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1. Introduction and statement of the results

Throughout this paper, a mean value of two positive real numbers
a,b denoted by M(a,b), is defined to be a real number which satisfies the
following postulates:

(P,) M:RtxRY— R;
(P;) M(a,b) = M(b,a) (symmetry property);
(P3) M{(a,a) =a (reflexivity property).

See [2].
We consider the complete elliptic integral of the first kind

2r
1 dé
(1) I(a,b)"="‘2—f —,
”0 \/a2c0829+bzsm ()

where a, b are arbitrary positive real numbers. Throughout this paper a, b
denote arbitrary positive real numbers.

The above I(a,b) is closely related to the arithmetic-geometric mean
of Gauss of a,b denoted by G(a,b) (see [5], [7] and [9]). Indeed, the fol-

lowing equality holds in Rt x R*:

(2) G(a,b) = 0N
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It is well-known that f(a,b) = G(a,b) satisfies the following functional
equation in Rt x R*:

Q 1(552 V&) = flab),

where f : R* x Rt — R and f is an unknown function. Hence, by
(2) f(a,b) = I(a,b) satisfies (3). Throughout this paper, for the sake of

simplicity, we denote Va2 cos? § + b2 sin? @ by r.
The purpose of Section 3 is to prove the following theorem:

Theorem 1. Let f : Rt x R* — R. If f can be represented by the
form, containing some function p, in R* x R*

2w
1
(4) fla,b) = — [ p(r)dé,
2r af

where p: R — R and p”(;r) is continuous in R, then the only solution
of (3) is given by

f(a,b) = AI(a,b)+ B=A + B,

1
G(a,b)
where A, B are arbitrary real constants,

Before proceeding to Theorem 2 we require the additional condition
on p that p be strictly monotonic in R*. We set (see [4])

2
(5) M(a,b;p) €' p~! (a}; /p(r)de) :

0

Throughout this paper, for the sake of simplicity, we write M (a,b) for

M(a,b:p), i.e.,
2r
M(a,b) € p-! (%/p(r)dﬂ) .

0

If we set p(r) = %, p(r) = logr, p(r) = %, p(r) = r? in (5), by using (1),
(2) and the three definite integrals
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2
22 /log Va? cos? 8 + b2 sin? §d6 = log s :
2n 2
0
27
1 de 1

o a2c0529+bzsin20=5’
0

a’ + b?
2 ;]

2w
% /(a2 cos® 8 + b*sin® 6) df =
0

we obtain M(a,b) = G(a,b), M(a,bd) = E—'ztﬁ, M(a,b) = Vab,

M(a,b) = 4/ “—2'2""—2, respectively.

The purpose of Section 4 is to prove the following theorem:

Theorem 2.

(i) M(a,b) = G(a,b) holds for all positive real numbers a, b iff
p(r) = Al 4+ B where A(# 0), B are arbitrary real constants.
(1) M(a,bd) = %té holds for all positive real numbers a,b iff
p(r) = Alogr + B where A(# 0), B are arbitrary real constants.
(iii) M(a,b) = Vab holds for all positive real numbers a, b iff
p(r) = A% + B where A(# 0), B are arbitrary real constants.

(iv) M(a,b) =/ % (the root-mean-square of a, b) holds for all positive
real numbers a,b iff p(r) = Ar? + B where A(# 0), B are arbitrary

real constants.
(v) There exists no p(r) such that M(a,b) = :—:_—% (the harmonic mean of

a,b) holds for all positive real numbers a, b.

To prove Theorem 1 and Theorem 2 the lemma in Section 2 plays an
important part.

Remark. About means see [1], pp. 234-244, [2]-[8] and [10]-[13].

2. Lemma

Lemma. Let p : Rt — R. We assume that p (z) is continuous in
R*. If we set

2m 2r

(6) f(a,b) «f % /P (\/(12 cos? 8 + b2 sin? 6‘) df = 2i /P(T)dﬁ'.

0 0
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then

() falere) = file,c) = 37(c),

(i) Taateey s hulee)e 3ep”(c ;:.D(C)

(iii)  fas(e,c) = fra(c,c) = CP”(C)SC p (C)‘

where c is an arbitrary positive real number.

ProOOF. Throughout the proof we apply differentiation under the in-
tegral sign which can be done because p(r) is of class C? in Rt x Rt with

respect to a,b.

Proof of (i). By (6) we obtain

2r
(7) fu(a,b) = 51; /p'(r)% cos? 8 d.
0

Setting @ = b = ¢ in (7) and using \/c?(cos? 8 + sin’ ) = ¢ yields
2w 2x 5
falc,c) = —}—/ '(c)E cos’ §df = & '(c)]c0529d6 =
EEDRET e AN = oxP T
0 0

1

1
% ol o i)
= 2Wp(c)ﬂ'— 2p(c).

Similarly we can prove that
fole.e) = 5p'(c).
Proof of (ii). By (7) we obtain

L

- 2
faala,b) ———[( r)—cos 6+p'(r) s 9) cos? 6.d6 .
i

Setting a = b = c in the above equality yields



New characterizations of the arithmetic—geometric mean . .. 327

2n
faalc,c) = 2i (p (c)/cos 946 + 2 LAC )-/sinzﬂcoszedﬂ) =

0
e Lo AR L R sy -
_Qw(p(c)ti e 4)_
3cp (c) + p'(c)
8¢ i

Similarly we can prove that
3cp’(c) +p'(c)
8¢ '

Proof of (iii). We can prove (iii) in a similar manner to that of (i1).
Q.E.D.

fon(c,c) =

3. Proof of Theorem 1

Applying a% to both sides of (3), using the Chain Rule for differ-
entiation for two real variables and observing that fa5(a,b) = fia(a,b)
yields

-fﬂa («a—f—b\/_) 2\§-fae.(a+b.\/a_b)+

s fbb(“”,\/?) ‘([n(‘”’b\/—) fuala, b).

Setting a = b = ¢, where ¢ is an arbitrarily fixed positive real number, in

(8) yields

(8)

(9) gf.m(c,c) — %fnb(c,c) - ifa,b(c,c) + %fb(ac) -0

Substituting f.a(ec,¢), fen(e,c), fan(c,e), fa(e,e) in Lemma in Section 2
into (9) and qlmpllf}mg the resulting equality yields

tr

2
p (c)+ ;p'{c) =1
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Since ¢ was an arbitrarily fixed positive real number, we can replace ¢ by
a positive real variable z in the above equality. So we obtain in R*

p'(@)+ 2p/(z) = 0.

Solving the above differential equation yields in R*

pl(z) =A%+B,

and so
1
(10) p(r) = A; + B,

where A, B are real constants satisfying A # 0. Substituting (10) into (4)
and using (1) yields in Rt x R*
(11) f(a,b) = Al(a,b) + B.

Direct substitution of (11) shows that (11) is a solution of our original
functional equation (3).

4. Proof of Theorem 2

Remark. To prove Theorem 2 (i) we shall apply Theorem 1.
Proof of (i). We have only to prove the “only if’ part. By hypothesis

(12) M(a, b) = G(a, b)

holds in R* x R*. By (5), (12) we obtain in R* x R*

2
(13) pG(a8) = 5= [ ptr)de.

-

0

Since G(a, b) 1s a solution of the functional equation (3), P(G(a, b)) is also
a solution of (3). Furthermore, (13) holds. Hence, by Theorem 1 we obtain
in Rt x Rt
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1

(14) p(G(a, b)) =AI(a,b)+B=AG(a,b)

+ B,

where A, B are real constants satisfying A # 0. If we set b = a in (14),
then we obtain in R

|
(15) p{G(a,a))—AG(a,a) + B.
Since G(a,a) = a, by (15) we have in R*
1
pla) = AE + B,
or
p(r)=Al +B. Q.E.D.
Proof of (ii). We have only to prove the “only if” part. By hypothesis
(16) M(a,b) = “;b

holds in R* x R*. By (5), (16) we obtain in Rt x R*

2
a+b 1
(17) p( 5 )—2—?;-/;)(1'](:{9.
0
If we set in Rt x Rt
1 2r
(18) flah) = 5= [ pr)as.
2n
0

by (17),(18) we have in R* x Rt

(19) f(a,b)=p(“+b)-

2
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Applying (—%2; to both sides of (19) and setting a = b = ¢, where ¢ is an
arbitrarily fixed positive real number in the resulting equality yields

(20) faalere) = 197 (0).

By (18) and by Lemma (ii) in Section 1 we obtain

3cp’(c) +p'(c)
8¢ ;

(21) faale,c) =

Substituting (21) in (20) and simplifying the resulting equality yields

. 1
p (c)+ ;P'(C) =0,

and so we obtain in Rt
"
p'(2) + 2p(x) = 0.
Solving the above differential equation yields in R*

plz) = Alogz + B,

and so

p(r) = Alogr + B,
where A, B are real constants satisfying A # 0. Q.E.D.
Proof of (i11). Since we can prove (iii) by using a similar argument to
that in (i1), we omit the proof.

Proof of (iv). Since we can prove (iv) by using a similar argument to
that in (i1), we omit the proof.

Proof of (v). The proof is by contradiction. Assume contrary. Then
there exists a p(r) such that

2ab

(22) M(a,b) = "

holds for all positive real numbers a, b. By (5), (22) we obtain in RT x R*
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(23) p (azf’b) = -23; 7p(r) de.
0

Starting with (23) and using a similar argument to that in (i) yields the
differential equation for p in Rt

P () + 2p(2) =0,

Solving the above differential equation yields in R*

1
p(z) =A— + B,
C
and so
(24) (r)—A—1-+B—A : + B
PT) =23 "~ (a2 cos? 8 + b2 sin? §)? ’

where A, B are real constants and A # 0. Substituting (24) into (5) yields

2 i
(25) M(a, b) = ('zl? 0/ (a? coszaiebzsin’eﬁ) '
Since
o df 0 R
(26) 2—,,/ (a2cos? @ + b2sin? §)?  2ab (EE § -55) ’

by (22), (25), (26) we obtain for all positive real numbers

0 o e SO B LT
a+b \2ab\a2 " B2
a=b.

This is a contradiction. Q.E.D.

and so
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Remark. The mean M(a,b) = % for all positive real numbers a, b

is said to be the antiharmonic mean of a,b. As a generalization of the
above mean and the arithmetic mean of a, b we consider the mean

M(a,b) = a+_::t:+f where n is a positive integer. In a similar way to
Theorem 2(v) we can prove the following result: If n > 1, there exists no
p(r) such that M(a,b) = a,.—"_';-:-}_'g-::r holds for all positive real numbers a, b.
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