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Linear extensions of partial orders
preserving antimonotonicity

By ZSOLT LENGVARSZKY * (Pécs)

1; Introdﬁction

A classic theorem due to E. SZPILRAIN (see [2]) asserts that any
partial order has a linear extension. As a generalization of this result
J. SZIGETI and B. NAGY proved in [1]

Theorem A. Let (P;p) be a partially ordered set and f : P — P a
p-monotone function (i.e. (a,b) € p = (f(a), f(b)) € p). Then p can be
extended to a linear order r such that f is r-monotone if and only if f is
acyclic (i.e. for no a € P we have f"(a) = a withn € N, n > 1 where

f!'= f and f** = f(f")).

The aim of this paper is to study some related problems. First we
separate the sets where f maps from and to: let (P;p) and (Q;¢) be
partially ordered sets, f : P — @Q a p—g¢-monotone function (i.e.
(a,b) € p = (f(a), f(b)) € ¢). When can p and ¢ be extended to linear
orders r and s, respectively, such that f is r—s—-monotone? The answer is
‘always’ (Theorem 1) and in fact the proof based on Theorem A is quite
easy.

It is more interesting when we are given two functions: f: P — Q is
p—g-monotone and ¢ : 5 — P is ¢—p-monotone. By Theorem A, go f
and f o g must be acyclic if there exist linear extensions r of p and s of ¢
such that f is r —s-monotone and ¢ is s —r-monotone. It turns out that
this trivial necessary condition is also sufficient (Theorem 2). Interestingly,
this result contains Theorem A: choose P = Q, p = ¢ and g = id, and
Theorem 1 too: choose g to be any constant function.

In Theorem 3 we change the monotone function of Theorem A for an
antimonotone one (i.e. (a,b) € p => (f(b), f(a)) € p). We soon notice: if
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p can be extended to a linear order such that f is r-antimonotone then f?
must be acyclic, moreover, f can have at most 1 fixed point. As another
a&&lica.tion of Theorem 2, we show that these conditions together are also
sufficient.

Finally, in section 4 we propose a generalization of the problems in-
vestigated in this paper.

2. Two basic lemmas

We will often use the following two lemmas. For a relation r we denote
the smallest transitive relation containing r, i.e. the transitive closure of r
by 7.

Lemma B. (cf. J. SZIGETI and B. NAGY [1]). Let P and Q be two
sets with relationsp C Px P, ¢ CQ xQ and let f : P — Q be a function.
If for all (a,b) € p we have (f(a), f(b)) € g then for all (a,b) € p we have

(f(a), (b)) € q.

The next lemma was proved — in a somewhat different form — by
W. T. TROTTER Jr. and J. I. MOORE Jr. in [3].

Lemma C. Let P be a set with a relation r 2 {(a,a)|a € P}. Then
F is a partial order if and only if r \ {(a,a)|a € P} contains no cycle, i.e.
a set of the form {(a,a3),...,(ak-1,ax),(ak,a)}

3. Results

Theorem 1. Let (P;p) and (Q;q) be partially ordered sets and let
f: P — @ be a p—q—monotone function. Then there are linear extensions
r and s of p and g, respectively, such that f is r—s-monotone.

PRrOOF. Without loss of generality we may suppose PN Q = 0. Let
T=PUQQ t=pUgqgand defineg : T — T by g(z) = f(z) if
z€P, g(z)=2ifz € Q.

It is sraightforward to check that (T';t) is a partially ordered set and ¢
is an acyclic t-monotone function. Then, by Theorem A, t can be extended
to a linear order t' so that g be t'~monotone. Clearly, r = P? N ¢ and
s = Q% Nt' will work.

Theorem 2. Let (P;p) and (Q; q) be partially ordered sets and sup-
pose that f : P — @ is a p—¢-monotone function and ¢ : Q — P is a
g— p-monotone function. Then there exist linear extensions r of p and s
of ¢ such that f is r—s—monotone and g is s —r—monotone if am:’u only if
go f and f o g are acyclic.

Remark. Since go f and f o g are acyclic at the same time it would be
enough to suppose that g o f is acyclic.
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~ PROOF of Theorem 2. Necessity is trivial; we only have to prove suffi-
ciency.

Let E denote the set of pairs (p',q') such that p € p’ C P? and

g C ¢' C Q? are partial orders; f is p' —¢'-monotone and g is ¢' — p'-

monotone. With (p',q¢') < (p",q") iff p' C p" and ¢’ C ¢", E is a partially

ordered set. If -
C={(pi,gi)|i€ I} CE

(Up.-, Uq.) €E

€] i€l

is a chain then

is an upper bound for C. Thus we can apply Zorn’s lemma: E has a
maximal element, say (r,s), and it is enough to show that r and s are
linear orders. Suppose r or s is not linear.

Case 1. For some a,b € P, we have (a,b) € r, (b,a) € r but
(f(a), f(b)) € s. Then for

r'=rU{(d,b)€P|(d,a),(bd)eEr}Dr

we have (r', s) € E, a contradiction.
Case 2. For any a,b € P with (a,b) & r and (b,a) ¢ r we have
(f(a), f(b)) € s and for any ¢,d € Q with (c,d) € s and (d,c) € s we have

(9(c),9(d)) gr.
Let a,b € P be incomparable elements and define a;, b;, ¢;, d;

(i=1,2,...) by
a; = a, bl = b,
Ci = f(ai)s di = f(bl)i
ait1 = g(ci), biy1 = g(di).

Lt ry=rU{(aib) | 321,20} m=rvUilla) | t=1.2,::s3
81 =8U{(ci,di) |1=1,2,...}, sa=8U{(di,cs) | 1 =1,2,... }.
Since g o f and f o g are acyclic the transitive closure of r; or r, and
the transitive closure of 8y or s; are partial orders. More is true: if 7;
is a partial order then 3; is a partial order too (i = 1,2). Suppose e.g.,

that 7, is a partial order but 5, is not. Then for some sequence of indices
J1y+++,Jk We must have

(dwch) ( Jk— 1’th) (d*,CJl)ES

according to Lemma C. Since g is monotone, it follows
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(bil PRLLTY )a ey (b:}-| y Qi )} (bil y @iy ) €er,

where we put 7y = j; + 1 for the sake of simple notation. But then r; also
contains a cycle, contradicting our assumption that 7, is a partial order.
By Lemma B, f is 7;—3§;-monotone and g is §;—7; -monotone which means
(r,s) is not maximal in E, a contradiction.

Theorem 2 can be considered as a generalization of Theorem A: simply
we have to set P = Q, p = ¢q and g = id, in Theorem 2 to obtain the
assertion of Theorem A. Theorem 2 also contains Theorem 1: if we define
g to be an arbitrary constant function then f o ¢ and g o f will be acyclic.

As another application of Theorem 2 we prove

Theorem 3. Let (P;p) be a partially ordered set and let f : P — P
be a p-antimonotone function. Then there exists a linear extension r of
p such that f is p-antimonotone if aud only if f* is acyclic and f has at
most 1 fixed point.

PROOF. Necessity is trivial; we have to prove sufficiency.

Let E denote the set of partial orders p’ on P with the properties
p < p' and f is p'-antimonotone. With the inclusion relation E is a
partially ordered set and if C C E is a chain then UC € E is an upper
bound for C. Thus we can apply Zorn’s lemma: E has a maximal element,
say r. We will show that r is a linear order.

Case 1. f is fixed point free.
First we define an equivalence relation o on P by

ac b <= f*(a) = f(b) for some k,£ € N°.

Let C = {C|C is a o—class}. Any C € C can be written in the form
C=CiUC;withCiNC; =0, f(C)=C,, f(C2)=Ch.

Observe that if a;,b; € C, and a;,b, € C; then (a;,a;) € r and
(b2,b1) € r simultaneously cannot hold. The diagram describes the case
when f is acyclic (— is for f ---» is for r,o0 is for C; and e is for C,).
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Applying f for the relation a; ra; and for b, rb, again and again
we obtain z,rzy, zarz4 and zorx3, 747 T, respectively. This means
r contains a cycle, a contradiction. If f has a cycle of lenght two, say
f(a) = b and f(b) = a for some a,b € C, then in a similar way we get ar b
and br a which is a contradiction again.

Next we note that if C; x C; Nr = @ then C; x C; < r. Indeed, now
C; x C3 U r cannot contain a cycle. Then by Lemma C, C; x C;Ur is a
partial order and by Lemma B, f is C; x C3 U r-antimonotone whence by
maximality of r we get C; x Cz C r. Suppose that for any C € C in the
above union C) denotes the lower part of C, i.e. for which C; x C; C r.

Let C,D€eC, ce Cy, d€ D;. Ilf drc then f(c)r f(d) and we have a
cycledrer f(c)r f(d)rdin r which is a contradiction. Thus rNDy; xC) =
=rNC,; x D, =0 and then it is easy to see that r UC; x D, U D, x C;
cannot contain a cycle. Again by Lemma C and by Lemma B, it follows
that Cl X Dg, .D] X Cg TS

Finally let

PI=UCIa P2=U02!

cec Cec
pp=rNC}, p =r"'nC3,
f1=fPCh fa =fPCz.
Then f, : P, — P, is p; —p;—monotone and f; : P, — P is po—p;—

monotone. In wiew of Theorem 2 there are linear extensions r; of p; and
rg of p; such that f; is r;—r;—-monotone and f; is rp—r;—-monotone. Then
r' = rUr; Ur; ! is linear extension of p such that f is r'—antimonotone.
In fact, since r was maximal we have r = r'.

Case 2. f has a unique fixed point z.

The proof is very similar to that of case 1. We define an equivalence
oon P\ {z} by

aoh <= f¥(a) = f'(b) # z for some k,¢ € N°.
Let C = {C|C is a o0—class } and let

D ={C|CeCandz¢f(C)},
D' ={CU{z}|C €Candz € f(C)},
D=D'UD".

As in case 1 any D € D can be written in the form

D=D1UD2, Dl nD2 =0,
f(Dy) = D3 or D, U {z}, f(D;)= Dy or D, U{z}.
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Again, it is easy to see that for any C,D € D we have C; x D, C r
Bhere C; denotes the lower part of C and D, denotes the upper part of

To be able to use Theorem 2 we let y and z be new elements and

define

P = (( U Dl) \{x}) U{y}, = (( U Dz) \{1'}) U {z}
DED DeD

and
pr=(rNP)UP, x{y}, p2=(rNP)U{z} x Pg)“l.

Further, let f, : P, — P; and f; : P, — P; be defined by

otherwise,

f(u)_{f(u) if uyand f(u) # 2,

u if u# 2zand f(u &,
f={ 10 Eufrmife)s
otherwise.
If r, and r; are linear extensions of p; and p; such that f; is ry —ro—
monotone and f; is r, —r;-monotone then

r’=r‘1U(Pl\PIX{y})U(rz-l\{z}x‘P)

is a linear extension of p and f is r'~antimonotone, completing the proof.

4. A generalization

The above questions can be investigated in the following general con-
text: let (P;,p;) (¢ € I) be partially ordered sets and let F; ; be a set of
monotone (or antimonotone) functions between P; and P; (i,; € I). Find
linear extensions of p; (¢ € I) so that all functions remain monotone (or
antimonotone).

In its whole generality this problem seems to be rather complicated.
On the other hand in the very special case when |J F; ; consists of at most

J€I
1 monotone function for all : € I, we can use the ideas of Theorem 2. Now
the necessary and sufficient condition for the existence of linear extensnons
preserving monotonicity of given functions is: any composition f; 0---o fi
with f € F}, j,,..., fx € F;, j, and & = j; be acyclic.
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