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Extensions and ideals of rings

By STEFAN VELDSMAN (Port Elizabeth)

Abstract. Being an ideal of a ring is not a transitive relation. For a ring A,
consider a chain J aI 4 A. We examine conditions on J, I, A, I/J and A/I respectively
which are necessary and sufficient for J 4 A to hold. The one-sided versions are also
discussed.

1. Introduction and Preliminaries

Rings considered will not necessarily be associative and need not have
an identity. Ideals, left ideals and right ideals will be denoted by <, <¢ and
4, respectively. For notational reasons, A 4« B will sometimes be denoted
by A<, B. For aring A, A* will denote the underlying group. The ring of
integers will be denoted by Z. If A is a ring and a € A, Za is the subgroup
Za = {na|n € Z} of A*. The Dorroh extensions of A (i.e. the usual
embedding of A as an ideal in a ring with an identity) will be denoted by
D(A). This means D(A)* = At @ Z* and the multiplication is given by

(a,n)(b,m) = (ab + ma + nb,nm).

We identify A with {(a,0)|a € A} and Z with {(0,n)|n € Z}.

This research is motivated by the work of SANDS [7] and the following
condition (F') which a class of rings M may satisfy and which is often eh-
countered in the theory of (Kurosh-Amitsur) radicals of associative rings:

(F) JalI<AandI/J€ M implies JaA
(see, for example, [1], [2] and [5]). Recently SANDS [7] showed that in the
variety of associative rings, a necessary and sufficient condition for (F') to
hold is that all the rings in M should be quasi-semiprime (i.e. if b € A
and AbA = 0, then b = 0). He also considered conditions on J, I, A and
A/I respectively to ensure that J<A. We extended these results to the not
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necessarily associative case and also investigate all the related conditions
concerning one-sided ideals.
In the sequel, z,y and z will always be elements from the set {r,[,t}.
A class of rings M is said to satisfy condition
F(t,y,z)if JaIay A and I/J € M implies J 4, A
G(z,y,z)if Ja; I 9y A and J € M implies J «; A
H(z,y,z)if Ja; I 4y A and I € M implies J ¢, A
K(z,y,z)if Ja; I 4y A and A € M implies J 4, A
L(z,t,z)if Ja, IaAand A/I € M implies J «, A

If X € {F,G,H, K, L}, then the following implications are obvious:

X(z,y,1)
4 ! N
X(z,y,r) X(z,t,t) X(z,y,1)
s Y 4 TN i
X(z;t,r) X(z,t,1)

Also M satisfies X(z,y,t) if and only if M satisfies both X(z,y,r) and
Xz, 0.1)

Although the characterisations of conditions of the type X(z, z,z) for
F#X#L, F(t,z,z) and L(z,t,z) on a class of rings in the variety of
associative rings have been settled by SANDS [7], we will restate them here
(sometimes explicitly and sometimes as a special case of a more general
result) for completeness and for the purpose of comparison.

2. On Condition F(z,y,z)

Using a construction of LEAVITT and VAN LEEUWEN [5], we start
with

Lemma 2.1. Let R # 0 be a ring. Then there exists a ring A and a
chain JaI4a A with I/J ~ R and J is neither a left nor a right ideal of A
(in fact, AJNJA € J). The ring A is associative if R is associative and
satisfies any one of the following three conditions:

(1) bR =0 = Rb for some 0 # b€ R
(2) bR = 0= R?b and Rb # 0 for some 0 #b€ R
(3) Rb=0 = bR? and bR # 0 for some 0 # b € R.
PROOF. Let 0 # b € R. Let A be the ring generated by the symbols
u,v and the ring R over Z subject tou? = v? =uc=cu=ve =cv =0
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for all c € Rand uv =b=vu. Let J ={nu|n € Z} andlet I = J + R.
Then JaI<A and I/J ~ R. Clearly AINJAZ J.

Suppose R is associative. If (1) holds, then A as constructed above, is
associative (this was the case in [5], Proposition 6). If (2) holds, choose
0 # eb € Rb. Construct the ring A as above, except let uv = eb = vu. Then
A is an associative ring. If (3) holds, let uv = be = vu where 0 # be € bR.

Proposition 2.2. In the variety of all rings, a class M satisfies con-
dition F(t,y, z) if and only if M = {0}.

PRrOOF. If 0 # R € M, then there is a ring A and a chain JaI < A
with I/J ~ R € M, but J is not an ideal of A (Lemma 2.1).

Proposition 2.3. In the variety of associative rings, a class of rings
M satisfies condition F(t,t,r) if and only if b € R € M and bR = 0
implies b = 0. M satisfies condition F(t,t,¢) if and only if b € R € M and
Rb = 0 implies b = 0.

PROOF. Suppose M satisfies condition F(t,t,r) and let b€ R € M
with bR = 0 and b # 0. Lemma 2.1 (1) gives an associative ring A and
a chain JaI 9 A with I/J ~ R € M and J not a right ideal in A. This
contradicts F(t,t,r); hence Rb # 0. We now show R?b = 0. Let B be the
following subset of the ring of 3 x 3 matrices over R:

® . -RR
B=|Rb 0 0
AR |
Since bR = 0, so is RbR and consequently B is a ring. Let
0 R R R R R
D=0 0 0| andletC=]0 0 0
0 0 0 Wi )

Then DaC < B and C/D ~ R € M. By F(t,t,r) we get D a, B. Hence,
ford,e € R

dey 0 0 0 dol[o 0o .
0 0 0/=|00 0||ey 0 0| €D, ie R2b=0.
0 0 0 0 00]l0 00

Using Lemma 2.1 (2), we once again obtain a contradiction; hence b = 0.
Conversely, assume every ring in M has zero left annihilator. Consider
JaIaA with I/J € M. Let j € J and a € A. Then ja+ J € I/J and for
any c € I, (ja+J)(c+J) = (ja)e+J = j(ac)+ J = 0. By the assumption
on the rings in M, ja+J =0, i.e. ja € J and J «, A follows.
The proof of the second part, apart from taking the transposed of the
above matrices, is similar.
We recall, an associative ring R is quasi-semiprime (cf. DE LA ROSA
[4]) if RbR = 0 implies b = 0. This is easily seen to be equivalent to bR = 0
or Rb = 0 implies b = 0. Consequently we have
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Corollary 2.4. (SANDS [7], Theorem 2). A class of rings in the variety
of associative rings satisfies condition F(t,t,t) if and only if every ring in
the class is a quasi-semiprime ring.

Having considered the condition bR = 0 or Rb = 0 implies b = 0, one
may ask for more information on Rb = 0 = bR implies b = 0. This is given
in

Proposition 2.5. In the variety of associative rings, the following two
conditions on a class of rings M are equivalent:

(1) be R€ M and Rb = 0 = bR implies b = 0.
(2) JaI<aAand I/J € M implies J is a quasi-ideal in A (i.e. J is a

subgroup of A and AJNJAC J).

PROOF. Lemma 2.1 (1) gives (2) = (1). Conversely, consider JaI<A
with I/J € M. Then

:f_(AJnJA+J) i (AJnJA+J) I
b <

7 7 7
and by (1),
Amj‘“J =0t ATATAC T

For a wide range of classes M, the above conditions coincide. Firstly,
recall a class of rings M is regular if 0 # I « A € M, then there exists an
ideal J < I such that 0 # I/J € M. For example, any hereditary class is

regular.

Corollary 2.6. Let M be a regular class in the variety of associative
rings. Then the following are equivalent :
(1) M satisfies condition F(t,t,t)
(2) M consists of semiprime rings
(3) M consists of quasi-semiprime rings
(4) be Re€ M and Rb =0 = bR implies b = 0.

PRrRCOF. (1) & (2) is well-known; (2) = (3) = (4) is obvious. We
show (4) = (2) : Let I« A € M with I? = 0. If I # 0, there is an ideal
J aI with 0 # I/J € M by the regularity of M. Then (I/J)? =0 and by
(4) we have I/J = 0; a contradiction. Hence I = 0.

Finally, to complete this section, we have

~ Proposition 2.7. For a class of rings M in the variety of associative
rings, the following are equivalent:
(1) M satisfies condition F(t,y,z) with y # t
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(2) M = {0}.

PROOF. The same examples given by SANDS [7] to show the equiva-
lence of the cases F(t,r,r) and F(t,1,1) will suffice: Let

A= [D{ZR) ﬁla I [DFR) 3] and J = [D(OR) OI-

Then Jal<a A, I/J ~ R and J <, A if and only if J «, A if and only if
R = 0. The transposed of the above takes care of the case J a1 q, A.

3. On Condition G(z,y,2)

For an associative ring R, PUCZYLOWSKI and SANDS (cf. SANDS [7])
constructed associative rings A, and A; with chains of ideals J; « I; <« A;
such that J; ~ R and J; 9 A, if and only if R? = R if and only if J; 4, A,.
These constructions, with the same properties bar the associativity, can
be extended to the variety of all rings. In fact, the rings A; are associative
if aléd only if R is associative. Using these examples, the following result
is obvious:

Proposition 3.1. In the varieties of all rings or all associative rings,
if a class of rings satisfies condition G(z,y, z), then R?* = R for all rings in
the class.

The converse is not true for all choices of z,y and z. For completeness
we state the known results:

Proposition 3.2. (SANDS [7]). In the variety of associative rings, for
y # t, the following conditions are equivalent for a class of rings M:
(1) R*>=Rforal Re M
(2) G2, 2:%)
(3) G(t,y,y)
(4) G(t,t,y)
(5) G(y,t,y)

The remainder 18 conditions concerning G(z,y,z) in the variety of
associative rings are taken care of by:

Proposition 3.3. In the variety of associative rings, a class of rings M
satisfies any one of the conditions G(z,y, z) not appearing in Proposition

3.2 if and only if M = {0}.

PROOF. In all cases, the necessity is obvious. Assuming any one of the
mentioned conditions G(z,y, z), we know from Proposition 3.1 that R? =

R for all R € M. Using the examples below as well as their transposures,
straightforward and tedious verifications yield R = 0 :
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@y 152 q,[ﬁ glq,[g g] and [g 3] is a one-sided ideal in
8 ﬁ] if and only if R? = 0.
. '
R o] _[D®R) o D(R) D(R)

2 |0 od“l(o)ol“‘[ e
B 8] a 2GR DUR)| it and only it R =0,

(3) {]2 8 [ ] [ gl and [{]i 3] q, [g g] if and only
if R? =

All condltlons concerning G(z, y, z) are quickly disposed of in the not
necessarily associative ring case:

Proposition 3.4. In the variety of all rings, a class of rings M satisfies
condition G(z,y, 2) if and only if M = {0}.

PROOF. Assume M satisfies condition G(z, y, z) and let R € M. By
Proposition 3.1, we know R? = R. Let A be the ring with
At =Rt @ R+ @ R* and with (non-associative) multiplication defined
by (a,b,c)(d,e, f) = (ad,cd + fa,0). Then

R~ {(a,0,0)|a € R} a{(a,b,0)|a,be R} a A

and {(a,0,0)|a € R} is an one-sided ideal of A if and only of R? = 0.
Consequently R = R? = 0.

4. On Condition H(z,y,z)

For a ring I, E(I;) and E(;I) will be the rings of endomorphisms of
the right I-module Iy and the left /-module ;I respectively. The elements
of the former will be acting on the right and the elements of the latter on
the left. A double homothetism of a ring I (cf. REDEI [6]) is a pair (A, p)
where A € E(Iy) and p € E(;I) such that for all a,b € I, a(\b) = (ap)b
and (Ab)p = A(bp).

Proposition 4.1. Let M be a class of rings in the variety of all asso-
ciative rings. Then M satisfies condition
(1) H(z,l,1) ifand only if \J C J for all J 4, I € M and all A\ € E(I})
(2) H(z,r,r) if and only if Jp C J for all Ja, I € Mand all p € E(;I)
(3) H(z,t,l) if and only if AJ C J for all J a; I € M and all double
homothetisms (A, p) of I
(4) H(z,t,r)if and only if Jp C J for all Ja, I € M and all double
homothetisms (A, p) of I.
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PROOF.
(1) Suppose M satisfies condition H(z,¢,€) and let J 4, I € M.

As in Sands [7], let A be the ring defined by A* = It @ E(i;)* with
multiplication

(b1, A1)(b2, A2) = (b1bz + Arba, b1Az + A 0 A7)

where b A; is the endomorphism of Iy defined by (b;A2)(c) = by Az(c) for
all ¢ € I. Then A is an associative ring and I 2 {(b,0) | b € I} 4¢ A. By
our assumption, J = {(7,0) | j € J} 4¢ A holds; hence

(0,A)(¢,0) = (Ac,0) € {(4,0) | j € J} forall c€ J.

Thus, AJ C J for all A € E(I).

Conversely, consider J 4, I 94 A with I € M. Let a € A and define
Aa : I — I by Ai(c) = ac for all ¢ € I. Then A\, € E(I;) and by the
assumption, aJ = A,(J) C J, i.e. J q A.

(2) is proved by the obvious left-right interchanges in (1).

(3) Assume condition H(z,t,¢) on M. Let J 4, I € M and let (A, p)
be a double homothetism of I. Let B be any ring of double homothetisms
of I which contains (), p) (such rings do exist — cf. Redei [6] or Sands
[7]). Let A be the ring (cf. Sands [7]) defined by A* = I'* @ B* and with
multiplication

(b1, (A1, 21))(b2, (A2, p2)) = (b1ba + A1by + b1p2, (A1 0 Az, p1 0 p2)).

Then A is an associative ring and
J = {(4,(0,0)) | j € J} 4. {(b,(0,0)) | be I} = I A
By our assumption, J 4¢ A holds. Hence, for ¢ € J,

(A¢,(0,0)) = (0, (A, p))(c,(0,0)) € {(4,(0,0)) | ; € J},
LT F G i
Conversely, consider J 4; I 4 A with I € M. Let a € A and define

Aa: I = Iby Aa(c) =acand p, : I — I by (¢)p, = ca for all ¢ € I. Then
(Aa, pa) is a double homothetism of I and by the assumption

af =0,(J)C T, le JoyA

(4) is proved similarly.

Using Proposition 4.1 (3) and (4) we get
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Corollary 4.2. (cf REDEI [6]). A class of rings M in the variety of
associative rings satisfies condition H(z,t,t) if and only if A\J C J and
Jp C J for all J a; I € M and all double homothetisms (A, p) of I.

The remaining 12 conditions in the variety of associative rings, can
only occur in the trivial case:

Proposition 4.3. Let M be a class of rings in the variety of associative
rings. Then the following are equivalent:
(1) M satisfies condition H(z,€,z), z# ¢
(2) M satisfies condition H(z,r,2z), z#r
(3) M = {0}.

PROOF. (1) <= (3): Obviously M = {0} = M satisfies
H(z,¢,t) = M satisfies H(z,{,r). Assume condition H(z,¢,r) on M and
let R € M. Then

R 0 R 0 D(R) D(R)
[0 ol"[o 0]"‘[ RO
and by the assumption,

£ [ o5

Hence RD(R) =0,i.e. R=0.
The equivalence of (2) and (3) is proved likewise.

Concerning the not necessarily associative case, firstly note that Pro-
position 4.3 holds also for this case. By E(I') we denote the ring of

endomorphisms of the group I*.

Proposition 4.4. Let M be a class of rings in the variety of all rings.
Then the following conditions on M are equivalent:
(1) \J C J forall Ja; I € M and all A € E(IY)
(2) H(z,y,y)
(3) Hiz, t.2), 2+t

ProOF. Firstly note that if M satisfies condition H(z,y,z), then

AJ C J for all Ja, I € M and all A € E(I"). Indeed, let A be the ring
with A* = It @ E(I*)* and with multiplication defined by:

(b1, A1)(b2, A2) = (b1b2 + Ayb2 + A2by, A0 Xy), b, €1, \; € E(I).

Then J a, I = {(b,0)|b € I} 9« A and by H(z,y,z2), for 2 = r we get
(b,0)(0,A) = (Ab,0) € {(c,0)|c€ J}forallbe J,1.e. A\J C J. For z = ¢,
we have (0,A)(b,0) = (Ab,0) € {(c,0)|c € J} for all b € J,1.e. \J C J.
Routine verifications, using the obvious endomorphisms in E(I"), show
that (1) = (2) and (1) = (3).
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5. On condition K(z,y,z)

If a € A then the ideal (left, right ideal respectively) in A generated
by a will be denoted by (a)((a)¢, (a), respectively). Recall, a ring A is a
left (right) duo. ring if every left ideal (right ideal respectively) is an ideal
in A

Lemma 5.1. Let M be a class of rings.

(1) For z # {, if M satisfies condition K(z,r,z) or K(r,y, z), then every
ring in M is a left duo ring.

(2) For z # r, if M satisfies condition K(z,r,z) or K(r,y,z), then every
ring in M is a right duo ring.

PROOF. Assume condition K(z,¢,2) on M and let 94 A € M. Then
Ia, I ¢ A and I < A follows. If M satisfies condition K(¢,y, z) and
Iag A€ M, then I a¢ A4, A and I 1 A follows.

Proposition 5.2. Let M be a class of associative rings.
(1) (SANDS [7], Theorem 4) M satisfies condition K(t,t,t) if and only if
foralla€ A€ M, (a) = (a)’* + Za
(2) For y # t, the following conditions on M are equivalent:
(2.1) K(t,y,t)
(2.2) K(y,t,t)
(2.3) K(y,y,t)
(2.4) For alla€ A€ M, (a) = (a*), + Za.
(3) The following conditions on M are equivalent:
(3.1) I\'(é’ r,t)
(3.2) K(r,¢,t)
(3.3) Foralla€ A€ M, (a) = aAa + Za* + Za.

PROOF.
(2) We show the equivalences for y = r; the other case y = £ being similar.

(2.1) = (2.2). Consider J 9, IaA € M. Then JaJ +JA 4, A€ M
and from K(t,r,t) we get J qa A.

(2.2) = (2.3). Consider J 4,14, A € M. By Lemma 5.1, A is a right
duo ring; hence I < A and J 1 A follows from K(r,t,t).

(2.3) = (2.4). Let a € A € M. Then (a®), + Za 4, (a), 4» A and by
K(r,r,t) we have (a*) + Za 4 A. But a € (a®), + Za C (a);
hence (a) = (a?) + Za.

(2.4) = (2.1). Consider JalI4, A€ Mandlet j € J and a € A.
Then ja € (j) = (j2), + Zj. Without loss of generality, we
may assume ja = j2b + kj? + nj for some b € A, k,n € Z.
Since j%b = j(jb) € J, we get ja € J. Likewise, aj € J; hence

A.

Ja
(3) (3.1) = (3.2). Consider Ja, 44 A € M. Then Ja JA+J4, AE M
and by K(€,r,t), J a A follows.
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(3.2) = (3.3). Let a € A € M. Then aA+ Za* + Za 4, (a), 9; A and
from K(r,¢,t), we get aAa + Za®> + Za 1 A. Since
a € aAa+ Za® + Za C (a), we have (a) = ada + Za® + Za.
(3.3) = (3.1). Consider J 4, I a, A € M. Let j € J,a € A. Then
ja € (j) = jAj + Zj* + Zj. Hence ja = jbj + kj? 4 nj for
some b € A, k,n € Z. Since jb € I, we have jbj € J and
ja € J follows. Likewise aj € J; thus J < A.
Let us mention that examples of associative rings which has the prop-
erty K(t,t,t) were given by SzAsz [8, p. 197] and WIEGANDT [9, p. 300].

Proposition 5.8. Let M be a class of associative rings.
(1) (SANDS [7]) M satisfies condition K(r,r,r) if and only if for all a €
A€M, (a), = (a®), + Za.
(2) The following conditions on M are equivalent:
(2.1) K(r,¢,r)
(2.2) K(¢,r,r)
(2.3) For alla € A€ M, (a), = aAa + Za* + Za.
(3) The following conditions on M are equivalent:
(3.1) K(t,6,r)
(3.2) K(¢,t,r)
(3.3) K(¢,¢,r)
(3.4) For alla € A € M, (a), C (a*)¢ + Za.
(4) M satisfies condition K(t,r,r) if and only if for all a € A € M,
(a); = (a?), + aAa + aAa’ A + Za.
(6) M satisfies condition K(r,t,r) if and only if for all a € A € M,
(a); = (a?), + aAa + aAaA + Za.
(6) M satisfies condition K(t,t,r) if and only if for all a € A € M,
(a)r C (a) where (a) is the ideal in (a) generated by a.

PROOF.
(2) (2.1) = (2.2). Consider J <4y I 4, A € M. Then Ja, AJ + J 44 A and
by K(r,¢,r), we get J «, A.
(2.2) = (2.3). Let a € A € M. Then ada + Za® + Za 9 (a), 4, A
and by K(¢,r,r), aAa + Za® + Za 4, A. Since
a € ada+ Za®> + Za C (a)y, we get (a), = ada+ Za® + Za.
(23) = (2.1). Let Ja, Tat A€ M andlet j € J,a € A. Then
aj € (J)r =3Aj+ 2%+ Zj C J; hence J 4, A.
(3)(3.1)= (3.2). f JaeIaA € M,then JaAJ + J q¢ A and from
K(t,¢,r) we get J q, A.
(3.2) = (3.3). fJaeI<a A€ M, IaA by Lemma 5.1. By K({,t,r)
we get J 4, A.
(3.3) = (3.4). Let a € A € M. Then (a®)¢ + Za <¢ (a)e 9¢ A. By
K(€,¢,r) we have (a*)¢ + Za 4, A and from a € (a?)¢ + Za
it follows that (a), C (a?)¢ + Za.
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(3.4) = (3.1). Let JaI9qyA€ Mandlet j € J,a € A. Then
ja€ (7)r € (3%)e+ Zj C J; hence J 4, A.

(4) Assume K(t,r,r) on M. Let a € A € M. Then (a?),+aAa+aAa’A+
+Za<(a),<A. By K(t,r,r)(a?),+aAa+aAa’ A+ Za<, A from which
the desired equality follows. The converse is easily seen to be valid,
forif JaI4, A€ M, j € Jand a € A, then ja € (j), = (j*)r +JAj +
+jAj2A+ Zj C .

(5) is proved similarly.

(6) The “if” part is obvious, so is the “only if” part when noting that if
JaIaA, then (j) C j2A+ Aj% + jAj + (JA)? + (Aj)* + Aj2A +
+Aj(A? + (A% A+ (A1) + 252+ Z; C J.

Proposition 5.3 has the obvious corresponding results for the cases
K(z,y,¢) which we state for completeness:

Proposition 5.4. Let M be a class of associative.rings.
(1) (SANDS [7]) M satisfies condition K(¢,¢,¢) if and only if for all
ac Ae M, (a)=(a®)e+ Za.
(2) The following conditions on M are equivalent:
(2.1) K(¢,r,¢)
(2.2) - Kir, L, L)
(2.3) For alla€ A € M, (a)¢ = aAa + Za® + Za.
(3) The following conditions on M are equivalent:
(3.1) K(t,r,0)
(3.2) K(r,t,¢)
(3.3) K(r,r,0)
(3.4) For alla€ A € M, (a); C (a®), + Za.
(4) M satisfies condition K(t,¢,€) if and only if for alla € A € M,
(a)e = (a®)¢ + aAa + Aa*’Aa + Za.
(5) M satisfies condition K(¢,t,€) if and only if for alla € A € M,
(a)e = (a?)¢ + aAa + AaAa + Za.
(6) M satisfies condition K(t,t,£) if and only if for alla € A € M,
(a)e € (a) where (a) is the ideal in (a) by a.

For the not necessarily associative case, we only consider the one
condition K(t,t,t). As ususal, for a ring B the powers B(") are defined
inductively by B(®) = B and for n > 0, B™ = B(»~1) . B(n=1)_ Let us
call a ring A an Andrunakievié ring if there is some n > 0 such that for

every chain Jal4 A, 5 i C J (where J 1s the ideal in A generated by J).
The smallest such n for an Andrunakievi¢ ring A will be called the indez
of A. Every associate ring is an Andrunakievié ring of index at most 2 (cf.
ANDRUNAKIEVIC [3)).

Corresponding to Proposition 5.2 (1), we have:
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Proposition 5.5. A class of rings M satisfies condition K(t,t,t) if
and only if every ring A in M is an Andrunakievi¢ ring and if the index
of A is n, then

(a) = (a)'® + Za for all a € A where k = max{n —1;1}.

PROOF. Suppose M satisfies condition K(t,¢,¢) and let A € M. Then
J aI a A implies J 4 A; hence A is an Andrunakievié¢ ring with index 0.

Then k = 1 and from (a)") + Za < (a) 1« A we get (a) = (a)'V) + Za.
- Conversely let A € M be an Andrunakievi¢ ring with index n and let

k = max{n — 1;1}. Consider J aI 9 A. Then ™ C J and J C I. We now
show that J + T a A. Indeed,if be J + T and a € 4, then

ab € (b) = (b)® + Zb. Since J + T " C J,(b) C T and thus (b)* C
Hence ab € J + 7“‘). Likewise ba € J + 7(“; hence J + 7(k) a4 A. But
JCJ+ 7(”; hence J = J + 7*. Then 7(” C ;g N [(J +-j(k)](” C
CTE T e T e T C l Bae e T4 T A,

6. On condition L(z,y, 2)

These conditions, both for the associative and not necessarily asso-
ciative ring cases are easily taken care of by the examples form SANDS [7]
who proved the result for the cases L(z,t, z).

Proposition 6.1. Let M be a class of rings in the variety of all rings
or all associative rings. Then M satisfies condition L(z,t, z) if and only if

M = {0}.
PROOF. Let 0 # R € M. Then

I8 2[5 0] = o 818 2

0 Z
0 0 0 0

0 0

if and only if R = 0.
Transposing, we have

2 S]Q[D(OR) 3]4[0&) 3] and | 8]«.-[9{23) 3]

if and only if R = 0.

Acknowledgement. Thanks are due to A.D. SANDS for providing a
preprint of [7].
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