Counterexamples to a conjecture about the sum of degrees of irreducible characters

By YAKOV BERKOVICH (Ramat-Gan)

In memory of Professor Lew A. Kaluzhnin

Let Irr(G) be the set of all irreducible complex characters of a finite group G. If k(G) is the class number of G, then |Irr(G)| = k(G). Let $T(G) = \sum_{\chi \in Irr(G)} \chi(1)$, $f(G) = |G|^{-1} \times T(G)$.

If $H \leq G$ then $f(H) \geq f(G)$ (this is an easy corollary of Frobenius reciprocity). Under some suppositions on degrees of irreducible characters the following inequality holds (see [1]): $f(G/H) \geq f(G)$ for all normal subgroups H in G (see [1, Lemma 2.6]). The following conjecture was posed (see question 4.3 in [1]):

(*) If H is normal in G then
$$f(G/H) \ge f(G)$$

In this note we give counterexamples to (*).

In the sequel P is the non-abelian group of order p^3 and exponent p > 2. Then

$$P = \langle x, y, c | x^p = y^p = c^p = [x, c] = [y, c] = 1, c = [x, y] \rangle$$
.

Let A be the set of all $\alpha \in \operatorname{Aut}(P)$ such that $\alpha|_{Z(P)} = \operatorname{id}$. If $\varphi \in \operatorname{Aut}(P)$,

$$\varphi(x)=x^{\alpha_1}y^{\beta_1}c^{\gamma_1}, \ \ \varphi(y)=x^{\alpha_2}y^{\beta_2}c^{\gamma_2},$$

then $\varphi \in A$ iff $\alpha_1 \beta_2 - \beta_1 \alpha_2 = 1$. Hence the special linear group SL(2, p) is a subgroup of A.

Consider the semi-direct product H = SL(2, p)[P] with the core P such that $Z(H) = Z(P) = \langle c \rangle$ and SL(2, p) acts faithfully on P/Z(P).

Since Irr(P) contains exactly p-1 non-linear characters and for F < SL(2,p) we have $|SL(2,p):F| \ge p$ and so

(1) All non-linear characters from Irr(P) are H-invariant. In particular,

if $P \leq G \leq H$, then all these characters are G-invariant.

All our counterexamples $G = G^p$ satisfy $P < G = G^p < H$, $P \in \operatorname{Syl}_p(G)$. Let $G = G^p = F^p[P = F[P]$. By above F > 1 and F is a p-complement in G. Since $|\operatorname{SL}(2,p)| = p(p^2 - 1)$ we have

(2) Index|G:P| = |F| divides $p^2 - 1$.

By construction Z(G) = Z(P). Let $\bar{G} = G/Z(P)$.

(3) \bar{G} is a Frobenius group with the core \bar{P} .

PROOF. Suppose that $\sigma \in F$ and $C_{\bar{P}}(\bar{\sigma}) > 1$. By Maschke's Theorem $\bar{\sigma}$ is represented in an appropriate basis of the linear GF(p)-space \bar{P} by the matrix $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$. Since det $\bar{\sigma} = 1$ then a = 1, $\bar{\sigma} = 1$, and \bar{G} is a Frobenius group.

(4)
$$k(G) = k(\bar{G}) + (p-1)k(F).$$

PROOF. Partition the elements of G into four subsets:

$$G_1 = Z(P)^{\#} = Z(G) - \{1\},$$

 $G_2 = \bigcup_{x \in G} x^{-1} F x,$
 $G_3 = P - Z(P),$
 $G_4 = G - (G_1 \cup G_2 \cup G_3).$

Then G_1 is the join of p-1 one-element G-classes, G_2 is the join of k(F) G-classes. If $x \in P - Z(P)$ then $|C_G(x)| = p^2$ by (3); so $|G: C_G(x)| = p|F|$, so G_3 is the join of

$$\frac{|P - Z(P)|}{p|F|} = \frac{p^2 - 1}{|F|}$$

G-classes.

Let $x \in G_4$. Then $x = f\pi$, $f \in F$, $\pi \in P$. Since $x \notin G_2$, 0(x), the order of x, does not divide |F| by the Schur-Zassenhaus Theorem. Since $x \notin G_1 \cup G_3$ we have $0(x) \neq p$. Thus $f \neq 1 \neq \pi$. Now (3) implies that $0(\bar{x})$ divides |F|; here \bar{x} is the image of x under the homomorphism $G \to \bar{G} = G/Z(P)$. Hence $\pi \in Z(P)^{\#} = Z(P) - \{1\}$. Suppose that $f\pi$ is conjugate to $f_1\pi_1$ in G, $f_1 \in F$, $\pi_1 \in Z(P)$. Then there exists $g \in G$ such that $(f\pi)^g = f_1\pi_1$, and $\pi = \pi^g = \pi_1$, $f^g = f_1$. Hence $f_1 \in F \cap F^g$. Since F is a TI-subgroup of G and $f_1 \neq 1$ we have $F = F^g$, $g \in N_G(F) = F \times Z(P)$, and we see that f and f_1 are conjugate in F. Hence G_4 is the union of (p-1)(k(F)-1) G-classes.

Thus $k(G) = p - 1 + k(F) + \frac{p^2 - 1}{|F|} + (p - 1)((k(F) - 1)) = k(\bar{G}) + (p - 1)k(F).$

It follows from (3) and the properties of irreducible characters of Frobenius groups that

(5)
$$T(\bar{G}) = T(F) + p^2 - 1.$$

Compute T(G). Let $\mathcal{M} = \{ \chi \in \operatorname{Irr}(G) | Z(P) \not\leq \ker \chi \}$. Since Z(P)is the only minimal normal subgroup of G, \mathcal{M} is the set of all faithful irreducible characters of G, so that

$$T(G) = T(\bar{G}) + \sum_{x \in \mathcal{M}} \chi(1).$$

In view of (5) it remains to compute $\sum_{\chi \in \mathcal{M}} \chi(1)$. Suppose that $\chi \in \mathcal{M}$. Since P is non-abelian and χ is faithful, by Clifford's Theorem and (1) one obtains $\chi_P = e_X \psi$ where ψ is a non-linear irreducible character of P. In particular, p divides $\psi(1)$. Since gcd(|P|, |G:P|) =1, ψ has an extension $\psi^0 \in \operatorname{Irr}(G)$ [2, Cor. 8.16]. Since $\psi_P^0 = \psi$, we have $\psi^G = \psi^0 \varrho_{G/P}$ where $\varrho_{G/P}$ is the regular character of G/P, and irreducible components of ψ^G have a form $\alpha \psi^0$ where $\alpha \in \operatorname{Irr}(G/P)$, and $\alpha \to \alpha \psi^0$ is the injection of Irr(G/P) on the set of the irreducible components of ψ^G [2, Cor. 6.17]. Suppose that $\psi_1 \neq \psi$ is a non-linear character in Irr(P), ψ_1^0 is a certain extension of ψ_1 on G, $\alpha_1\psi_1^0$ is an irreducible component of the induced character ψ_1^G and $\alpha_1 \in \operatorname{Irr}(G/P)$. Since $(\alpha\psi^0)_P = \alpha(1)\psi \neq \alpha_1(1)\psi_1 = (\alpha_1\psi_1^0)_P$ then $\alpha_1\psi_1^0 \neq \alpha\psi^0$. So $\langle \psi^G, \psi_1^G \rangle = 0$ and

(6)
$$\sum_{\chi \in \mathcal{M}} \chi(1) = \left(\sum_{\substack{\chi \in \operatorname{Irr}(P) \\ \chi(1) = p}} \chi(1)\right) \cdot \left(\sum_{\alpha \in \operatorname{Irr}(G/P)} \alpha(1)\right) = p(p-1)T(F).$$

Thus

(7)
$$T(G) = T(\bar{G}) + p(p-1)T(F) = p^2 - 1 + (p^2 - p + 1)T(F).$$

Now

$$\begin{split} f(\bar{G}) &= \frac{T(\bar{G})}{|\bar{G}|} = \frac{T(F) + p^2 - 1}{p^2 |F|} \,, \\ f(G) &= \frac{T(G)}{|G|} = \frac{(p^2 - p + 1)T(F) + p^2 - 1}{p^3 |F|} \,, \end{split}$$

(8)
$$f(G) - f(\bar{G}) = \frac{(p-1)^2}{p^3|F|} [T(F) - (p+1)].$$

Hence

(9) $G = F^p[P \text{ is a counterexample to } (*) \text{ iff } T(F^p) > p+1.$

Now we give counterexamples to (*).

1°. $F^p = Q(8), G = Q(8)[P < H.$

By (9), $p+1 < T(F^p) = T(Q(8)) = 6$, p=3, $|G| = 2^3 \cdot 3^3$, Hence in this series our group of order $2^3 \cdot 3^3$ is the only counterexample to (*).

2°. p > 3, $F^p = SL(2,3)$.

Then $p+1 < T(F^p) = 12$, p=5 or 7. Thus in this series only two groups G^5 and G^7 are counterexamples to (*).

- 3°. Let $p \equiv \pm 1 \pmod{8}$, $F^p = \hat{S}_4$ where \hat{S}_4 is the subgroup of order 48 in SL(2,p); obviously \hat{S}_4 is a representation group of S_4 , symmetric group of degree 4. Since $p+1 < T(F^p) = T(\hat{S}_4) = 18$ then p=7 and G^7 is the only counterexample in this series.
- 4°. Let $p \equiv \pm 1 \pmod{5}$, $F^p = SL(2,5)$. Since $p+1 < T(F^p) = T(SL(2,5)) = 30$ we have p = 11 or 19. Thus in this series only two groups G^{11} and G^{19} are counterexamples to (*).
- 5°. Suppose that C(m) denotes the cyclic group of order m. Let p > 3, and let $F^p = C(4)[C(3)$ be non-abelian. Then $p + 1 < T(F^p) = 8$. Hence p = 5 and G^5 is the only counterexamples to (*) in this series.
- 6°. Let F^p be a subgroup of order 2(p+1) with a cyclic subgroup of index 2, and $F^p < SL(2,p)$. Then $T(F^p) = p+3 > p+1$. Hence all members G^p of this series are counterexamples to (*).

It is interesting to find such a pair $H \triangleleft G$ for which f(G/H) < f(G) and $H \not\leq Z(G)$. I do not know any counterexample to (*) which is a p-group.

References

- K. G. NEKRASOV and YA. G. BERKOVICH, Finite groups with large sums of degrees of irreducible characters, *Publ. Math. (Debrecen)* 33 (1986), 333-354. (Russian)
- [2] I. M. ISAACS, Character Theory of Finite Groups, Academic Press (1976), New York.

YAKOV BERKOVICH BAR-ILAN UNIVERSITY 52900 RAMAT-GAN ISRAEL