to Kn(A), n = 1, 2, 3, . . . .

Proof. This follows from Theorem 2.8 and Theorem 3.4 of [12]. ¤

3. RK-Stability and its applications

As we shall see, the calculation of the groups RKn(A) is, in many
cases, already contained in the calculation of the usual (stable) RK-groups
of A. To make this precise, we make the following definition.

Definition 3.1. Let A be a σ-C∗-algebra, i.e., A ∼= lim←−An. We shall
say that A is RK-stable when all An(n = 1, 2, 3, . . . ) are K-stable.

It is clear that RKn(A) ∼= RKn(K ⊗ A) for all n = 0, 1, 2, . . . , when
A is a RK-stable σ-C∗-algebra. So for such σ-C∗-algebra, RKn(A) ∼=
RK0(A) for n even and RKn(A) ∼= RK1(A) for n odd. In particular, for
such σ-C∗-algebras, RKn(A) ∼= K0(A) for n even and RKn

∼= K1(A) for
n odd.
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Theorem 3.2. Let A be a RK-stable σ-C∗-algebra, I is an ideal of A

such that the quotient σ-C∗-algebra B = A/I is also RK-stable, then I is

also RK-stable.

Proof. It follows from [21] and the exactness of the RKn-functors.
¤

Theorem 3.3. Let

0 −→ I −→ A −→ B −→ 0

be a σ-C∗-extension. If B and I are RK-stable, then so is A.

Proof. Write the exact sequence

0 −→ I −→ A −→ B −→ 0

as an inverse limit of exact sequences

0 −→ In −→ An −→ Bn −→ 0

of C∗-algebras, with all maps in the inverse systems being surjective (see
[10, Proposition 5.3(2)]).

Now this theorem immediately from [21]. ¤

Theorem 3.4. Let A be a C∗-algebra, then

RKn(A) = Kn(A), n = 0, 1, 2, . . . .

Proof. It follows from [21] and Definition 2.3. ¤

Corollary 3.5. For every compact Hausdorff space X, we have

RKn(C(X)) ∼= H−n(X,Z), n = 0, 1, 2, . . . .

Proof. This follows from the above theorem and [21, Theorem 4.1].
¤

The following result states that non-stable representable K-theory is
countable additive for products.



238 Tianzhou Xu

Theorem 3.6. Let {An: n ≥ 1} be a family of σ-C∗-algebras. Then
there is a canonical isomorphism

RKi

( ∞∏
n=1

An

)
∼=

∞∏
n=1

RKi(An).

Proof. We first consider the case in which i = 0. Then one easily
checks that

gU

(∏
n

An

)
∼=

∏
n

gU(An),

and that [
X, gU

(∏
n

An

)]
∼=

∏
n

[X, gU(An)],

here X is a compact Hausdorff space. It now follows easily that

RK0

(∏
n

An

)
∼=

∏
n

RK0(An).

The statement for RKi for i > 0 now follows by tensoring all the algebras
with C0(Ri). ¤

Lemma 3.7 [21]. For each n = 2, 3, 4, . . . , and any C∗-algebra A, the
tensor product C∗-algebra On ⊗A is K-stable.

Call a σ-C∗-algebra nuclear if it is the inverse limit of a system of
nuclear C∗-algebras with surjective maps, as in the remarks following [10,
Proposition 3.3].

Theorem 3.8. For each n = 2, 3, . . . , and any σ-C∗-algebra A, the
tensor product σ-C∗-algebra On ⊗A is RK-stable.

Proof. Write A = lim←−An with all maps surjective. Then On ⊗
A = lim←−On ⊗ An since On is nuclear. Therefore On ⊗ A is RK-stable by
Lemma 3.7. ¤

Next we want to consider AF -algebras. For this purpose we consider
AF -algebra A for which K0(A) has large denominators, as defined by
Nistor in [7]. Let A1 ⊆ A2 be an inclusion of finite-dimensional C∗-
algebras with inclusion matrix A = (aij). Set β(A1, A2) = min{aij : aij 6=
0}. Thus β(A1, A2) is the minimum of the number of edges between points
in the Bratteli diagram of the inclusion.
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Lemma 3.9 [21]. Let A be an AF -algebra for which K0(A) has large

denominators and B an arbitrary C∗-algebra. Then A⊗B is K-stable.

Theorem 3.10. Let A be an AF -algebra for which K0(A) has large

denominators and B an arbitrary σ-C∗-algebra. Then A⊗B is RK-stable.

Proof. Write B = lim←−Bn with all maps surjective. Then A ⊗ B =
lim←−A⊗Bn, since A is nuclear. Therefore A⊗B is RK-stable. ¤

According to Proposition 2.3 of [7], if A is an infinite-dimensional
simple AF -algebra other than K, then K0(A) has large denominators.
The above theorem therefore has the following corollary.

Corollary 3.11. Let A be an infinite-dimensional simple AF -algebra.

Then A⊗B is RK-stable for all σ-C∗-algebras B.

Lemma 3.12 [21]. Let A be a σ-unital C∗-algebra and B an arbitrary

C∗-algebra. Then Q(A)⊗B is K-stable, where Q(A) denotes the out stable

multiplier algebra of A.

Theorem 3.13. Let A be a σ-unital σ-C∗-algebra and B an arbitrary

σ-C∗-algebra. Then Q(A)⊗B is RK-stable.

Proof. Write A = lim←−An and B = lim←−Bm. By Proposition 3.2,
Theorem 3.14, the proof of Proposition 5.3 and Corollary 5.4 in [10], we
have

Q(A)⊗B = [ lim←−(M(K ⊗An)/K ⊗An)]⊗B

= lim←−[(M(K ⊗An)/K ⊗An)⊗Bm],

then, by Lemma 3.12, Q(A)⊗B is RK-stable. ¤
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