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Continuous orthogonality spaces
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To the memory of Professor Béla Barna

Introduction

In this note we take further steps towards a more complete descrip-
tion of orthogonally additive mappings. It is known (c.f. [10]) for a real
orthogonality space (X, L) in the RATZ sense (c.f. [6]) that assuming
dim X > 3, there can exist a non-trivial even orthogonally additive map-
ping on X with values in an abelian group (Y, +) only if, X is an inner
product space with the ordinary orthogonality L . This means that in
this context the only problems left open are in the 2-dimensional case.
Here we provide another approach to this case. Namely, we strenghten
the crucial axiom (O4’) of L introducing the notion of a continuous or-
thogonality space. This concept will prove to be fruitful from two points
of view. On the one hand, most of the known examples of orthogonality
spaces are “continuous”, and on the other hand we can prove more easily
our above mentioned result, and what is more, also for dim X = 2. As
a consequence, we reprove for the Birkhoff-James orthogonality (c.f. [3],
[4]) on a real normed vector space the earlier results obtained under regu-
larity conditions (c.f. 2], [8]), for dim X > 3 (c.f. [5]) or by complicated
methods in the general case (c.f. [9]).

Throughout the paper, R, R4, Q, N denote the set of real, nonneg-
ative real, rational numbers and positive integers, respectively. Further-
more, lin V' stands for the linear hull of a subset V' C X. The constant
mapping with value ¢ is denoted by c. Finally, we use 0 for the zero vector,
for the number zero and for the identity element of the group Y, as well.

1. Preliminaries

Definition 1.1. (RATZ [6], Def. 1) Let X be a real vector space of
dimension > 2 and L be a binary relation on X with the following prop-
erties:
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(O1) total for zero: ¢ L 0, 0 L z for all z € X;
(0O2) independent: if z,y € X \ {0}, z L y, then z and y are linearly
independent;

(O3) homogeneous: if z,y € X, z L y, then ax L By for all a,f € R;
(O4’) thalesian: if P is a 2-dimensional linear subspace of X, z € P
and A € R4, then there exists y € P such that z L y and

(z+y) L (Az —y).

Then L is said to be an orthogonality relation on X and (X, L) is called
an orthogonality space.

Definition 1.2. Let (X, L) be an orthogonality space and (Y ,+) an
abelian group. The mappings A, Q, F : X — Y are said to be add:-
tive, quadratic, or orthogonally additive, respectively, if they satisfy the

Cauchy-, the Jordan—von Neumann- or the conditional Cauchy functional
equations:

(1.1) Alz+y)=A(z)+ A(y) forall z,y € X,

(1.2)  Qz+y)+Q(z—y) =2Q(z) +2Q(y) forallz,y € X,
(1.3) Flz+y)=F(z)+ F(y) forall z,y € X withz 1L y.

Throughout this section X and Y will be an orthogonality space and
an abelian group, respectively, and we shall use the following notations:

Hom(X,Y)= {A: X — Y | A is additive},
Quad(X,Y)= {Q: X — Y |Q is quadratic},
Hom,(X,Y)= {F: X — Y | F is orthogonally additive},
(o)Hom;(X,Y)= {D:X — Y |D is odd orthogonally additive},
(e)Hom,(X,Y)= {E: X — Y |E is even orthogonally additive}.

Theorem 1.3. (ACZEL [1], Thm. 2) For any Q € Quad(X,Y') there
exists a function B : X x X — Y which is
(i) symmetric: B(z,y) = B(y,z) for all z,y € X;
(ii) biadditive: B(xz,y + z) = B(z,y) + B(z,z2) for all z,y,z € X;
(ii1) representative: 4Q(x) = B(z,z) for all z € X.
The mapping B is uniquely determined by QQ and we call it the biadditive
representation of 40Q).

Lemma 1.4. (SZABO [10], Lemma 2.6) Let Q € Quad(X,Y) and let
B be the biadditive representation of E = 4Q. Then E is even and
(i) E€ Hom;(X,Y) < 2B(z,y)=0forallz,ye X, z Ly;
(ii) E € Hom (X,Y) = E(Au) = E(Mv) for any u,v € X such
that (v +v) L (u —v) and every A € R;
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(iii) E(Au) = E(\v) for someu,v € X and every A € R => B(Au, pu)
= B(Av,pv) for all A\, p € R.

Theorem 1.5. (RATZ [6], Thms. 5,6; SzaBO [9], Thm. 1.8) For any
orthogonality space (X, 1) and any abelian group (Y, +), we have
(i) (o)Hom,(X,Y)=Hom(X,Y);
(ii) (e)Hom (X,Y) C Quad(X, Y);
(iii) Hom, (X,Y) = Hom(X, Y) <= (¢) Hom/(X,Y) = {0}.

Lemma 1.6. ( SzABO, [10], Lemma 3.1) IfE € (e) Hom (X, Y)\ {0},
then 2E € (e)Hom (X, Y )\ {0}, too.

Definition 1.7. Let L be a real vector space of dimension > 2. The
binary relation F on L is said to be

(1) symmetric, f z,y € L, 2 F y = y | z;
(i1) right additive, if z,y,z € L, 2t y, sk z=z+F (y+2);
(iii) right homogeneous, if r,y € L,z Fy = z I By for all # € R;
(iv) right projective, if z,y € L = there is a € R with z - (y — az);
(v) right unique, if z,y € L, * # 0 => there exists at most one
a € R such that z + (y — az).

Analogously, one can define the corresponding “left sided” properties
of - . In the symmetric case the “left” and “right” attributes are omitted.

Remark 1.8. One can readily see, that any orthogonality relation L
on X is right projective. Also, an equivalent formulation can be given
for the right uniqueness of L as follows: if u,v € X \ {0}, v L v and
y € lin{u,v}, u L y, then y = Bv with some 3 € R. As to the other
properties of L, we have

Theorem 1.9. (RATZ (7], Thm. 2.3, SzABO [10], Cor. 3.4)
If (e)Hom (X, Y ) # {0}, then the orthogonality L is

(1) symmetric;

(ii) additive;

(iii) unique.

Lemma 1.10. Suppose that (e)Hom,(X,Y) # {0} and PC S C.X
are linear subspaces with dim P = 2, dim S = 3. If u € P\ {0}, then there
exists vectors v € P\ {0} and w € S\ P such that v L v, v L w and
v 1L w.

ProOF. By axiom (0O4’) there exists a vector v € P with u L v,
(u+v) L (u—v) and axiom (0O2) ensures that v # 0. Now choose x € S\ P
and y € lin{v,z} \ {0} such that v L y. Finally, let w € lin{u,y} with
ul w, (u+w) Ll (u—w), whence again w # 0. Since w = au + By, the
symmetry, additivity and homogeneity of L implies that v L w.
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Lemma 1.11. (SzABO [10], Lemma 3.2) Suppose that B is the biad-
ditive representation of a mapping E € (e)Hom, (X, Y)\{0}. Ifz,y € X
are linearly independent and 2B(Az, py) = 0 for all A\,p € R, then z 1 y.

Corollary 1.12. (SzABO [10], Cor. 3.3) If (e) Hom 1 (X, Y') # {0} and
z,y € X are such that z L y, (az +y) L (fz — y) with some o, 3 € R,
then (ax — y) L (Bz + y) holds, too.

Corollary 1.138. If u,vo € X \ {0}, u 1 v and there exists
E € (e)Hom, (X,Y) \ {0} such that E(Au) = E(\v) for all A € R,
then (u +v) 1 (u —v).

PRrROOF. Let B be the biadditive representation of 4E # 0. Then by
Lemma 1.4, part (i) and (ii1), we have for all A, z € R that

2B(A[u + v], plu —v]) =
= 2B(Au, pu) — 2B(Au, pv) 4+ 2B(Av, pu) — 2B(Av, uv) = 0.
Since clearly u + v and u — v are linearly independent, Lemma 1.11 implies
(u+v) L (u-—0o)

Corollary 1.14. Suppose that (e)Hom, (X ,Y) # {0}. Let P be a
2-dimensional linear subspace of X and u,v € P\ {0} such that u L v
and (u +v) L (u —v). If z = é(mu + nv), y = au + Pv € P with some
m,n €N, {,a,B€ R, £ #0, then

rly &< ma+nf=0.

PrOOF. Let B be the biadditive representation of a mapping
E € (e)Hom (X, Y)\{0}, and z = nu—mv. By (O2) u and v are linearly
independent, whence one can derive easily the linear independency of z
and z, too.

Sufficiency. According to Lemma 1.4, for all A\, u € R it follows that

2B(Az, puz) = 2B(Aé[mu + nv), u[nu — mv]) =
=2B(Aému, unu) — 2B(Aému, pmv) + 2B(Aénv, unu)—
— 2B(Aénv, pmv) = 2mnB(A€u, pu) — 2nmB(Afv, pv) = 0.

Thus Lemma 1.11 implies that z L z. Since ma + nf = 0, we have
m a a

y=oau— —av=—(nu—mv)=—z,
n n n

and so, by the homogeneity of L, z 1 y follows.

Neccessity. Because of the uniqueness of 1 and z L 2, = 1 y, we have
y = 1z (see Remark 1.8 above).
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2. Continuous orthogonality spaces

Definition 2.1. The real vector space X of dimension > 2 is said to
be a continuous orthogonality space, if it is equipped with a continuous
orthogonality relation L, i.e. one having axioms (01), (02), (0O3) and
bein

(OE”) continuously thalesian: if P C X is a 2-dimensional linear sub-
space and = € P, then there exist y € P with ¢ 1 y and continu-
ous functions £,7: [-1,1] = R such that §(+1) = +1 and

(x + [&(r)x +n(T)y]) L (z = [§(r)x +n(r)y]) forall 7 € [-1,1].

Proposition 2.2. Every continuous orthogonality space (X, 1) is an
ordinary orthogonality space as well, or more precisely

(03) and (04”) = (04").

PRrROOF. Let P C X be a 2-dimensional linear subspace, z € P and
A € R4. Then applying axiom (0O4”) for (1 + A)z, we obtain y € P
and continuous functions €, on [—1,1] with the above properties. Since
-1 < (1-X)/(1+4X) <1, we can choose 7y € [-1,1] such that £(7)) =
(1 =X)/(1+ A). Thus axiom (0O4") implies that

2 (.1: + @y) = ((1 + Az + “__l_—:\\(l + Az + r;(n)y]) 1

6 ¥ ((1 + Az - Ii;—:(l + Az + q('r,\)y]) =2 (,\x - n(;)y) :

Thus, by the homogeneity of L, (04’) holds with [n(7x)/2]y.
Next we give several examples of continuous orthogonality spaces.

Ezample 2.5. (RATZ [6], Exa. A) The trivial orthogonality on X de-
fined by (O1) and for z,y € X \ {0} # L y <= z,y are linearly inde-
pendent. Here (O47) is satisfied e.g. with £ = Id|_, ;) and an arbitrary
positive continuous 7.

Ezample 2.4. (RATZ [6], Exa. B) The ordinary orthogonality on an
inner product space (X, (-,-)) defined by ¢ L y <= (z,y) = 0. Here the
continuous functions {, n for (04”) can be chosen always to be { = Id|_; j

and n: 1 — V1 - 72,
Ezample 2.5. (RATZ [6], Exa. C) The Birkhoff-James orthogonality

on a normed linear space (X, || - ||) defined by z L y < ||z + By|| > ||z||
for all 3 € R. The crucial axiom (O4") can be checked in several steps
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by a method used in [9] for proving Lemma 2.1 and Theorems 2.2, 2.3, as
follows:

i)

Let P C X be a linear subspace, dimP = 2 and z € P. Since L
satisfies (04’), there is a vector y € P with ||y|| = |[z|| and = L y. For
z = 0 the functions { = Id[_; ;) and n = 0 work, thus we may assume
that = # 0. Let the continuous function K : | — 1,1[ xR x R — R4
be defined by

K(r,y,a) =||(2 - a)z + a(rz + yy)||.
and consider for all 7 € ] — 1, 1| the sets

Fu(r)={v | K(7,7,a) 2 K(1,7,1) for all a < 1},
r'*(r)={~ | K(r,v,a) 2 K(7,%,1) for all a > 1}.

Using the convexity of the functions @ — K(7,v,a) and the limits
limg 00 K(7,7,a) = 400 forall T € | = 1,1[, ¥ € R, one can verify
along the lines of proof of [9], Lemma 2.1 that for every 7 € | — 1,1
— 0€T.(r), 4 €TI'*(7) are closed subsets of R;

— Fu(r)UI*(r) = R;

— v, €l (7) and 4* € (1) => 7. < 7*.

Let now the function v : ] — 1,1[ — [0,4] be well defined by
() =supl,(r) =inf*(r) forallr7e]-1,1].

The continuity of ¥ can be proved again by a technique used for [9],
Theorem 2.2. In the sequel, we show that the limits lim,_ 4+, v(7) also

exist. Consider e.g. the case 7 / 1.
We need the following implication: if 0 < 7, < 7 < 1 and

71 € I'*(7y), then v2 = 71(1 4+ 7)/(1 4+ 1) € I'*(72). Indeed, for any
as > 1 we have
(2= az)z + az(r2x + 12y) = A[(2 — a1)z + ay (112 + 1y))

with scalars A = 1 + az(m2 — 7)/(1 + 1) =2 (1 + 72)/(1 + 71) and
ay = [az(1 +73)/(1+7)]/A > 1. Then

72

g = 1+ i .
K(72.72,a2) = AK(11,m,01) 2 1 K(m,m,1) = K(72,72,1),

T

1.e. y2 € I'*(m). In particular, v(m2) < 29(7)/(1 + 71).
Now consider a strictly monotone increasing sequence of positive
numbers 7, converging to 1 with lim,_..%(7.) = liminf,; » v(7).
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Then by the above implication we have y(7) < 2v(7,)/(1 + 7,,) for all
n€N, 7, <7 < 1. Thus

limsup¥(7) < limp—oo 2y(m)/(1 + ) = liminf y(7),
T 71 r/1

what was to be proved.
The case 7 \, —1 can be verified in an analogous way and these

limits make it possible to extend v continuously to [—1,1] by v(£1) =

lim, 41 (7).
iii) Finally, (O4”) will be satisfied with the continuous functions
¢ = Idj_y,;) and n = 7. To check this, one should only consider the

definition of L and the function K (see also [9], Thm. 2.3). We re-
mark that with a fixed y the functions £ and 7 are essentially unique,
ie. —1 < §(7) < 1 and n(7) is uniquely determined by £(7) for all

T € [-1,1].

Ezample 2.6. Let X = R? and r : R — R be a positive, m—periodic
and continuously differentiable function. Define the orthogonality on X
by z L y <

z = A(r(p) cos p;r(p) sinp),
y = u(r'(p) cosp — r(p)sinp;r'(p)sing + r(p) cos )

for some A, u, ¢ € R. The axioms (O1), (02), and (O3) are clearly fulfilled
and the axiom (0O4") also holds for z = A;(r(@;)cos¢,; (@) sin@,) with

y= AI(T’(QI)COS @z — 1r(pz)singy; r'(:p,)sint,a, . 5 r(c,or)cosgo,)

and functions £ = ao g, n = fo ¢ where a,3: R — R are defined, using
the abbreviation S;(¢) = r'(¢; + ¢)sing + r(¢; + @) cosp, by

S:(p)[r'(p2)sing — r(p;)cosyp]
r(p: + @) r(p:)

ar . _oSz(p) - sing

Ble) =2 r(p: + )

A,

a(p) = -2

and ¢ : [-1,1] = R, ¢(7) = o - (1 = 7)/2 with 0 < ¢ < 7 such that
cot g = T"(\,D;)/T'(kpr ).

Remark 2.7. We do not know whether there exists at all an orthogo-
nality space which is not continuous.
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3. Existence of an equivalent inner product

Lemma 3.1. Suppose that (X, L) is a continuous orthogonality space
such that (e)Hom (X ,Y) # {0} with some abelian group (Y ,+). Then
for any 2-dimensional linear subspace P C X and u € P\ {0} there exists
a unique inner product (-,+)s : P x P — R such that

(uy,u)p=landzly <= (z,y)p=0 forallz,y€ P.

‘PROOF. Let P C X be a 2-dimensional linear subspace, u € P\ {0}.
By (04"), there exist v € P\ {0} and contiuous functions £,n: [-1,1] = R
such that u 1 v, {(£1) = £1 and

(3.1) (u+ [§(r)u +n(7)v]) L (u — [§()u + n(T)v])

for all 7 € [-1,1]. We may and do assume that (u + v) L (u — v) with
respect to the equality n(7)v = [p(7)/n(70)][n(70)v], where 7o € [—1,1] is
such that &(7mp) = 0 and so by axiom (02) n(m) # 0.

We are going to show that £%(7) 4+ n*(7) = 1 for all 7 € [-1,1]. For
if this equality were not satisfied, then taking into account the continuity
of the functions £,n and &(£1) = %1, there would exist an open interval
1, 2| C [=1,1] such that £%(7) 4+ n%(r) # 1 whenever 7 € |7y, 73| and at
least one of the functions £ and 7 is not constant on |7y, 72[. Then there are
numbers 79 € |1y, 72[ and my, ng € N such that n(7) = [no/mo][1 + &(70)]
or n(79) = [no/mo][l — &(79)]. Indeed,

— if (1) = & # —1 on |ry, 73[, then 7 — n(7)/[1 + &] is a non—constant
function on ]y, 72[ and so it takes on a non-zero rational number as

a value: 1)(79)/[1 + £(70)] = no/mo € Q;

— if §(7) = & # 1 on |1, 72, then with the same argument, we have

n(7o)/[1 = &(m0)] = no/mo € Q

— if € is not constant on ]y, 73[, then we may assume that £(7) # £1 on
|71, m2[, and because of the axiom (02), one of the continuous functions

T — n(7)/[1 £ &(7)] is not constant on |ry, 73[, making it possible to

apply one of the above arguments.

Now let e.g. n(79) = [ng/mo][l + &(79)]. This means by (3.1) that

S o) B M et = T A s b
my my

Now, with respect to Corollary 1.14, we have

[1 = &(mo)]mi — [1 4 &(ro)]nd = 0
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whence " . i
mn — no mono
i | = g To) = ——3
E( 0) m%+ng$ 7?( G) mg+nga

i.e. £2(19)+n%(mo) = 1. This contradiction proves our assertion £2 +7? = 1
on [—1,1].

Now one can easily see that each vector z = a,u + B,v € P\ lin{v}
can be written into one of the forms:

2= A ([1 4 &(72)]u £ n(7:)v)
with some A\; € R and 7; € [-1,1]. Thus by (3.1) and Corollary 1.12 we

have

z L ([1=&(r)]u Fn(r:)v)
and so by the uniqueness of L, we have z L y = ayu + fyv € P if, and
only if, with some A\, € R

= ’\y([l — &(72)]u F n(72)v),

ie. azay+PB:8y = A Ay([1-€%(72)] —n*(72)) = 0. Hence (z,y)p = a-ay+
B:By is an inner product on P possessing all of the required properties.

Uniqueness. If (-,-)p is another such inner product on P, then
0=(u+v,u—v)p=(u,u)p—(v,v)p=1-(v,v)p,
and so o ‘ 2 .
(z,y)p = azay(u,u)p + B:By(v,0)p = (z,9)p -
Remark 3.2. For dim X = 2 the Lemma just proved turns into a final
result: If () Hom, (X,Y) # {0}, then X is an inner product space with
the usual orthogonality L . Although, for dim X > 3 this theorem has

already been proved in a more general context (c.f. [10], Thm. 4.2), we

are now in a position to offer a possibly simpler proof for the continuous
case.

Theorem 3.3. Suppose that (X,Ll) is a continuous orthogonality
space and (Y ,+) is an abelian group. If (e)Hom,(X,Y) # {0}, then
X is an inner product space for some (-,-) : X x X — R such that

ztly < (z,y)=0 forallz,ye€ X.
PROOF. Let E € (e)Hom (X,Y)\ {0} be fixed with its biadditive

representation B and define a functional p : X — R, as follows:

Let p(0) = 0 and assign to each z € X \ {0} a positive real number
p(x) with the aid of a fixed vector u € X \ {0} and the linear subspace
Pee=tnlu.z}

— for dim P, =1 let p(z) = |a|, where * = au for some a € R;
— for dim P; = 2 let p(2) = ,/(z,z)p, , where (-,-)p : Pr X P = R is
the unique inner product defined by Lemma 3.1.
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Clearly p(u) = 1 and p(Az) = |A|p(z) whenever z € X, A € R.
Furthermore, for any ¢ € X, we have either z = +p(z)u or (z + p(z)u) L
(z — p(z)u), therefore E(z) = E(p(z)u) = E(p(y)u) = E(y) for all z,y €
X, p(z) = p(y). In what follows we show that the desired inner product
can be defined by

(B3Y, ' Iy 43 (P(z +y) - p*(z —y)) forallz,y € X.

To prove that (3.2) defines an inner product on X, it suffices to show
that the restriction of (-,-) to any 2-dimensional linear subspace P C X
is an inner product on P. The case u € P is trivial. When u ¢ P, then
S = lin{u,P} is 3-dimensional and so by Lemma 1.10 we can choose
vectors v,w € S such that v L v, u L w, v L w, p(v) = p(w) = 1. Since
E(A\v) = E(Aw) for all A € R, by Corollary 1.13 we have (v+w) L (v—w).
This means for the inner product (-,-)5 on @ = lin{v, w} that

0= (v+w,0—w) = (1,003 - (w,0)h =1 - (1w0,0)} .
Therefore

(ﬂzu + 7w, ﬁyv 8 7yw)5 = ﬂ:ﬁy + Yz2Yy

whenever z = B,v +7,w, y = fyv + 7w € Q. Now for z = fv +yw €
Q, B*+~? =1, it follows that u L z because of the additivity of L . On the
other hand (v+2) L (v—2z)since (v+2,v-2) = (1+8)(1-)—-~+* = 0.
Thus E(Au) = E(Av) = E(Az) for all A € R whence by Corollary 1.13 we
have (u 4+ z) L (u — z), and so

0=(u+z2,u—2)p =(uu)p —(2,2)p, =1-(2,2)p..

Finally, for z = a,u + B,v + v.w € S\ lin{u},

2 . Ba Vz

pi(z) =p (axu+vﬂ3+73[\/mv+mw
= p? (aru+\/5§+7§z)=
=<a-xu+ BZ+9%2, azu+ ﬁg-{»'ygz)::

= a(u,u)p + (B2 +72)z,2)p, = a2 + % + 2

holds, i.e., p defines by (3.2) an inner product on P C S (Notice that
Pe=R)
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In the rest of the proof we show that for z,y € X we have (z,y) =0
if, and only if, ¢ 1 y. We may suppose that z,y # 0 and so the linear
independency of z,y.

First suppose that (z,y) = 0. Then for any A, u € R we have

p| —x + ._..'I =0 i\.z L
. 2 o 2 2 45 s
This implies that

& A & .k
B(zr,zx) + 2B (21:,23;) +

NI | D
N =
=
o=
=
SR
Il

B Y=
5 TabrgnTs _IJ’Q")
A m A i A p)
=Bl oe-EBsl Bl s~ By SeEyl=
(2’ 2”) (Qx g¥ 3> " gk
e A A A u koop
= (21'.2.1') 23(2.1',2y)+3(2y,2y)

whence for all A\, u € R

B(Azr,uy) =4B (%x, %y) =)

Thus Lemma 1.11 gives z L y.

Conversely, if z L y, then we can choose z € lin{z,y} such that
p(z) =1 and (z, z) = 0. By the assertion just proved z L z follows and so,
because of the (right) uniqueness of L, we have y = uz, i.e., (z,y) = 0.

Corollary 3.4. Let (X ,||-||) be a real normed linear space of dimen-
sion > 2 with the Birkhoff-James orthogonality L, and (Y ,+) an abelian
group. If (e)Hom (X ,Y) # {0}, then X is an inner product space and
by [6], Theorem 9,

(e)Hom (X ,Y)={ao|-|*| a € Hom(R, Y)}.
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