Linear extensions of partial orders preserving antimonotonicity

By ZSOLT LENGVÁRSZKY * (Pécs)

1. Introduction

A classic theorem due to E. SZPILRAJN (see [2]) asserts that any partial order has a linear extension. As a generalization of this result J. SZIGETI and B. NAGY proved in [1]

Theorem A. Let (P; p) be a partially ordered set and $f: P \to P$ a p-monotone function (i.e. $(a, b) \in p \Longrightarrow (f(a), f(b)) \in p$). Then p can be extended to a linear order r such that f is r-monotone if and only if f is acyclic (i.e. for no $a \in P$ we have $f^n(a) = a$ with $n \in N$, n > 1 where $f^1 = f$ and $f^{n+1} = f(f^n)$).

The aim of this paper is to study some related problems. First we separate the sets where f maps from and to: let (P;p) and (Q;q) be partially ordered sets, $f:P\to Q$ a p-q-monotone function (i.e. $(a,b)\in p\Longrightarrow (f(a),f(b))\in q$). When can p and q be extended to linear orders r and s, respectively, such that f is r-s-monotone? The answer is 'always' (Theorem 1) and in fact the proof based on Theorem A is quite easy.

It is more interesting when we are given two functions: $f: P \to Q$ is p-q-monotone and $q: Q \to P$ is q-p-monotone. By Theorem A, $g \circ f$ and $f \circ g$ must be acyclic if there exist linear extensions r of p and s of q such that f is r-s-monotone and g is s-r-monotone. It turns out that this trivial necessary condition is also sufficient (Theorem 2). Interestingly, this result contains Theorem A: choose P = Q, p = q and $g = \mathrm{id}_p$ and Theorem 1 too: choose g to be any constant function.

In Theorem 3 we change the monotone function of Theorem A for an antimonotone one (i.e. $(a, b) \in p \Longrightarrow (f(b), f(a)) \in p$). We soon notice: if

^{*}The author's work was partially supported by Hungarian National Foundation for Scientific Research Grant No. 1813.

p can be extended to a linear order such that f is r-antimonotone then f^2 must be acyclic, moreover, f can have at most 1 fixed point. As another application of Theorem 2, we show that these conditions together are also sufficient.

Finally, in section 4 we propose a generalization of the problems in-

vestigated in this paper.

2. Two basic lemmas

We will often use the following two lemmas. For a relation r we denote the smallest transitive relation containing r, i.e. the transitive closure of r by \bar{r} .

Lemma B. (cf. J. SZIGETI and B. NAGY [1]). Let P and Q be two sets with relations $p \subseteq P \times P$, $q \subseteq Q \times Q$ and let $f: P \to Q$ be a function. If for all $(a,b) \in p$ we have $(f(a),f(b)) \in q$ then for all $(a,b) \in \bar{p}$ we have $(f(a),f(b)) \in \bar{q}$.

The next lemma was proved — in a somewhat different form — by W. T. TROTTER Jr. and J. I. MOORE Jr. in [3].

Lemma C. Let P be a set with a relation $r \supseteq \{(a, a) | a \in P\}$. Then \bar{r} is a partial order if and only if $r \setminus \{(a, a) | a \in P\}$ contains no cycle, i.e. a set of the form $\{(a_1, a_2), \ldots, (a_{k-1}, a_k), (a_k, a_1)\}$.

3. Results

Theorem 1. Let (P; p) and (Q; q) be partially ordered sets and let $f: P \to Q$ be a p-q-monotone function. Then there are linear extensions r and s of p and q, respectively, such that f is r-s-monotone.

PROOF. Without loss of generality we may suppose $P \cap Q = \emptyset$. Let $T = P \cup Q$, $t = p \cup q$ and define $g : T \to T$ by g(x) = f(x) if $x \in P$, g(x) = x if $x \in Q$.

It is sraightforward to check that (T;t) is a partially ordered set and g is an acyclic t-monotone function. Then, by Theorem A, t can be extended to a linear order t' so that g be t'-monotone. Clearly, $r = P^2 \cap t'$ and $s = Q^2 \cap t'$ will work.

Theorem 2. Let (P;p) and (Q;q) be partially ordered sets and suppose that $f:P\to Q$ is a p-q-monotone function and $g:Q\to P$ is a q-p-monotone function. Then there exist linear extensions r of p and s of q such that f is r-s-monotone and g is s-r-monotone if and only if $g\circ f$ and $f\circ g$ are acyclic.

Remark. Since $g \circ f$ and $f \circ g$ are acyclic at the same time it would be enough to suppose that $g \circ f$ is acyclic.

PROOF of Theorem 2. Necessity is trivial; we only have to prove suffi-

ciency.

Let E denote the set of pairs (p',q') such that $p \subseteq p' \subseteq P^2$ and $q \subseteq q' \subseteq Q^2$ are partial orders; f is p'-q'-monotone and g is q'-p'-monotone. With $(p',q') \le (p'',q'')$ iff $p' \subseteq p''$ and $q' \subseteq q''$, E is a partially ordered set. If

 $C = \{(p_i, q_i) \mid i \in I\} \subseteq E$

is a chain then

$$\left(\bigcup_{i\in I}p_i,\bigcup_{i\in I}q_i\right)\in E$$

is an upper bound for C. Thus we can apply Zorn's lemma: E has a maximal element, say (r,s), and it is enough to show that r and s are linear orders. Suppose r or s is not linear.

Case 1. For some $a, b \in P$, we have $(a, b) \notin r$, $(b, a) \notin r$ but $(f(a), f(b)) \in s$. Then for

$$r' = r \cup \{(a', b') \in P \mid (a', a), (b, b') \in r\} \supset r$$

we have $(r', s) \in E$, a contradiction.

Case 2. For any $a, b \in P$ with $(a, b) \notin r$ and $(b, a) \notin r$ we have $(f(a), f(b)) \notin s$ and for any $c, d \in Q$ with $(c, d) \notin s$ and $(d, c) \notin s$ we have $(g(c), g(d)) \notin r$.

Let $a, b \in P$ be incomparable elements and define a_i, b_i, c_i, d_i (i = 1, 2, ...) by

$$a_1 = a, b_1 = b,$$

 $c_i = f(a_i), d_i = f(b_i),$
 $a_{i+1} = g(c_i), b_{i+1} = g(d_i).$

Let
$$r_1 = r \cup \{(a_i, b_i) \mid i = 1, 2, ...\}, r_2 = r \cup \{(b_i, a_i) \mid i = 1, 2, ...\},$$

 $s_1 = s \cup \{(c_i, d_i) \mid i = 1, 2, ...\}, s_2 = s \cup \{(d_i, c_i) \mid i = 1, 2, ...\}.$

Since $g \circ f$ and $f \circ g$ are acyclic the transitive closure of r_1 or r_2 and the transitive closure of s_1 or s_2 are partial orders. More is true: if \bar{r}_i is a partial order then \bar{s}_i is a partial order too (i = 1, 2). Suppose e.g., that \bar{r}_1 is a partial order but \bar{s}_1 is not. Then for some sequence of indices j_1, \ldots, j_k we must have

$$(d_{j_1}, c_{j_2}), \ldots, (d_{j_{k-1}}, c_{j_k}), (d_{j_k}, c_{j_1}) \in s$$

according to Lemma C. Since g is monotone, it follows

$$(b_{i_1}, a_{i_2}), \ldots, (b_{i_{k-1}}, a_{i_k}), (b_{i_k}, a_{i_1}) \in r,$$

where we put $i_t = j_t + 1$ for the sake of simple notation. But then r_1 also contains a cycle, contradicting our assumption that \bar{r}_1 is a partial order. By Lemma B, f is $\bar{r}_1 - \bar{s}_1$ —monotone and g is $\bar{s}_1 - \bar{r}_1$ —monotone which means

(r,s) is not maximal in E, a contradiction.

Theorem 2 can be considered as a generalization of Theorem A: simply we have to set P = Q, p = q and $g = \mathrm{id}_p$ in Theorem 2 to obtain the assertion of Theorem A. Theorem 2 also contains Theorem 1: if we define g to be an arbitrary constant function then $f \circ g$ and $g \circ f$ will be acyclic.

As another application of Theorem 2 we prove

Theorem 3. Let (P;p) be a partially ordered set and let $f:P\to P$ be a p-antimonotone function. Then there exists a linear extension r of p such that f is p-antimonotone if and only if f^2 is acyclic and f has at most 1 fixed point.

PROOF. Necessity is trivial; we have to prove sufficiency.

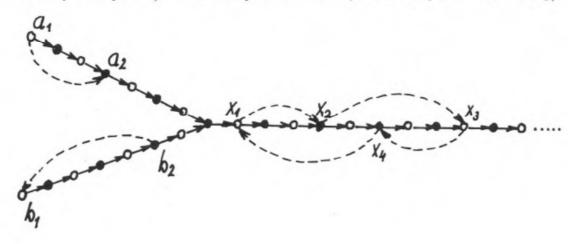
Let E denote the set of partial orders p' on P with the properties $p \leq p'$ and f is p'-antimonotone. With the inclusion relation E is a partially ordered set and if $C \subseteq E$ is a chain then $\bigcup C \in E$ is an upper bound for C. Thus we can apply Zorn's lemma: E has a maximal element, say r. We will show that r is a linear order.

Case 1. f is fixed point free. First we define an equivalence relation σ on P by

$$a\sigma b \iff f^k(a) = f^{\ell}(b) \text{ for some } k, \ell \in \mathbf{N}^0.$$

Let $C = \{C \mid C \text{ is a } \sigma\text{-class}\}$. Any $C \in C$ can be written in the form $C = C_1 \cup C_2$ with $C_1 \cap C_2 = \emptyset$, $f(C_1) = C_2$, $f(C_2) = C_1$.

Observe that if $a_1, b_1 \in C_1$ and $a_2, b_2 \in C_2$ then $(a_1, a_2) \in r$ and $(b_2, b_1) \in r$ simultaneously cannot hold. The diagram describes the case when f is acyclic (\longrightarrow is for f \longrightarrow is for r, \circ is for C_1 and \bullet is for C_2).



Applying f for the relation $a_1 r a_2$ and for $b_2 r b_1$ again and again we obtain $x_1 r x_2$, $x_3 r x_4$ and $x_2 r x_3$, $x_4 r x_1$, respectively. This means r contains a cycle, a contradiction. If f has a cycle of length two, say f(a) = b and f(b) = a for some $a, b \in C$, then in a similar way we get a r b and b r a which is a contradiction again.

Next we note that if $C_2 \times C_1 \cap r = \emptyset$ then $C_1 \times C_2 \leq r$. Indeed, now $C_1 \times C_2 \cup r$ cannot contain a cycle. Then by Lemma C, $\overline{C_1} \times \overline{C_2} \cup r$ is a partial order and by Lemma B, f is $\overline{C_1} \times \overline{C_2} \cup r$ -antimonotone whence by maximality of r we get $C_1 \times C_2 \subseteq r$. Suppose that for any $C \in \mathcal{C}$ in the above union C_1 denotes the lower part of C, i.e. for which $C_1 \times C_2 \subseteq r$.

Let $C, D \in C$, $c \in C_1$, $d \in D_2$. If drc then f(c)rf(d) and we have a cycle drcr f(c)rf(d)rd in r which is a contradiction. Thus $r \cap D_2 \times C_1 = r \cap C_2 \times D_1 = \emptyset$ and then it is easy to see that $r \cup C_1 \times D_2 \cup D_1 \times C_2$ cannot contain a cycle. Again by Lemma C and by Lemma B, it follows that $C_1 \times D_2$, $D_1 \times C_2 \subseteq r$.

Finally let

$$P_{1} = \bigcup_{C \in C} C_{1}, \quad P_{2} = \bigcup_{C \in C} C_{2},$$

$$p_{1} = r \cap C_{1}^{2}, \quad p_{2} = r^{-1} \cap C_{2}^{2},$$

$$f_{1} = f \upharpoonright C_{1}, \quad f_{2} = f \upharpoonright C_{2}.$$

Then $f_1: P_1 \to P_2$ is $p_1 - p_2$ -monotone and $f_2: P_2 \to P_1$ is $p_2 - p_1$ -monotone. In wiew of Theorem 2 there are linear extensions r_1 of p_1 and r_2 of p_2 such that f_1 is $r_1 - r_2$ -monotone and f_2 is $r_2 - r_1$ -monotone. Then $r' = r \cup r_1 \cup r_2^{-1}$ is linear extension of p such that f is r'-antimonotone. In fact, since r was maximal we have r = r'.

Case 2. f has a unique fixed point x.

The proof is very similar to that of case 1. We define an equivalence σ on $P \setminus \{x\}$ by

$$a \sigma b \iff f^k(a) = f^{\ell}(b) \neq x \text{ for some } k, \ell \in \mathbb{N}^0.$$

Let $C = \{C \mid C \text{ is a } \sigma\text{-class }\}$ and let

$$\mathcal{D}' = \{C \mid C \in \mathcal{C} \text{ and } x \notin f(C)\},\$$

$$\mathcal{D}'' = \{C \cup \{x\} \mid C \in \mathcal{C} \text{ and } x \in f(C)\},\$$

$$\mathcal{D} = \dot{\mathcal{D}}' \cup \mathcal{D}''.$$

As in case 1 any $D \in \mathcal{D}$ can be written in the form

$$D = D_1 \cup D_2, \ D_1 \cap D_2 = \emptyset,$$

 $f(D_1) = D_2 \text{ or } D_2 \cup \{x\}, \ f(D_2) = D_1 \text{ or } D_1 \cup \{x\}.$

Again, it is easy to see that for any $C, D \in \mathcal{D}$ we have $C_1 \times D_2 \subseteq r$ where C_1 denotes the lower part of C and D_2 denotes the upper part of D.

To be able to use Theorem 2 we let y and z be new elements and define

$$P_1 = \left(\left(\bigcup_{D \in \mathcal{D}} D_1 \right) \setminus \{x\} \right) \cup \{y\}, \quad P_2 = \left(\left(\bigcup_{D \in \mathcal{D}} D_2 \right) \setminus \{x\} \right) \cup \{z\}$$

and

$$p_1 = (r \cap P_1) \cup P_1 \times \{y\}, \quad p_2 = (r \cap P_2) \cup \{z\} \times P_2)^{-1}.$$

Further, let $f_1: P_1 \to P_2$ and $f_2: P_2 \to P_1$ be defined by

$$f_1(u) = \begin{cases} f(u) & \text{if } u \neq y \text{ and } f(u) \neq x, \\ z & \text{otherwise,} \end{cases}$$

$$f_2(u) = \begin{cases} f(u) & \text{if } u \neq z \text{ and } f(u) \neq x, \\ y & \text{otherwise.} \end{cases}$$

If r_1 and r_2 are linear extensions of p_1 and p_2 such that f_1 is r_1-r_2- monotone and f_2 is r_2-r_1 -monotone then

$$r' = r_1 \cup (r_1 \setminus P_1 \times \{y\}) \cup (r_2^{-1} \setminus \{z\} \times P)$$

is a linear extension of p and f is r'-antimonotone, completing the proof.

4. A generalization

The above questions can be investigated in the following general context: let (P_i, p_i) $(i \in I)$ be partially ordered sets and let $F_{i,j}$ be a set of monotone (or antimonotone) functions between P_i and P_j $(i, j \in I)$. Find linear extensions of p_i $(i \in I)$ so that all functions remain monotone (or antimonotone).

In its whole generality this problem seems to be rather complicated. On the other hand in the very special case when $\bigcup_{i \in I} F_{i,j}$ consists of at most

1 monotone function for all $i \in I$, we can use the ideas of Theorem 2. Now the necessary and sufficient condition for the existence of linear extensions preserving monotonicity of given functions is: any composition $f_1 \circ \cdots \circ f_k$ with $f_1 \in F_{i_1,j_1}, \ldots, f_k \in F_{i_k,j_k}$ and $i_k = j_1$ be acyclic.

References

- J. SZIGETI and B. NAGY, Linear Extensions of Partial Orders Preserving Monotonicity, Order 4 (1987), 31-35.
- [2] E. SZPILRAJN, Sur l'extension de l'ordre partiel, Fund. Math. 16 (1930), 386-389.
- [3] W. T. TROTTER Jr. and J. I. MOORE Jr., The dimension of planar posets, J. Comb. Theory (B) 22 (1977), 54-67.

ZSOLT LENGVÁRSZKY DEPARTMENT OF MATHEMATICS JANUS PANNONIUS UNIVERSITY PÉCS, IFJÚSÁG ÚTJA 6. 7624 HUNGARY

(Received August 19, 1988)