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Additive functions on the Gaussian integers

By MARIJKE van ROSSUM-WIJSMULLER (Philadelphia)

Introduction

In this paper we generalize a result of KATAI on completely additive
functions by defining the functions on the ring of Gaussian integers. In [1]
I. KATAI considers the following problem: Let Fy, Fy, F; and F3 be real-
valued functions, that are completely additive and which are defined on
the positive integers. Under the assumption that the sum [Fy(n)+ Fi(n +
1) + F3(n + 2) + F3(n + 3)] is integer—valued for all n, KATAI proves that
Fy, F\, F; and F; are integer-valued functions.

A completely additive function is determined by its values on the
primes and this suggests that one could define such a function on a unique
factorization domain if one takes care to define the functions properly at 0
to preserve additivity. In this paper we consider complex-valued functions
defined on the ring of Gaussian integers and prove three theorems.

Results

Let the ring of Gaussian integers be denoted by G. For j = 0,1, 2,3,
let F; be a complex-valued function defined on G with the additional

requirement that Fj(0) = co. We require the functions to be completely
additive, which means that

Fj(ap) = Fj(a)+ Fj(B) for all a and # in G.
We use the symbol G* for the ring of Gaussian integers together with oo.

Because G has four units and four associates of each nonzero element,
the additivity of the functions F); requires:

(1) F;(1) = Fj(-1) = Fj(i) = Fj(-i) = 0.
(2) Fj(a) = Fj(—a) = Fj(ia) = Fj(—ia) for all @ in G.

lAs the first theorem we state the following generalization of KATAI's
result:
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Theorem 1. If the sum [Fy(a)+ Fi(a+1)+ Fa(a+2)+ F3(a+3))] is
in G*, for all a in G, then Fj(a) is in G*, for all « in G, and j = 0,1,2,3.

The second theorem is a somewhat stronger result and can be stated
as follows:

Theorem 2. If for some fixed, nonzero  in G and all « in G the sum
[Fo(a) + Fi(a + B) + Fa(a + 28) + F3(a + 33)] is an element of G* then
Fj(a) is an element of G* for all « in G and j =0,1,2,3.

In contrast to the integers, G is two-dimensional and this is the mo-
tivation of Theorem 3.

Theorem 3. If the sum [Fy(a) + Fy(a +1) + Fa(a+ 1) + F3(a — 1))
is an element of G* for all a in G, then Fj(a) is an element of G* for all
ainGandj)=0,1,23.

PROOF OF THEOREM 1. The proof in [1] is equally valid for func-
tions that are defined on the Gaussian integers. Hence by KATAI's re-
sult, Fj(n) € G for all positive integers n. Therefore, by (2), Fj(—n) and
Fj(+n1) are elements of G. In addition, if a Gaussian integer « is divisible
by a rational integer n then Fj(a) € G* if and only if Fj(a/n) € G*.

Because a@ is a positive integer for every nonzero a € G we have
Fj(aa) € G. It follows that Fj(a) € G if and only if Fj(a) € G. Together
with (2) this means that Fj(a + bi) € G implies Fj(+a + b) € G and also
Fij(xbx ai) € G.

From (2) it follows immediately that the following four statements are
equivalent.

(3) [Fola)+ Fi(a+1)+ Fy(a+2)+ F3(a+3) € G* for all a.
(4) [Fo(a)+ Fi(a—-1)+ F(a-2)+ F3(a - 3)) € G* for all a.
(5) [Fo(a)+ Fi(a+i)+ Fa(a +2i) + Fy(a + 3i)] € G* for all a.
(6) [Fo(a)+ Fi(a—1)+ F(a—2i)+ F3(a - 3i)) € G* for all a.

The equivalence of (3) and (4) and the equivalence of (5) and (6) results
in a useful symmetry, which is more apparent when we rewrite (4) and (6)
as

(4a) [Fo(a+3)+ Fi(a +2) + Fy(a+ 1)+ Fi(a)] € G* for all a.
6a) [Fo(a + 3i) + Fi(a + 2i) + Fy(a + i) + F3(a)] € G* for all a.

Therefore, if a linear combination of the four functions F} is in G* then
it follows that a similar linear combination, obtained by mterchangmg Fy
with F3 and F} with F, simultaneously, will also be in G*. In particular,



Additive functions on the Gaussian integers 257

Fy(a) € G* if and only if F3(a) € G* and Fi(a) € G* if and only if
Fg(a) € G*.

Next we show that Fj(a) € G* for all @ with norm less or equal
to 13. Because of symmetry it is sufficient to show that Fy(3 + 21),
Fi(141), Fi(2+1), Fo(1+1), Fy(2+:) and Fy(3 + 2i) are in G.

When we denote the sums in (3), (4), (5) and (6) by L}!, L7, L}*
and L7' respectively, it is easy to verify that our claim follows from the
following six equations:

(i) L:-:zs' 2 L;'i‘- s L;—izi = Lﬁ+i i L:-;—-ls‘ o
Fo(4) + F1(3 + 21) + F>(4) + F3(5)
(i) Lyfu+L3-LF-Ly=
Fo(5) + Fi(3)(1 + 1) + Fa(3 + 21) + F3(2)
(iii) Ly, — Lt = Fo(2) + Fi(2 + i) + Fa(1 +14)
(iv) L3y = Fo(3)(1+14)+ Fi(3+2i) + F(2—i)(1 +1) + F3(3)
(v) Ly} =F(2+i)+F(1+14)+ F(1+1)
(vi) L3ty = Fo(3+2i) + Fi(2)(1 +1) + F(1 + 2i) + F3(2)

We finish the proof by induction on the norm of a. We assume that
there is some a with smallest norm for which the theorem is not true.
Without loss of generality, we may assume that a =(a + bz) is a prime in

G and a # b (mod 2). Also we may assume a > b > 0, since otherwise
an associate of a or @ will have this property. Since aa > 13, a must be
strictly greater than 3. From L' € G it then follows at Fy(a) € G and
thus also F3(a) € G. If a is odd, (a+ 1) is even and (a + 1) is divisible by
2. If a is even, (a + 1) is odd and (a + 1) is divisible by (1 4 7). In both
cases Fo(a + 1) € G and, since L;_t_l € G, we conclude that Fi(a) € G
and therefore also Fy(a) € G. This finishes the proof of Theorem 1.
PROOF OF THEOREM 2, As was the case in Theorem 1, there are

four equivalent forms of the hypothesis of Theorem 2, but we will only

make use of 2 of these and therefore we will not state the other two.
Because of (2), the following are equivalent statements:

(7) Fola)+ Fi(a+B)+ Fa(a+2B)+ F3(a+33) € G* for all a.
(8) Fo(a)+ Fi(a— B)+ Fy(a—-28)+ F3(a—38) € G* for all a.

We will denote the sums in (7) and (8) by L} and L. Since L} is an
element of G* for all a, so is L:ﬂ. But

LIﬁ =[Fo(ﬂ) s 5 F](Q e 1) + FQ(Q + 2) + Fs(ﬂ + 3)]+
[Fo(B) + Fa(B) + F2(B) + F3(B)).
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If we can show that
(9) [Fo(B) + F1(B) + F2(B) + F3(B)] € G,

Theorem 2. will follow from Theorem 1. g
We will therefore set out to prove (9). We will use an idea of KATAI

and consider linear combinations of F;;(2) and F}(3) for j = 0,1, 2, 3. These
are obtained by simplifying the following expressions.

(10)  Ljs+Lig+ Lgg+ Lgg — Lpp — Liss — L3s — Lip

(10a) Lyp+Lgg+ Lig+ Ly — Lig — Ly — Ly — Ly

(11) L3+ Lyg+Lya+Lis—Lis—Log—Lig— Ly,

(11a)  Lgs+ Lgg + Liss + Lgg — Lagp — L3 — Lsy — L3

(12) Liz-Lg

(13) L+ L3—Liz— Ly,

(13a) Lgg+ Lyps — L — Ly

(14)  Lygas+ Ly + Lyyp+3L35 — Ljg — Lygs — L3z —3L75

(14a) L3,0s+ L3+ Ly +3Lgs — L5 — LT, 5 — L3 — 3L3,

By hypothesis, each sum is an element of G. The nine equations can be
expressed in matrix form by MR = G, where R is the transpose of the

row vector (Fo(2), Fo(3), F1(2), F1(3), F2(2), F2(3), F3(2), F3(3)), M is the
coefficient matrix which is equal to

|
|

e o L = L el ™= L el el =]
|

OO =ON

NO O =

|
|
HO O -HNO

|
|

|
DI O = DI s i

DN -0 O
| |

= i D = OO

—HEDND=O~=OO

and G is a column vector with entries in G. M contains eight linearly
independent rows. Using Gaussian elimination over the integers, it follows

that F}(2) € G and F}(3) € G for j = 0,1,2,3. Since Li"ﬁ is an element

of G, it now follows that [Fy(3) + F1(8) + F»(8) + F3(B)] is an element of
G, which finishes the proof of Theorem 2.
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PROOF OF THEOREM 3. Because of (2) the following statements are
equivalent:

(15) Fo(a)+ Fi(a+i)+ F(a+1)+ F3(a—1) € G* for all a.

(16) Fo(a)+ Fi(a+1)+ F(a—1)+ F3(a—1)€ G* forall a.

(17) Fo(a)+ Fi(a—1)+ F(a-1)+ F(a+1) € G* for all a.

(18) Fo(a)+ Fi(a—1)+ Fy(a+i)+ F3(a+1) € G* for all a.

We will denote the sums in (15), (16), (17) and (18) by respectively
Bt SIS S rsnd At

We will first prove that Fj(a) € G* for all a with norm less or equal
to 5. We will do this in three Lemma’s:

Lemma 1. IfS;'" is in G* for all a, then F;(2) isin G for j = 0,1, 2, 3.
PROOF. Because F(3) =[S} — S = 871, it follows that F5(3) is
an element of G. Since

[S3° + 5571 = [S74: + Sidi + Siti + St = Fa(3) — Fx(5)

we can conclude that F3(5) is in G. The Lemma now follows from the
following four equations:

(i) S3'+ 83 - 87 - S5 = F3(2) + F(3)

(ii) Sai+ ST+ ST+ S - S-S5 - St =
Fi(2) + F»(2)

(iii) 251 = Fy(2) + 2F3(2) + F3(2)

(iv) ST+ 510+ Sijai — Sifai — S = St =
Fy(2) + F1(2) + F2(3)(5) — 3F,(2) + F3(2)

Lemma 2. If S} isin G* for all a, then Fj(3%i) € G forj = 0,1,2,3.

PROOF. As part of the proof in Lemma 1. it was shown that F3(5) €
G and that F3(3) € G. The following eight equations now prove the

Lemma,; first for j = 2, then for j = 1, next for j = 3 and finally for
5 .=,

(i) S+ S+ SF - 5577 = Fo(2) + 2F,(2) + F2(3)(3 — i) + F3(2)
(i1) Fp(3—1)+ F2(3+1) = Fy(2) + F»(5)
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(i) SFY—ST —SH:=F(3+i)-2F(2) - F,(3+1) - F3(2)
(iv) St -8;% -8t =FR(3-1i)-2F(2)- F(2)

(v) S;7'+S8H =F2)+F A(B+i)+F((2)+ FK(3-1)

(vi) SF'+ S} =Fo(2)+ Fi(3-1i)+ F(2)3) + F(3+ 1)

(vii) ST+ ST =F@B-i)+F(3+i)+ F(2)+ F3(3 +1)

(viii) SFL + ST =FB+i)+ FA(3—i)+ F2(2)(3+1)+ F3(3 —1i)

Lemma 3. If S}* € G* for all a, then Fj(1+1) € G forj =0,1,2,3.

PROOF. By Lemma 2, if F;(1+ i) € G then Fj(2+1) € G.
It also follows from Lemma 2. that F};(10) € G and hence, by Lemma 1,
that Fj(5) € G for j =0,1,2,3. But then Fj(3 £ 4:) € G because

Fij(3+4i)=Fj(3—1)— F;(3+1)+ F;(5) and

F;(3 — 41) = Fj(3 + 1) — Fj(3 — 1) + F;(5).

The Lemma now follows from the following four equations:

(i) Syl + S — 251 = Fy(5) + Fi(5) + Fa(1 +1)
(ii) Sfisi+ Sy =S5 -8 =
[Fo(2)(1 +1) + Fi(3 + 41) + F2(4 + 31)]—
[Fo(3 + 1) + F1(2) + F2(1 + 3i) + 2F3(2)]
(iii) Syti=F@2+i)+F(3+1)+ FR(2)+ F(1+1)
(iv) St = Fi(1+i)+ F(2) + F3(1 -1)

This finishes the proof of Lemma 3.

By Lemma 2. and 3, Fj(2+1) € G for j = 0,1,2,3. It has therefore
been shown that Fj(a) € G* for all @ with norm < 8.

We now finish the proof of Theorem 3. by induction on the norm of
a. We denote the norm of a by N (a).

If the Theorem is false, there is some a in G with smallest norm,
for which Fj(a) is not in G for some j = 0,1,2 or 3. Clearly one may
assume a to be a prime element of G. Let a = (a + b2). There is no loss
in generality if one assumes that @ > 1 and b > 0 since either a or one of
its associates will have this property.
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Since N'(a) > 8, a is not equal to (1+7). Therefore (a41) and (a 1)
are all composite elements of G. In addition, N'(a + 1) and N(a + 1) are
both strictly less than 2A(a). Therefore

(19) Fi(ax1)€ G and Fj(a+i)€ G, for)=0,1,2,3.

While (a — 1 —2) need not be composite, for all @ under consideration the
norm of (a — 1 — 2) is strictly less than the norm of a. Therefore

(20) Fi(a-1-3)e G, forj=0,1,2,3.

Since §}' = Fy(a) + Fi(a + i) + Fy(a + 1) + F3(a — 1), by (19) and
the fact that S}* € G, it follows that Fy(a) € G.

When considering Fj(a) we distringuish two cases.
Case 1: a > 1. Then N(a — 2) < N(a) and therefore F3(a — 2) € G.
Since S}, = Fy(a—1)+ Fi(a) + Fy(a —1—1) + F3(a —2) it follows from
(16), (19) and (20) that Fi(a) € G.
Case 2: a = 1. Then b must be greater than 3. Therefore N(a + 1 —1)
as well as N(a — 2i) are strictly less than M(a) and Fy(a + 1 — 1) as well
as F3(a — 2i) are elements of G. Since S}*, is in G we conclude that also
in this case Fj(a) € G.

To show that F,(a) € G, we consider separately the case b > (a + 1)
and the case b < (a — 1), which is sufficient since a # b because a is a
prime.
Case 1: b > (a+ 1). The fact that S;l‘» € G, together with (19) and
(20) implies that F>(«a) € G if and only if F3(a+1—1) € G.
Ifb>(a+1)then N(a+1—-i) < N(a)and F3(a+1-1) € G.
If b=a+ 1 then N(a+1—1)= N(a). But since N'(a) > 8, b is strictly
greater than 2 and therefore (o +1—2z), (o —2:) and (a+1— 31) all have
norm less than N(a). From S_},_,; € G it follows that F3(a+1—1) € G.
Case 2: b < (a—1). The argument is similar. Considering S}*, we see
that Fy(a) € G if and only if Fi(a — 14 7) € G which is true when
b<(a—-1). When b = (a — 1), a is strictly greater than 2 and therefore
N(a —2), N(a —3 +1) and N(a — 2 + i) are all less than AM(a). By
(S+1,.; € G] it then follows that Fj(a — 1+ 1) is an element of G.

In both cases it follows that Fy(a) € G.

Remains to show that F3(a) € G.
Case 1: b > 2. We conclude from [S;*, € G], (19) and (20) that F3(a) €
G because N(a — 2i) < N(a).
Case 2: b< 2 e.g. b=0or 1. Since a > 3, it follows that A'(a —2) and
N(a — 1+ 1) both are less than A(a). We conclude from [S !, € G| and

(19) that Fi(a) € G.
This finishes the proof of Theorem 3.
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An extension of the results of Theorem 1. to more than four func-
tions seems difficult to prove, just as it is in the case considered in [1].
At the same time, the complete additivity of the functions F; thwarts the
attempts to construct a counter example and leaves one with the strong
impression that a similar Theorem holds for an arbitrary number of func-
tions.
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