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On Faber Expansions

By I. N. BRUJ and I. JOO (Budapest)

To the memory of Professor Béla Barna

Let G be a Jordan domain in C with smooth boundary 8G. By the
theorem of Riemann on the conform equivalence of simply connected do-
mains, there exists a unique holomorphic function

w = ¢(z)

mapping C \ G onto C \ 8D such that

0< lim‘i(fl<oo

z—00 2

(as usual, D denotes the open unit disk on C). Consider for any natural
number n the Laurent expansion of ¢™(z) with the center z = oo :

n -1
e"(2) = Z bmz™ =: pu(G, 2) + Z D™ ;

m=-=00 m=-—0o0

The polynomials p,(G, z) are called Faber polynomials. Denote A.(G) the
class of functions analytic on G and continuous on G. The Faber expansion

of f € A.(G) is defined by

oo -1 T
(1) f(z) i Z Gum(G.Z) y Qm = 23”: f(tﬂ'l.-l-(l ))dT
m=0

[r]=1
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We shall investigate two problems for Faber expansions: the strong
(C,1) summability and a Bohr type inequality. Denote

il 1,0, 3) 5= Zaip;(é,z).
=0

We say that a complex-valued function f defined on G is Zygmund-
continuous, if

f(2) - 2f(’"+ ’*‘)+f(zz)

We shall prove the following

Theorem 1. Let G be a Jordan domain with analytic boundary 0G
and let f € A.(G) be Zygmund-continuous. Then

3 1£() = s, G 2) = O (‘%) (el

m=0

Remark. This estimate is exact. In [1] it is proved that the function

k+1 2* k+2 k+2
P g T

t=2%-141
belongs to the class A.(G) N Lip(1,G), i.e.
9(21) — 9(22)| S egl21 — 22| (21,22 € G),

<cqlznn — 22| (21,22 € G).

2
2) ecn+1

further
1 log, n

n+1

Z Ig(l) = Sm(gaG l)l 2

m=0

n + 1
holds for n > 64.

The proof requires some notions and lemmas. First, denote
s+ 2(3)
the natural (arc-lenght) parametrization of the boundary G and let
s — O(s)

denote the angle between the positive real axis and the tangent of 0G at
2(s). Finally let w(©,é) be the modulus of continuity of ©(s).

We shall use the following statements of ALPER (they are not given
explicitly in [3] but the proofs easily give them in the present form).
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Lemma 1. ([3]). Let G be any Jordan domain with smooth boundary
satisfying the condition

(3) /“’((i LT < db <
0
Then
_]:_ . llbr(eit) v 1 =
e 2""_[ [ et~ | S 4O <
and

(5) Pm(G,¥(e'")) =

m

= ghE Lv ¥'(e") = 1 ] imt g it\*
¥ b 2w 'p'] [l,b(ei‘)—1j;(eif) o d(e")" .

-

Here 1
Y= .

Lemma 2. ([3]). Let G be any Jordan domain with smooth boundary
satisfying (3) and let f € A.(G). Then the function

FH(e) = 5 /-f-g"’_(—:))dr (I2] < 1)

Ir|=1
can be extended onto the closed unit disk and for every w = e'* we have

L _
fr(e™) =f(v(e™))-

B %vP _/[,/,(e:t) :,)(e.z) o 8"] f((e™)) d(e™)

and f*(e'*) has the Fourier series

iz - 1 f ‘d’(r imz
£ (") ~Z 2%2[ -,-m+1))d ]

ol ITl=1

*v.p. denotes the principal value of the integral.
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Further we have : _
G oexp,8)i= sup IFH(E) = £H(E) <
<d6) wp_f(n) = flen)l = G)(f,5).
zl.zzE(_'x'

We mention further the following result of [4]:

Lemma 3. Let h be any 2r—periodic continuous function on R. Then
1 2n—-1
(7) e ,,:Z lsm(h,2)] < cllbll(-xm) (2 €R)

holds with ¢ = 243+ 7‘;*.

Lemma 4. Let G and f be as in Lemma 2. Then
2n-1

1 "
(8) = lsm(£,G,2)| < cl|fllze (o -

PROOF. Using (5) we get
lsm (£, G, ¥(e%))] < sm(f*,2)+

1 y l.b’(eﬂ) 1
+§;/

e i e ML ARDILS

where

= b(T .
3m(f+,I):=Z: ﬁ ]%D-dr elf;l.'.

Hence, taking (4) into account, we get
1 2l 1 2nd
il a ir g +
- ;Ism(f,G,w(e Nse mae © D lom(f%2)l

According to (6) and (7), further using the maximum modulus principle
we obtain (8).
Now define for any f € A.(G) the n-th best approximation by polynomials
as follows 2

En(f,G) :=inf{||f — pllp=(c) : P € Pa},

where P, denotes the set of algebraic polynomials of order < n.

*sm(h,z) denotes the m~th partial sum of the trigonometric Fourier series of h in this
paper.
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Lemma 5. Let G and f satisfy the conditions of Lemma 2. Then

2n—-1

(9) 3 1f(2) = sm(£, Gy 2)| < cEul£,G).

m=n

PROOF. According to a theorem of L. Tonelli [5, p.406], for any n > 0
there exists a best approximating polynomial pj}:

(10) If = PillLe(@) = En(f,G).

Then

2n-1 2n-1

L3 152) = sm(£,G. ) <= 3 1£(2) - Blf G )+
n n

m=n
2n-1

1 o "
t o X len(ri = £.G.2)1
Using (8) and (10) we get (9).

Lemma 6. ([6]). Let G be any Jordan domain with analytic bound-
ary and f € A.(G). Then the r-th derivative f() of f,r = 0,1,... is
Zygmund-continuous on G if and only if

E.(f,G)=0(n"""Y, n>1.

We need the following corollary of Lemmas 5 and 6.

Lemma 7. If G is a Jordan domain with analytic boundary,
f € AJ(G) and r € {0,1,2,...}. Then f" is Zygmund-continuous if
and only if the strong de la Vallée-Poussin means of the Faber series of f
converge to f in the order n=™""! :

Now we can establish the

PROVE Theorem 1. Since f is Zygmund-continuous, Lemma 7 states
that

S

.

12:1—1 .
= Y 1f(2) = sm(£,G\2)| <
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Suppose that
gt En < T™,
then
1 -
— 2 [f(z) = sm(£,G,2)| <
m=1
1 Mo 1 2m-1
< m-—1 e = <
“n+1 mz=12 (2""-1 t—;—llf(Z) sm(f,G,z)l) -

. izm-l 1 =T <clnn
=04l 2oL Tnel ™ n
m=1
as we asserted.

Now we present a Bohr type inequality with a consequence for Faber
series. As it is well known ([7]), H. Bohr proved the following inequality

N N

Am _imz < n imzr

o 2 ™| S g | 2,
m=n+1 m=n+1

where (a,,)N_,.., are arbitrary complex numbers. The constant TnT) 18
exact. We shall prove

Theorem 2. Let G be any Jordan domain with smooth boundary
satisfying (3). Then for arbitrary complex numbers (am )Y, we have

N N
a .
12 max —pm(G, 2)| < cmax i s
e 2€G mzn:-l-l 'mp : : el m=zn+l
PROOF. From (5) we get
=ik ; e Ry
Y S @wE)| < | T Smeime| 4
m=n+1 i m=n+1 o
ol Y'(e™) 1 LSRR ¢
+—/‘ : - g s —e'™'|dt (z€R)
27r_“r P(e') —p(e!*) et—e m§+1 im
hence (4) implies
N & _ N 2 _
¥, T Pm(G ¥(e™)) < c Z g
m=n+1 m=n+1 L*(R)

Using the “ordinary” Bohr inequality and the maximum modulus principle,
(12) follows.
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Definition. Denote A p(-)(G) the class of functions of the form

f(z) := ao(f, G) + (Br * 9)(2)
where g € A.(G),

(Br*g)(2): / Br(t) f g(”b(“’(‘f)e ) d¢ dt

and 3, denotes the Bernoulli-kernel:

tmt

Aty = E (tm)"

m=-—o0
m#0

This class was introduced by Dzjadyk [8, p.372]. Using the above notations

we can write

Ap(G) = {const. + B, xg : g€ A(G)}.

A theorem of DZJADYK [8] states that any f € Ap(-)(G) has Faber series
of the form

£(s) ~ aolf,8) + Z = "’),G)pm(c 5) (z€6),

where, as usual

aclnOe N5 / g(fl’(f))

27rz 'r'“'"l
|rl=1

It is easy to see that this series converge uniformly on 8G. We shall prove
more:

Theorem 3. Let G be any Jordan domain with smooth boundary
satisfying (3), further let f € Ag)(G), r > 1. Then

) @22,

PROOF. Apply once (12) and r — 1 times the classical Bohr inequality
to obtain

Inn

19 1 = onlfGla=er =l 1O

nl“

= am(9,6) A = Ao
Z %me(G, z) - < ¢(r) Z anm(g,G)e'™*
m=n+1 Le(G) m=n+1 L*(R)
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Taking the limit N — oo we get by

n oo
gt (e") = ) am(9,G)e™ = Tim Y am(g,G)e™
m=0 m=n+1

the estimate

If = s0f, )limien < -eas max [g#(e) = 3 am(g, G)e™|

T (n4+1) ze L
From Lemma 2 it follows that
- e g 1
+ iz tmzr | __ —
max \g (e'*) — ,;am(g.c)e =w (g, n) O(lnn)

which gives the desired estimate.
Finally we shall prove
Theorem 4.

Apny(D) = {f : f' € A.(D)}.
PROOF. Let f € Agn)(D), i.e.
) =an(f,D)+ 3 2m®D)

tm
m=1]

where g € A.(D). We see that
fi(z)= =i ) _ am(9, D)2
m=1
1.e.

2f'(z) = =i (9(z) — ao(9,D)) ,
hence f'(z) € A.(D). Suppose now that

f(z) =ao(£,D)+ Y _ am(f,(D)z"

m=1
and "
fi(z) = )_ mam(f,D)z:™" € A(D)
m=1
Then

as we asserted.
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