On anti-invariant submanifolds in Sasakian manifolds with vanishing contact Bochner curvature tensor

By HIROSHI ENDO (Ichikawa, Japan)

In a Sasakian manifold, MATSUMOTO and CHUMAN [4] defined a contact Bochner curvature tensor, which is constructed from the Bochner curvature tensor by the fibering of BOOTHBY and WANG [1] (see also YANO [6]). HASEGAWA and NAKANE [2] and IKAWA and KON [3] have studied a Sasakian manifold with vanishing contact Bochner curvature tensor. YANO [6], [7] studied it in the theory of submanifolds. In this paper we shall give a sufficient condition for an anti-invariant submanifold in a Sasakian manifold with vanishing contact Bochner curvature tensor to be totally geodesic.

1. Preliminaries

Let \overline{M}^{2r+1} be a (2r+1)-dimensional contact metric manifold with the structure $(\overline{\phi}, \overline{\xi}, \overline{\eta}, \overline{g})$, where $\overline{\phi}$ is a linear mapping $T\overline{M} \to T\overline{M}$ $(T\overline{M})$ is the tangent bundle over \overline{M}^{2r+1}), $\overline{\xi}$ is a vector field, $\overline{\eta}$ a 1-form, and \overline{g} a Riemannian metric on \overline{M}^{2r+1} , such that

$$\overline{\phi}\,\overline{\xi}=0,\quad \overline{\eta}(\overline{\xi})=1,\quad \overline{\phi}^2=-I+\overline{\eta}\otimes\overline{\xi},\quad \overline{\eta}(\overline{X})=\overline{g}(\overline{\xi},\overline{X})$$

$$\overline{g}(\overline{\phi}\,\overline{X},\overline{\phi}\,\overline{Y}) = \overline{g}(\overline{X},\overline{Y}) - \overline{\eta}(\overline{X})\overline{\eta}(\overline{Y}), \quad \overline{g}(\overline{X},\overline{\phi}\,\overline{Y}) = d\,\overline{\eta}(\overline{X},\overline{Y})$$

for any vector fields \overline{X} and \overline{Y} on \overline{M}^{2r+1} . If a contact metric manifold \overline{M}^{2r+1} is normal (i.e., $\overline{N}+d\,\overline{\eta}\otimes\overline{\xi}=0$, where \overline{N} denotes the Nijenhuis tensor formed with $\overline{\phi}$), \overline{M}^{2r+1} is called a Sasakian manifold. It is well–known that in a Sasakian manifold $\overline{\xi}$ is a Killing vector field.

The contact Bochner curvature tensor \overline{B} of a Sasakian manifold \overline{M}^{2r+1} is given by

$$\overline{B}(\overline{X}, \overline{Y}) = \overline{R}(\overline{X}, \overline{Y}) + \frac{1}{m+4} (\overline{Q} \, \overline{Y} \wedge \overline{X} - \overline{Q} \, \overline{X} \wedge \overline{Y})$$

$$+ \overline{Q} \, \overline{\phi} \, \overline{Y} \wedge \overline{\phi} \, \overline{X} - \overline{Q} \, \overline{\phi} \, \overline{X} \wedge \overline{\phi} \, \overline{Y} + 2 \overline{g} (\overline{Q} \, \overline{\phi} \, \overline{X}, \overline{Y}) \overline{\phi}$$

$$+ 2 \overline{g} (\overline{\phi} \, \overline{X}, \overline{Y}) \overline{Q} \, \overline{\phi} + \overline{\eta} (\overline{Y}) \overline{Q} \, \overline{X} \wedge \overline{\xi} + \overline{\eta} (\overline{X}) \overline{\xi} \wedge \overline{Q} \, \overline{Y})$$

$$- \frac{k+m}{m+4} (\overline{\phi} \, \overline{Y} \wedge \overline{\phi} \, \overline{X} + 2 \overline{g} (\overline{\phi} \, \overline{X}, \overline{Y}) \overline{\phi}) - \frac{k-4}{m+4} \overline{Y} \wedge \overline{X}$$

$$+ \frac{k}{m+4} (\overline{\eta} (\overline{Y}) \overline{\xi} \wedge \overline{X} + \overline{\eta} (\overline{X}) \overline{Y} \wedge \overline{\xi}),$$

where \overline{R} is the Riemannian curvature tensor of \overline{M}^{2r+1} , \overline{Q} is the Ricci operator of \overline{M}^{2r+1} , $k=(\overline{S}+m)/(m+2)$ (m=2r, and \overline{S} is the scalar curvature tensor of \overline{M}^{2r+1}), and $(\overline{X}\wedge \overline{Y})\overline{Z}=\overline{g}(\overline{Y},\overline{Z})\overline{X}-\overline{g}(\overline{X},\overline{Z})\overline{Y}$ (see [4]).

Let M^n be an n-dimensional submanifold of \overline{M}^{2r+1} . By N_A (A= $1, 2, \ldots, 2r+1-n$) we denote local mutually orthogonal unit vector fields normal to M^n . Let $\overline{\nabla}$ (resp. ∇) be the Riemannian connection on \overline{M}^{2r+1} (resp. M^n) determined by the metric \overline{g} (resp. the induced metric g). Then the Gauss and Weingarten formulas are given by

$$\overline{\nabla}_X Y = \nabla_X Y + \sum_A h_A(X, Y) N_A, \ \overline{\nabla}_X N_A = -H_A X + \sum_B L_{BA}(X) N_B,$$

where h_A and H_A are the second fundamental forms and L_{BA} the third fundamental forms of M^n . h_A and H_A satisfy $h_A(X,Y) = g(H_AX,Y) =$ $g(X, H_A Y) = h_A(Y, X)$. For any vector field X, Y, Z and W on M^n the Gauss equation is given by

$$\overline{g}(\overline{R}(X,Y)Z,W) = g(R(X,Y)Z,W)$$

$$-\sum_{B} g(H_{B}Y,Z)g(H_{B}X,W) + \sum_{B} g(H_{B}X,Z)g(H_{B}Y,W),$$
(1.2)

where R is the Riemannian curvature tensor of M^n . $M^n \text{ immersed in } \overline{M}^{2r+1} \text{ is said to be anti-invariant in } \overline{M}^{2r+1} \text{ if } \overline{\phi} T_x(M^n) \subset T_x(M^n)^{\perp} \text{ for each } x \in M^n, \text{ where } T_x(M^n) \text{ denotes the tan-}$ gent space of M^n at x and $T_x(M^n)^{\perp}$ denotes the normal space of M^n at x. Then we see that $\overline{\phi}$ is of rank 2r, $n \leq r + 1$.

Define $\overline{s}^* = \sum_{i,j=0}^{2r} \overline{g}(\overline{R}(\overline{E}_i, \overline{E}_j) \overline{\phi} \overline{E}_j, \overline{\phi} \overline{E}_i)$ on \overline{M}^{2r+1} , where $\{\overline{E}_i\}$ is an orthonormal basis. We need, in the sequel, the following two lemmas

Lemma 1.1. (e.g., [8]) If \overline{M}^{2r+1} is a Sasakian manifold, we have

$$(1) \overline{g}(\overline{Q}\,\overline{X},\overline{\xi}) = 2r\overline{\eta}(\overline{X})$$

$$(2) \overline{g}(\overline{Q}\,\overline{\phi}\,\overline{X},\overline{\phi}\,\overline{Y}) = \overline{g}(\overline{Q}\,\overline{X},\overline{Y}) - 2r\overline{\eta}(\overline{X})\overline{\eta}(\overline{Y})$$

Lemma 1.2. ([5]) For any (2r+1)-dimensional Sasakian manifold \overline{M}^{2r+1} , we have

$$\overline{s}^{\star} - \overline{S} + 4r^2 = 0.$$

2. Some Lemmas

Lemma 2.1. Let \overline{M}^{2r+1} be a Sasakian manifold with vanishing contact Bochner curvature tensor. If M^n (resp. M^{n+1}) is an anti-invariant submanifold of \overline{M}^{2r+1} normal to the structure vector field $\overline{\xi}$ (resp. tangent to the structure vector field $\overline{\xi}$), then we have

$$(r+2)\overline{s}^{\star} = (r+2)\overline{S} - n\sum_{i=1}^{n} \overline{g}(\overline{Q}\tilde{e}_{i}, \tilde{e}_{i}) - 4r^{2}(r+2),$$

where $\{\tilde{e}_i\}$ is an orthonormal basis of $T_x(M^n)$ (resp. $\{\tilde{e}_i\}$ is an orthonormal basis of $T_x(M^{n+1})$, that is orthogonal to $\bar{\xi}$).

PROOF. Since the contact Bochner curvature tensor of \overline{M}^{2r+1} vanishes, we have

$$\overline{g}(\overline{R}(\overline{X},\overline{Y})\overline{Z},\overline{W}) = -\frac{1}{m+4}(\overline{g}(\overline{X},\overline{Z})\overline{g}(\overline{Q}\,\overline{Y},\overline{W})$$

$$-\overline{g}(\overline{Q}\,\overline{Y},\overline{Z})\overline{g}(\overline{X},\overline{W}) - \overline{g}(\overline{Y},\overline{Z})\overline{g}(\overline{Q}\,\overline{X},\overline{W})$$

$$+\overline{g}(\overline{Q}\,\overline{X},\overline{Z})\overline{g}(\overline{Y},\overline{W}) + \overline{g}(\overline{\phi}\,\overline{X},\overline{Z})\overline{g}(\overline{Q}\,\overline{\phi}\,\overline{Y},\overline{W})$$

$$-\overline{g}(\overline{Q}\,\overline{\phi}\,\overline{Y},\overline{Z})\overline{g}(\overline{\phi}\,\overline{X},\overline{W}) - \overline{g}(\overline{\phi}\,\overline{Y},\overline{Z})\overline{g}(\overline{Q}\,\overline{\phi}\,\overline{X},\overline{W})$$

$$+g(\overline{Q}\,\overline{\phi}\,\overline{X},\overline{Z})\overline{g}(\overline{\phi}\,\overline{Y},\overline{W}) + 2\overline{g}(\overline{Q}\,\overline{\phi}\,\overline{X},\overline{Y})\overline{g}(\overline{\phi}\,\overline{Z},\overline{W})$$

$$+2\overline{g}(\overline{\phi}\,\overline{X},\overline{Y})\overline{g}(\overline{Q}\,\overline{\phi}\,\overline{Z},\overline{W}) + \overline{\eta}(\overline{Y})(\overline{g}(\overline{\xi},\overline{Z})\overline{g}(\overline{Q}\,\overline{X},\overline{W})$$

$$-\overline{g}(\overline{Q}\,\overline{X},\overline{Z})\overline{g}(\overline{\xi},\overline{W})) + \overline{\eta}(\overline{X})(\overline{g}(\overline{Q}\,\overline{Y},\overline{Z})\overline{g}(\overline{\xi},\overline{W})$$

$$-\overline{g}(\overline{\xi},\overline{Z})\overline{g}(\overline{Q}\,\overline{Y},\overline{W}))) + \frac{k+m}{m+4}(\overline{g}(\overline{\phi}\,\overline{X},\overline{Z})\overline{g}(\overline{\phi}\,\overline{Y},\overline{W}))$$

$$-\overline{g}(\overline{\phi}\,\overline{Y},\overline{Z})\overline{g}(\overline{\phi}\,\overline{X},\overline{W}) + 2\overline{g}(\overline{\phi}\,\overline{X},\overline{Y})\overline{g}(\overline{\phi}\,\overline{Z},\overline{W})))$$

$$+\frac{k-4}{m+4}(\overline{g}(\overline{X},\overline{Z})\overline{g}(\overline{Y},\overline{W}) - \overline{g}(\overline{Y},\overline{Z})\overline{g}(\overline{X},\overline{W}))$$

$$-\frac{k}{m+4}(\overline{\eta}(\overline{Y})(\overline{g}(\overline{X},\overline{Z})\overline{g}(\overline{\xi},\overline{W})-\overline{g}(\overline{\xi},\overline{Z})\overline{g}(\overline{X},\overline{W}))$$
$$+\overline{\eta}(\overline{X})(\overline{g}(\overline{\xi},\overline{Z})\overline{g}(\overline{Y},\overline{W})-\overline{g}(\overline{Y},\overline{Z})\overline{g}(\overline{\xi},\overline{W}))).$$

If we take a $\overline{\phi}$ -basis $(\tilde{e}_1, \tilde{e}_2, \dots, \tilde{e}_n, \overline{\xi}, \overline{e}_{n+1}, \overline{e}_{n+2}, \dots, \overline{e}_r, \overline{\phi}\tilde{e}_1, \overline{\phi}\tilde{e}_2, \dots, \overline{\phi}\tilde{e}_n, \overline{\phi}\overline{e}_{n+1}, \dots, \overline{\phi}\overline{e}_r)$; \overline{s}^* is expressed by the following form

$$\overline{s}^{\star} = \sum_{i,j=1}^{n} \overline{g}(\overline{R}(\tilde{e}_{i}, \tilde{e}_{j})\overline{\phi}\tilde{e}_{j}, \overline{\phi}\tilde{e}_{i}) + \sum_{i=1}^{n} \sum_{j=n+1}^{r} \overline{g}(\overline{R}(\tilde{e}_{i}, \overline{e}_{j})\overline{\phi}\overline{e}_{j}, \overline{\phi}\tilde{e}_{i}) \\
+ \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{g}(\overline{R}(\tilde{e}_{i}, \overline{\phi}\tilde{e}_{j})\overline{\phi}^{2}\tilde{e}_{j}, \overline{\phi}\tilde{e}_{i}) \\
+ \sum_{i=n+1}^{n} \sum_{j=n+1}^{r} \overline{g}(\overline{R}(\tilde{e}_{i}, \overline{\phi}\tilde{e}_{j})\overline{\phi}^{2}\overline{e}_{j}, \overline{\phi}\tilde{e}_{i}) \\
+ \sum_{i=n+1}^{r} \sum_{j=n+1}^{n} \overline{g}(\overline{R}(\overline{e}_{i}, \overline{e}_{j})\overline{\phi}\tilde{e}_{j}, \overline{\phi}\tilde{e}_{i}) \\
+ \sum_{i=n+1}^{r} \sum_{j=n+1}^{n} \overline{g}(\overline{R}(\overline{e}_{i}, \overline{\phi}\tilde{e}_{j})\overline{\phi}^{2}\tilde{e}_{j}, \overline{\phi}\tilde{e}_{i}) \\
+ \sum_{i=n+1}^{n} \sum_{j=n+1}^{n} \overline{g}(\overline{R}(\overline{\phi}\tilde{e}_{i}, \overline{\phi}\tilde{e}_{j})\overline{\phi}^{2}\tilde{e}_{j}, \overline{\phi}\tilde{e}_{i}) \\
+ \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{g}(\overline{R}(\overline{\phi}\tilde{e}_{i}, \overline{e}_{j})\overline{\phi}\tilde{e}_{j}, \overline{\phi}^{2}\tilde{e}_{i}) \\
+ \sum_{i=1}^{n} \sum_{j=n+1}^{n} \overline{g}(\overline{R}(\overline{\phi}\tilde{e}_{i}, \overline{\phi}\tilde{e}_{j})\overline{\phi}^{2}\tilde{e}_{j}, \overline{\phi}^{2}\tilde{e}_{i})$$

$$\begin{split} &+\sum_{i=n+1}^{r}\sum_{j=n+1}^{r}\overline{g}(\overline{R}(\overline{\phi}\overline{e}_{i},\overline{e}_{j})\overline{\phi}\overline{e}_{j},\overline{\phi}^{2}\overline{e}_{i})\\ &+\sum_{i=n+1}^{r}\sum_{j=1}^{n}\overline{g}(\overline{R}(\overline{\phi}\overline{e}_{i},\overline{\phi}\tilde{e}_{j})\overline{\phi}^{2}\tilde{e}_{j},\overline{\phi}^{2}\overline{e}_{i})\\ &+\sum_{i=n+1}^{r}\sum_{j=n+1}^{r}\overline{g}(\overline{R}(\overline{\phi}\overline{e}_{i},\overline{\phi}\overline{e}_{j})\overline{\phi}^{2}\overline{e}_{j},\overline{\phi}^{2}\overline{e}_{i}). \end{split}$$

Thus, using (2.1) in the right hand members of (2.2), we get after some lengthy computation

(2.3)
$$\overline{s}^{\star} = \frac{4r - n + 4}{r + 2} \sum_{i=1}^{n} \overline{g}(\overline{Q}\widetilde{e}_{i}, \widetilde{e}_{i}) + \frac{4r + 4}{r + 2} \sum_{j=n+1}^{r} \overline{g}(\overline{Q}\overline{e}_{j}, \overline{e}_{j}) \\
- \frac{k + m}{r + 2} \cdot r(2r + 1) - \frac{k - 4}{r + 2}r.$$

On the other hand, by Lemma 1.1, we have

(2.4)
$$\sum_{j=n+1}^{r} \overline{g}(\overline{Q}\overline{e}_{j}, \overline{e}_{j}) = \frac{1}{2}\overline{S} - \sum_{i=1}^{n} \overline{g}(\overline{Q}\widetilde{e}_{i}, \widetilde{e}_{i}) - r.$$

Substituting (2.4) into (2.3), we get our result.

Lemma 2.2. Let \overline{M}^{2r+1} be a Sasakian manifold with vanishing contact Bochner curvature tensor. If M^n is an anti-invariant submanifold normal to the structure vector field $\overline{\xi}$ of \overline{M}^{2r+1} , then we have

$$\begin{split} 4(r+1)(n-1) \sum_{i=1}^{n} \overline{g}(\overline{Q}\tilde{e}_{i},\tilde{e}_{i}) &= 4(r+1)(r+2)S - 4(r+1)(r+2) \sum_{B} (TrH_{B})^{2} \\ &+ 4(r+1)(r+2) \sum_{B} TrH_{B}^{2} - n(n-1)(6r+8) + n(n-1)\overline{S}, \end{split}$$

where S is the scalar curvature tensor of M^n .

PROOF. Taking a ϕ -basis, we find

$$\sum_{i=1}^{n} \overline{g}(\overline{Q}\tilde{e}_{i}, \tilde{e}_{i}) = \sum_{i,j=1}^{n} \overline{g}(\overline{R}(\tilde{e}_{j}, \tilde{e}_{i})\tilde{e}_{i}, \tilde{e}_{j}) + \sum_{i=1}^{n} \overline{g}(\overline{R}(\overline{\xi}, \tilde{e}_{i})\tilde{e}_{i}, \overline{\xi})$$

$$+ \sum_{i=1}^{n} \sum_{j=n+1}^{r} \overline{g}(\overline{R}(\overline{e}_{j}, \tilde{e}_{i})\tilde{e}_{i}, \overline{e}_{j}) + \sum_{i=1}^{n} \sum_{j=1}^{n} \overline{g}(\overline{R}(\overline{\phi}\tilde{e}_{j}, \tilde{e}_{i})\tilde{e}_{i}, \overline{\phi}\tilde{e}_{j})$$

$$+ \sum_{i=1}^{n} \sum_{j=n+1}^{r} \overline{g}(\overline{R}(\overline{\phi}\overline{e}_{j}, \tilde{e}_{i})\tilde{e}_{i}, \overline{\phi}\overline{e}_{j}).$$

Here, by (1.2) we have

$$\sum_{i,j=1}^{n} \overline{g}(\overline{R}(\tilde{e}_{j},\tilde{e}_{i})\tilde{e}_{i},\tilde{e}_{j}) = S - \sum_{B} (TrH_{B})^{2} + \sum_{B} TrH_{B}^{2}.$$

Moreover, using (2.1) in any other members on the right hand side of (2.5), we get

$$(2.6) \frac{1}{r+2} \sum_{i=1}^{n} \overline{g}(\overline{Q}\tilde{e}_{i}, \tilde{e}_{i}) + \frac{n}{r+2} \sum_{j=n+1}^{r} \overline{g}(\overline{Q}\overline{e}_{j}, \overline{e}_{j}) + S - \sum_{B} (TrH_{B})^{2} + \sum_{B} TrH_{B}^{2} - \frac{n}{2r+4} (4(n-r-1) + k(2r-n+3)) = 0.$$

Substituting (2.4) into (2.6), we obtain our result.

Lemma 2.3. Let \overline{M}^{2r+1} be a Sasakian manifold with vanishing contact Bochner curvature tensor. If M^{n+1} is an anti-invariant submanifold tangent to the structure vector field $\overline{\xi}$ of \overline{M}^{2r+1} , then we have

$$\begin{split} &4(r+1)(n-1)\sum_{i=1}^n\overline{g}(\overline{Q}\tilde{e}_i,\tilde{e}_i)=4(r+1)(r+2)S\\ &-4(r+1)(r+2)\sum_{B}(TrH_B)^2+4(r+1)(r+2)\sum_{B}TrH_B{}^2+n(n-1)\overline{S}\\ &-2n(4r^2+3(3+n)r+4n+4). \end{split}$$

PROOF. Taking a $\overline{\phi}$ -basis, we have (2.5). Here, by (1.2), we get

$$\begin{split} \sum_{i,j=1}^{n} \overline{g}(\overline{R}(\tilde{e}_{j},\tilde{e}_{i})\tilde{e}_{i},\tilde{e}_{j}) = & S - \sum_{B} (TrH_{B})^{2} + \sum_{B} TrH_{B}^{2} \\ & - 2\sum_{i=1}^{n} \overline{g}(\overline{R}(\overline{\xi},\tilde{e}_{i})\tilde{e}_{i},\overline{\xi}). \end{split}$$

From (2.1) and Lemma 1.1, we find

$$\sum_{i=1}^{n} \overline{g}(\overline{R}(\overline{\xi}, \tilde{e}_i)\tilde{e}_i, \overline{\xi}) = \frac{2n(r+2)}{m+4} .$$

Thus, we have

$$\sum_{i,j=1}^{n} \overline{g}(\overline{R}(\tilde{e}_{j},\tilde{e}_{i})\tilde{e}_{i},\tilde{e}_{j}) = S - \sum_{B} (TrH_{B})^{2} + \sum_{B} TrH_{B}^{2} - \frac{4n(r+2)}{m+4}.$$

Moreover, using (2.1) in any other members on the right hand side of (2.5), we find

(2.7)
$$\frac{1}{r+2} \sum_{i=1}^{n} \overline{g}(\overline{Q}\tilde{e}_{i}, \tilde{e}_{i}) + \frac{n}{r+2} \sum_{j=n+1}^{r} \overline{g}(\overline{Q}\overline{e}_{j}, \overline{e}_{j}) + S - \sum_{B} (TrH_{B})^{2} + \sum_{B} TrH_{B}^{2} - \frac{n}{2r+4} (4(n+1) + k(2r-n+3)) = 0.$$

Substituting (2.4) into (2.7), we obtain our result.

3. The results

Proposition 3.1. Let M^{2r+1} be a Sasakian manifold with vanishing contact Bochner curvature tensor. If M^n is an anti-invariant submanifold normal to the structure vector field $\overline{\xi}$ of \overline{M}^{2r+1} , then we have

(3.1)
$$4n(r+1)(r+2)\left(S + \sum_{B} Tr H_{B}^{2} - \sum_{B} (Tr H_{B})^{2}\right) = n^{2}(n-1)(6r+8-\overline{S}).$$

PROOF. By Lemma 1.2, Lemma 2.1 and Lemma 2.2, we have our result.

From (3.1) we get the following.

Proposition 3.2. Let M^n be a minimal anti-invariant submanifold normal to the structure vector field $\overline{\xi}$ of a Sasakian manifold \overline{M}^{2r+1} with vanishing contact Bochner curvature tensor. If the scalar curvature S of M^n satisfies $S \geq 0$, then the scalar curvature \overline{S} of \overline{M}^{2r+1} satisfies $\overline{S} \leq 2(3r+4)$.

Theorem 3.1. Let M^n be a minimal anti-invariant submanifold normal to the structure vector field $\overline{\xi}$ of a Sasakian manifold \overline{M}^{2r+1} with vanishing contact Bochner curvature tensor. If the scalar curvature \overline{S} of \overline{M}^{2r+1} satisfies $\overline{S} \geq 2(3r+4)$ and the scalar curvature S of S of then S of the matrix is totally geodesic, and S is a scalar curvature S of S of the matrix is totally geodesic, and S is a scalar curvature S of S of the matrix is totally geodesic, and S is a scalar curvature S of S of

PROOF. By our assumption, the left hand side of (3.1) is non-negative and the right hand side non-positive. This completes the proof of the theorem.

Proposition 3.3. Let \overline{M}^{2r+1} be a Sasakian manifold with vanishing contact Bochner curvature tensor. If M^{n+1} is an anti-invariant submanifold tangent to the structure vector field $\overline{\xi}$ of \overline{M}^{2r+1} , then we have

$$4(r+1)(r+2)n\sum_{B}TrH_{B}^{2}+4(r+1)(r+2)nS$$

$$=4(r+1)(r+2)n\sum_{B}(TrH_{B})^{2}$$

$$+(n-1)(4r(r+1)-n^{2})(\overline{S}-(8+6r))$$

$$+8(r+1)(r+2)(n^{2}+r(2r+1)(n-1)).$$

PROOF. By Lemma 1.2, Lemma 2.1 and Lemma 2.3, we get our result.

Theorem 3.2. Let M^{n+1} be a minimal anti-invariant submanifold tangent to the structure vector field $\overline{\xi}$ of a Sasakian manifold \overline{M}^{2r+1} with vanishing contact Bochner curvature tensor. If the scalar curvature \overline{S} of \overline{M}^{2r+1} satisfies $\overline{S} \leq 2(3r+4)$ and the scalar curvature S of M^{n+1} satisfies $S \geq \frac{2(n^2+r(2r+1)(n-1))}{n}$, then M^{n+1} is totally geodesic, and $S = \frac{2(n^2+r(2r+1)(n-1))}{n}$, $\overline{S} = 2(3r+4)$.

PROOF. From (3.2), we have the following relation

(3.3)
$$4n(r+1)(r+2) \left(\sum_{B} Tr H_{B}^{2} + S - \frac{2(n^{2} + r(2r+1)(n-1))}{n} - \sum_{B} (Tr H_{B})^{2} \right) = (n-1)(4r(r+1) - n^{2})(\overline{S} - (8+6r)).$$

This completes the proof of the Theorem.

From (3.3) we have the following

Proposition 3.4. Let M^{n+1} be a minimal anti-invariant submanifold tangent to the structure vector field $\overline{\xi}$ of a Sasakian manifold \overline{M}^{2r+1} with vanishing contact Bochner curvature tensor. If the scalar curvature S of M^{n+1} satisfies $S \geq \frac{2(n^2+r(2r+1)(n-1))}{n}$, then the scalar curvature \overline{S} of \overline{M}^{2r+1} satisfies $\overline{S} \geq 2(3r+4)$.

References

 W. M. BOOTHBY and H. C. WANG, On contact manifolds, Ann. of Math. 68 (1958), 721-734.

- [2] I. HASEGAWA and T. NAKANE, On Sasakian manifolds with vanishing contact Bochner curvature tensor 11, Hokkaido Math. J. 11 (1982), 44-51.
- [3] T. IKAWA and M. KON, Sasakian manifolds with vanishing contact Bochner curvature tensor and constant scalar curvature, Coll. Math. 37 (1977), 113-122.
- [4] M. MATSUMOTO and G. CHUMAN, On the C-Bochner tensor, TRU Math. 5 (1969), 21-30.
- [5] Z. OLSZAK, On contact metric manifolds, Tôhoku Math. J. 31 (1979), 247-253.
- [6] K. YANO, Anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor, J. Diff. Geom. 12 (1977), 153-170.
- [7] K. YANO, Differential geometry of anti-invariant submanifolds of a Sasakian manifold, Bollettino della Unione Matematica Italiana 12 (1975), 279-296.
- [8] K. YANO and M. KON, Structures on manifolds, World Scientific Publishing 1984.

HIROSHI ENDO KOHNODAI SENIOR HIGH SCHOOL 2-4-1, KOHNODAI, ICHIKAWA-SHI CHIBA-KEN, 272 JAPAN

(Received July 7, 1988)