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Base three just touching covering systems

By GARY E. MICHALEK (Philadelphia)

Abstract. Let A = {0, a1, a2} where a1 ≡ 1 (mod 3) and a2 ≡ 2 (mod 3). Let
B = A − A = ±{0, a1, a2, a2 − a1}. We say A is a Just Touching Covering System
(JTCS) if every integer is expressible in the form cn3n + cn−13n−1 + · · · + c13 + c0
where the ci are in B and n is a nonnegative integer. We prove A is a JTCS iff a1 and
a2 are relatively prime.

1. Introduction

The material of this introduction and the conjecture we prove comes
from Kátai’s paper [1]. Consider a triple of numbers A = {0, a1, a2}
where a1 ≡ 1 (mod 3) and a2 ≡ 2 (mod 3). We define a function FA on
the integers by the formula FA(x) = (x− a)/3 where a is in A and x and
a are congruent modulo 3. Let m be the larger of the absolute values of
a1 and a2. Define IA to be the “interval” [−m/2,m/2] ∩ Z. We have the
following fact from [1]:

Fact 1: For any integer x there is a positive integer n such that Fn
A(x)

is in IA. If x is in IA, then so is FA(x).

This fact is established in a straightforward fashion by considering the
inequalities involved. We picture a directed graph on the integers where
x is connected to FA(x) by an arrow. The above fact says that there is a
path from any integer x into the interval IA. For numbers in IA, repeated
application of FA eventually leads either to 0 or to a periodic number. A
periodic number is a number fixed by some Fn

A. See Figure 1.
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Figure 1. The directed graph defined by the function FA where
A = {0, 10, 29} and IA = [−14, 14] ∩ Z

We will also need the following fact from [1]:

Fact 2: For the special case of A = {0, a,−a} where 3 does not divide
a, all the elements of IA are periodic. The directed graph described above,
restricted to IA, consists of a collection of loops (one of which contains
only the element zero).

In this special case FA and IA will be denoted by Fa and Ia. We
have an inverse for Fa on the interval Ia which we will denote by Ta. The
function Ta consists of tripling (modulo a, so that the image is in Ia). It
is easily shown that the length of a loop is a factor of the smallest positive
integer n where 3n ≡ 1 (mod a). Fact 2 is illustrated in Figure 2.

If the triple A = {0, a1, a2} has no periodic numbers (i.e. all numbers
connect to 0), we say A is a number system. This is equivalent to having
every integer x expressible as cn3n + cn−13n−1 + . . . + c13 + c0 where the
ci are in A and n is a nonnegative integer. This is easily seen by analyzing
the path from x to 0 : F i

A(x) ≡ ci (mod 3).
A necessary, but not sufficient, condition for A to be a number system

is that a1 and a2 be relatively prime: if k divides a1 and a2 then k must
divide any x expressible as cn3n + cn−13n−1 + . . . + c13 + c0 where the ci

are in A.
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Figure 2. A = {0,−20, 20} yields this graph on the integers of
IA = [−10, 10]. Since 34 is congruent to 1 (mod 20), the length
of the loops are factors of 4.

To examine how sufficient the “relatively prime” condition is, we make
the following definition. Consider the set B = A − A. This consists of
0, a1, a2, a3 = a2 − a1 and their opposites. We say A is a Just Touching
Covering System (JTCS) if every integer is expressible as cn3n+cn−13n−1+
. . . + c13 + c0 where the ci are in B and n is some nonnegative integer.
(The origin of the terminology is found in [1]. There A is termed a JTCS
if λ(H + n ∩ H + m) = 0 for all distinct integers n and m, where λ is
the Lebesgue measure and H is the set of real numbers expressible in the
form

∑∞
i=1 ci3−i with ci in A. The equivalence with the definition used in

this paper is established in [2] and [3].) Another way of expressing this is
by looking at a directed graph where the connections are created not by a
single FA as above, but by three functions: Fa1 , Fa2 and Fa3 . If x is any
integer, Fai(x) is the sole integral element of {x/3, (x− ai)/3, (x + ai)/3}.
The integer x will be expressible in the polynomial form above if and only
if application of the three Fai in some combination eventually leads to 0.
We will prove the following theorem, conjectured by Kátai in [1]:

Theorem 1. A = {0, a1, a2} is a JTCS iff a1 and a2 are relatively

prime.
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Of course the “only if ” is obvious, as it is for number systems. Before
proving the theorem we make a slight change in the notation. In the sequel,
we will assume a1 and a2 are relatively prime.

2. Notation and outline of proof

Recall that B = {0, a1, a2, a3,−a1,−a2,−a3} where a3 = a2 − a1,
(a1, a2) = 1, a1 ≡ 1 (mod 3) and a2 ≡ 2 (mod 3). We will be more
concerned with the size of these numbers than with their class modulo 3.
Notice that the sum of any two elements of B which are congruent modulo 3
is again an element of B. Also notice that the difference of any two nonzero
elements of opposite modularity is also an element of B (with the exception
of differences of the form x− (−x)). Using these two facts we prove

Lemma 1. If b1 < b2 < b3 are the positive elements of B, then b3 =
b1 + b2 and b1 ≡ b2 (mod 3).

Proof. If b1 and b2 are not congruent modulo 3, then b2 − b1 is
in B by the above remarks. This is a positive integer smaller than b2 and
different from b1. (Recall we are assuming throughout that a1 and a2 are
relatively prime, so that b2 6= 2b1.) This contradicts the definition of b2.
Therefore we may assume b1 and b2 are congruent modulo 3. By the above
remarks, their sum b1 + b2 must be in B as well, and therefore must be b3.

¤

In future we describe B by its triple (b1, b2, b3). Any such triple
(b1, b2, b3) of pairwise relatively prime positive integers which are not di-
visible by 3, with b1 < b2 < b3, b1 ≡ b2 (mod 3), and b3 = b1 + b2, will be
referred to as being in required format . For convenience of notation, we
will also say the triple (1, 1, 2) is in required format even though it does
not fit the description just stated.

We will henceforth denote the three maps Fai with regard to this new
notation as the maps Fb1 , Fb2 , and Fb3 . By repeated application of Fbi we
get a path from any integer into the interval Ibi = [−bi/2, bi/2]∩Z. Recall
that, if x is in Ibi , Tbi(x) is the unique element in {3x, 3x + bi, 3x − bi}
which lies in Ibi . (If x = ±bi/2, x is fixed by Tbi .) Because of the cyclical
structure (Fact 2), Tbi(x) for x in Ibi is equal to Fn

bi
(x) for some n. Of

course n depends on x since the cycles that result from the action of Fbi
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might be of different lengths. The important point is that in the directed
graph defined by B there is a path leading from x in Ibi to Tbi(x).

We have Ib1 ⊂ Ib2 ⊂ Ib3 . Every integer is of course connected by a
path to an element of Ib3 by repeated application of Fb3 . Notice that for
x in Ib3 , Fbi(x) is in Ib3 for i = 1, 2, 3. Therefore in determining if every
integer leads to 0 the action of the Fbi outside of Ib3 will never be used.
Furthermore it is clear that any integer can eventually be connected to an
element of Ib1 by applying Fb1 repeatedly, so that for A to be a JTCS we
neeed only find paths to zero from those integers in Ib1 .

Consider a triple (b1, b2, b3) in required format as defined above. We
will refer to the directed graph created by connecting each x in Ib3 to the in-
tegers Fb1(x), Fb2(x) and Fb3(x) as the path system of the triple (b1, b2, b3).
The theorem will be proven using two techniques. We first establish the
existence of connections for the path system of a triple (d1, d2, d3) where
the di are smaller than the bi. This reduction to a simpler system continues
until no further reduction is possible. The reduction method is given by
Lemma 2 in the next section, and is proven in Sections 4 through 7. The
second technique will explicity find the paths leading to 0 in the system
that we have reduced to. We first show there is a path connecting any two
nonzero elements of Ib1 ; this is Lemma 10 in Section 8. Finally, we show
in Lemma 18 in Section 9 that there is at least one nonzero element of Ib1

which connects to 0. Combined with Lemma 10 this shows all elements of
Ib1 connect to 0 as needed to prove Theorem 1.

3. Reduction to a smaller system

The key lemma for the reduction part of the proof is:

Lemma 2. Consider the path system of a triple (b1, b2, b3) in required

format. By composing some of the paths from this path system we are able

to derive the path system for a triple of numbers (d1, d2, d3) in required

format, where d1 < b1 and d3 ≥ b1. This can be accomplished except when

r = b1− d1 is divisible by three and 3r < b1, in which case the connection

from x to Fd3(x) might not exist for some x in Id3 .

Notice that, since d3 ≥ b1, the map Fb1 will connect every element of
Ib3 to an element in Id3 of the derived path system.We may then apply
the lemma a second time, to the derived system. This reduction may
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continue until we reach a system (c1, c2, c3) for which c1 = 1 (where Fc1

will obviously connect every element to Ic1 = {0}) or until we have a path
system where b1 = d1 + r, with r divisible by 3 and 3r < b1. We will
begin the proof of Lemma 2 in the following section where we explain how
to find the numbers (d1, d2, d3).

4. The derived triple

We begin by describing the triple (d1, d2, d3) that will be derived from
(b1, b2, b3). Recall a triple of positive integers (d1, d2, d3) is in required
format if (d1, d2, d3) = (1, 1, 2) or if d1 < d2 < d3 where d3 = d1 + d2,
the di are pairwise relatively prime and not divisible by 3, and d1 ≡ d2

(mod 3).

Lemma 3. Given the triple (b1, b2, b3), write b2 = kb1 +r where r and

k are positive integers and r is less than b1. Set s = b1 − r. For the triple

(d1, d2, d3) that is derived from (b1, b2, b3) there are two possibilities:

1) If neither r nor s is divisible by 3 then (d1, d2, d3) = (r, s, b1) if

r < s and (d1, d2, d3) = (s, r, b1) if s < r. In the case r = s, we have

(d1, d2, d3) = (1, 1, 2).
2) If 3 divides exactly one of {r, s} and d1 represents the element not

divisible by 3, (d1, d2, d3) = (d1, b1, d1 + b1).
In either case the resulting triple is in required format, d1 < b1, and

d3 ≥ b1.

Remark. The bold r in Lemma 2 will in fact turn out to be either r

or s.

Proof. First notice that at most one of r and s is divisible by 3
since their sum is b1. Therefore there are only two cases as described. The
inequalities are obvious, so we need only to prove that the triple (d1, d2, d3)
is in required format.

There are only two non-obvious things to check in Case 1. First, the
numbers r and s are relatively prime. Since r + s = b1, if any two share a
factor then all three do. But if r and b1 share a factor then b1 and b2 do,
which is a contradiction. Second, r and s are congruent modulo 3. If they
were not, then b1 would be divisible by 3 which is not the case. Notice
that, because they are relatively prime, r = s only if r = s = 1 and b1 = 2.
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In Case 2, note first that d1 and b1 are congruent modulo 3 since
b1 − d1 is the element of {r, s} which is divisible by 3. Therefore, none of
the numbers in (d1, d2, d3) are divisible by 3. As in Case 1, we know d1

and b1 are relatively prime. Therefore d1, d2, and d3 are pairwise relatively
prime. The other requirements for the format are obvious. ¤

5. Arranging the interval

To prove Theorem 1 it will be useful to display the elements of Ib3 in a
particular array. If x is in Ib3 then exactly one of {x+ b1, x− b2} is also in
Ib3 . This is true because [−b3/2, b3/2] and [x−b2, x+b1] are both intervals
of length b3 containing x. Therefore one of the endpoints of [x− b2, x+ b1]
lies in [−b3/2, b3/2] and, being integral, therefore lies in Ib3 . There is one
exception: if b3 is even and x = (b2 − b1)/2, then both x + b1 = b3/2 and
x− b2 = −b3/2 are in Ib3 .

The array of the elements of Ib3 is defined as follows and will be
referred to as an array of Type 1 for the triple (b1, b2, b3). (An example
is presented in Figure 3 below.) Begin with the smallest multiple of b1 in
Ib3 . Repeatedly add b1 to this number as long as possible to generate the
first column of the array. When you reach an x such that x + b1 is not in
Ib3 but x− b2 is, use x− b2 to head the second column.

−60 −47 −54 −61 −48 −55 −62 −49 −56 −63 −50

−40 −27 −34 −41 −28 −35 −42 −29 −36 −43 −30

−20 �7 −14 −21 �8 −15 −22 �9 −16 −23 �10

0 13 6 �1 12 5 �2 11 4 �3 10

20 33 26 19 32 25 18 31 24 17 30

40 53 46 39 52 45 38 51 44 37 50

60 59 58 57

−57 −44 −51 −58 −45 −52 −59 −46 −53 −60

−37 −24 −31 −38 −25 −32 −39 −26 −33 −40

−17 �4 −11 −18 �5 −12 −19 �6 −13 −20

3 16 9 2 15 8 1 14 7 0

23 36 29 22 35 28 21 34 27 20

43 56 49 42 55 48 41 54 47 40

63 62 61 60

Figure 3. The Type 1 array for (b1, b2, b3) = (20, 107, 127).
Elements of Ib1 = [−10, 10] ∩ Z are in bold.
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Begin adding b1 again to form the second column. Continue the process
to generate the remaining columns. In the case where b3 is even, the
number −b3/2 will not appear in the array as it has been described. (When
you reach x = b3/2 you subtract b2 to get (b1 − b2)/2 at the top of the
next column.) In this situation, we will insert −b3/2 above the element
(b1−b2)/2. This does not disrupt the pattern since (b1−b2)/2 = −b3/2+b1.

With this description, all the numbers in Ib3 are included in the array
exactly once: If x is in the array, then x+mb1−nb2 = x implies mb1 = nb2.
Then b1 divides n and b2 divides m so that m + n is at least b3. Therefore
the first b3 elements entered into the array are all different. If we include
−b3/2 as noted above in the case where b3 is even, we see that the array
will list each element of Ib3 once. Notice that each column of the array
contains a single element of Ib1 , unless b1 is even, in which case one column
will contain both −b1/2 and b1/2. Therefore there are b1 columns in the
array.

If one continues the pattern after numbers begin to repeat, the first
repeated numbers are the numbers in the first column of the array (the
multiples of b1 in Ib3). This is clear since if x is in the first column of the
array, then the numbers in column b1 +1 are of the form x− b1b2 +nb1 for
some positive integer n. These are of course themselves multiples of b1.
Thus the array can extended indefinitely to the left or right by continuing
the construction. With this in mind we state a clear but oft-used lemma:

Lemma 4. If x and y are in Ib3 and y = x− jb2 +nb1 for nonnegative

integers j and n, then y is j columns to the right of x in the Type 1 array

for the triple (b1, b2, b3). (If j > b1 we assume the array has been extended

as described in the preceding paragraph.)

Proof. The proof is obvious. For a given j, there are only certain
values of n which give elements of Ib3 . The numbers obtained by using
such n are precisely the elements which are j columns to the right of x.

¤

We need to see how elements of Ib1 in adjacent columns are related.
Let r, s and k be as defined above in Lemma 3.

Lemma 5. Let x be an element of Ib1 in the Type 1 array for the

triple (b1, b2, b3). The element of Ib1 which lies in the column to the right
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of x is either x− r or x+ s. (If there are two elements of Ib1 in the column

to the right of x, they are x− r and x + s.)

Proof. Since r+s = b1, one of {x−r, x+s} is in Ib1 (by an argument
similar to the first paragraph of this section). Moreover, x−r = x−b2+kb1

and x + s = x− b2 + (k + 1)b1 are in the column to the right of x (if they
are in Ib3) by Lemma 4. If there are two Ib1 elements to the right of x,
since x+ s and x− r cannot be −b1/2 and b1/2 respectively (since s and r

are positive), the two elements must be x− r = −b1/2 and x + s = b1/2.
¤

Remark. It follows from Lemma 5 and its proof that if you take the
Ib1 elements from the Type 1 array generated by the triple (b1, b2, b3) and
form the Type 1 array corresponding to the triples (r, s, b1) or (s, r, b1),
elements in adjacent columns in the original array become consecutive
elements in the derived array. It may be necessary to reverse the order in
which the numbers are written depending on the relative sizes of r and s.
See Figure 4.

−7 −6 −5 −4 −10 −9 −8 −7

0 1 2 3 −3 −2 −1 0

7 8 9 10 4 5 6 7

Figure 4. If we take the elements of Ib1 from Figure 3 in the
order in which they occur, we obtain the array for the triple
(d1, d2, d3) = (7, 13, 20).

We also display the elements of Ib3 in an array of Type 2 , described as
follows. Again begin with the smallest multiple of b1 in Ib3 . To generate the
first column we subtract b2 as many times as possible. (Of course that is
either once or not at all, since 2b2 > b3.) We then start the next column by
adding b1 to the bottom of the first column. Continue by subtracting b2 if
possible, and beginning the next column by adding b1. Notice each column
has only one or two elements. As in the array of Type 1, all elements of
Ib3 are eventually included, provided we insert b3/2 above the element
(b1 − b2)/2 in case b3 is even. It is clear each column contains exactly one
element of Ib2 (except possibly when b2 is even, a single column contains
both ±b2/2). We have the following analog of Lemma 5:
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Lemma 6. Let x be an element of Ib2 in the Type 2 array for the

triple (b1, b2, b3). Then the element of Ib2 in the column to the right of

x is either x + b1 or x + b1 − b2. (If there are two elements of Ib2 in the

column to the right of x, one of them is either x + b1 or x + b1 − b2.)

Proof. The element of Ib2 in the column to the right of x is in the
form x + b1 − tb2 for some nonnegative integer t. Clearly t < 2 since
x + (b1 − b2)− b2 < x− b2 ≤ −b2/2. ¤

6. Establishing links

Recall the assertion of Lemma 2. Using the paths that exist from x

to Fb1(x), Fb2(x), and Fb3(x) for any x in Ib3 , we must find paths from
x to Fd1(x), Fd2(x), and Fd3(x) for any x in Id3 . Where convenient, we
will also use the fact that if x is in Ibi , then x is connected by a path
to Tbi

(x) (defined in Section 2). This is true because Tbi
(x) is Fn

b1
(x) for

some positive integer n.

Lemma 7. Assume there are paths from any x in Ib3 to the elements

Fbi(x) for i = 1, 2, 3. Arrange the numbers in Ib3 in the array of Type 1

(Type 2) for the triple (b1, b2, b3). Let x be any number in the array which

is not divisible by 3. Then there are paths from x to the elements of Ib1

(Ib2) lying in the adjacent columns.

In the case where x is in the far left or right column of the array, one of
the adjacent columns will be the column at the opposite end of the array,
since the array may be continued ad infinitum after the pattern begins to
repeat.

Proof. The proof uses the fact that you can home in on the Ib1 or
Ib2 elements. We show the details for Type 1. Assume x ≡ b3 (mod 3), the
other case being similar. First use the path from x to Fb3(x) = (x− b3)/3.
Then connect to F j

b1
(Fb3(x)) where j is chosen so that the result is in

Ib1 . Finally connect to y = T j+1
b1

(F j
b1

(Fb3(x))) which is in Ib1 . Since Fb1

consists of dividing by 3 (after possibly adding or subtracting b1) and Tb1

consists of tripling (followed possibly by adding or subtracting b1) we see
that y is of the form x−b3+t′b1. We may rewrite this in the form x−b2+tb1

which by Lemma 4 is in the column to the right of x. If we substitute Fb2
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for Fb3 in the initial step and continue as before, we connect to an element
of the form x+ b2− tb1 which must lie in the column to the left of x. This
works because b2 and b3 are opposites modulo 3.

In the case where b1 is even and a column contains two elements of
Ib1 , namely b1/2 and −b1/2, we may link to both of these elements. In fact
there is a path from b1/2 to −b1/2 given by the following: b1/2 connects
to Fb2(b1/2) = (b1/2+ b2)/3. This uses the fact that b1/2 is opposite to b1

(and b2) modulo 3. This connects to Tb3((b1/2 + b2)/3) = b1/2 + b2 + tb3

where t is the unique number in {−1, 0, 1} that gives an element in Ib3 .
It is clear that t = −1, and we have connected to −b1/2. There is a path
back via the same maps.

For the paths to Ib2 elements in the Type 2 array, we use similar argu-
ments. The connections are given by the paths from x to T j+1

b2
(F j

b2
(Fb3(x)))

and T j+1
b2

(F j
b2

(Fb1(x))). Here j is chosen so that F j
b2

brings us into Ib2 . In
the case where b2 is even we get from b2/2 to −b2/2 (and back) via the
maps Fb1 , followed by Tb3 . ¤

The proofs that follow are simplified by the following:

Lemma 8. Assume there are paths from any x in Ib3 to the elements

Fbi(x) for i = 1, 2, 3. Consider the function Fd where d is some integer not

divisible by 3. If we have paths from any x ≡ b1 (mod 3) to Fd(x), then

we have paths from any x to Fd(x).

Proof. If x ≡ 0 (mod 3), then Fd(x) = x/3 = Fb1(x). If x ≡ −b1

(mod 3), then by assumption there is a path from −x to Fd(−x). Since
Fd is an odd function, Fd(−x) = −Fd(x). The path from −x to −Fd(x)
implies a path from x to Fd(x) since the Fbi are odd functions. ¤

As an application of the connections described in Lemma 7, we have:

Lemma 9. Assume there are paths from any x in Ib3 to the elements

Fbi(x) for i = 1, 2, 3. If x is in Ib2 , there is a path from x to F2b1(x).

Proof. By Lemma 8, we need only find paths from x to F2b1(x) for
x ≡ b1 (mod 3). Assume we have arrayed the elements of Ib3 in the Type 2
array. By Lemma 7, x connects to the Ib2 element in the column to its
right. By Lemma 6, this element is either x+ b1 or x+ b1− b2. In the first
case we use the path from x+b1 to Fb1(x+b1) = (x+b1 +b1)/3 = F2b1(x).
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In the latter case, we connect to Fb3(x + b1 − b2) = (x + b1 − b2 + b3)/3 =
(x + 2b1)/3 = F2b1(x). ¤

7. The proof of Lemma 2

We divide the proof into two cases, depending on the form of the triple
(d1, d2, d3). Notation is as in the statement of Lemma 3. We are assuming
that for any x in Ib3 , we have paths from x to Fbi(x) for i = 1, 2, 3. Also
assume the elements of Ib3 have been arranged in the Type 1 array for the
triple (b1, b2, b3).

Case 1. Here r and s are not divisible by 3, d1 is the smaller of r and s,
d2 is the larger, and d3 is b1. This will also include the case where r = s = 1
and b1 = 2, i.e. (d1, d2, d3) = (1, 1, 2). An example is found in Figure 3
above where (b1, b2, b3) = (20, 107, 127) and (d1, d2, d3) = (7, 13, 20).

Proof of Lemma 2 in Case 1. Let x be any element in Id3 = Ib1 . We
must show there is a path from x to the images of x under the maps Fdi

for i = 1, 2, 3. As noted in Lemma 8 above we only need to find such paths
in the case where x ≡ b1 (mod 3). Since Fd3 = Fb1 , we only need to show
that there are paths from x to Fr(x) = (x + r)/3 and Fs(x) = (x + s)/3.
(Here we use the fact that r and s are congruent to −b1 modulo 3.)

By Lemma 6 we know there is a path from x to the elements in Ib1

which lie in the columns adjacent to x. By Lemma 5, the element of
Ib1 to the right of x is either x − r or x + s. Since we have paths from
x − r to Fb1(x − r) = (x − r + b1)/3 = (x + s)/3, and from x + s to
Fb1(x + s) = (x + s)/3, in either case we have a path from x to Fs(x). It
also follows from Lemma 5 that the element of Ib1 to the left of x is either
x + r or x− s. Since we have paths from x + r to Fb1(x + r) = (x + r)/3
and from x− s to Fb1(x− s) = (x− s + b1)/3 = (x + r)/3, we have a path
from x to Fr(x).

Case 2. Here d1 is the one of r and s which is not divisible by three,
d2 = b1, and d3 = d1 + b1. An example is presented in Figure 5.

Proof of Lemma 2 in Case 2. Let x be in Id3 . We need to show
x is connected by paths to Fd1(x), Fd2(x), and Fd3(x). Obviously there
is a path from x to Fd2(x) = Fb1(x). The case where x is in Ib1 will
handled in Part 1 below. In Part 2 we deal with those x in Id3 which are
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−44 −29 −36 −43 −28 −35 −42 −27 −34 −41 −26 −33

−22 �7 −14 −21 �6 −13 −20 �5 −12 −19 �9 �11

0 15 8 1 16 9 2 17 10 3 18 11

22 37 30 23 38 31 24 39 32 25 40 33

44 45 46 47

−40 −47 −32 −39 −46 −31 −38 −45 −30 −37 −44

−18 −25 �10 −17 −24 �9 −16 −23 �8 −15 −22

4 �3 12 5 �2 13 6 �1 14 7 0

26 19 34 27 20 35 28 21 36 39 22

41 42 43 44

Figure 5. The Type 1 array of the triple (22,73,95) with Ib1

elements in bold. Here (d1, d2, d3) = (7, 22, 29) which is the array
pictured in the third table.

�14 −8 −9 −10 −11 �12 �13 �14

−7 −1 −2 −3 −4 −5 −6 −7

0 6 5 4 3 2 1 0

7 13 12 11 10 9 8 7

14 14

In the derived array, the elements which are not in Ib1 (from
Part 2 in Case 2 in the proof of Lemma 2) are in bold.

not in Ib1 . As noted in Lemma 8, we only need to establish the existence
of such paths for x ≡ b1 (mod 3). For such x, Fd1(x) = (x − d1)/3 and
Fd3(x) = (x + d3)/3 = (x + d1 + b1)/3.

Part 1: x is in Ib1 . For x in Ib1 we know we have a path to the
elements of Ib1 in the adjacent columns. As in Case 1 the possible values
of these elements are x− s or x + r on the left and x + s or x− r on the
right. Whether r or s is d1, we see that x connects to x− d1 or x− d1 + b1

on one side, and to x + d1 or x + d1 − b1 on the other side. We can then
find paths to the images of these elements under Fb1 or F2b1 (by Lemma 9,
since the elements are in Ib1 and hence in Ib2 .) The appropriate images
are displayed in the table below. Using one side we have a path from x to
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Fd1(x) and using the other side a path from x to Fd3(x).

One Side Other Side

Fb1 (x− d1) = (x− d1)/3 Fb1 (x + d1) = (x + d1 + b1)/3

Fb1 (x− d1 + b1) F2b1 (x + d1 − b1)

= (x− d1 + b1 − b1)/3 = (x− d1)/3 = (x + d1 − b1 + 2b1)/3

= (x + d1 + b1)/3

Part 2: x is in Id3 but not in Ib1 . Since 2b1 > d3, two elements of Id3

cannot differ by 2b1. Therefore the Ib1 element in the same column as x

is either x + b1 or x− b1.
First assume x+b1 is in Ib1 . The Ib1 elements in the adjacent columns

are either (x + b1)− s or (x + b1) + r on the left side, and (x + b1) + s or
(x + b1)− r on the right side. Whether r or s is d1, we have paths from x

to x + d1 or x + d3 on one side, and to x + b1 − d1 or x + 2b1 − d1 on the
other side. The table displays the connections from there. We have paths
from x to Fd3(x) using one column and to Fd1(x) using the other column:

One Side Other Side

Fb1 (x + d1) = (x + d1 + b1)/3 Fb1 (x + b1 − d1) = (x + b1 − d1 − b1)/3

= (x + d3)/3 = (x− d1)/3

Fb1 (x + d3) = (x + d3)/3 F2b1 (x + 2b1 − d1)

= (x + 2b1 − d1 − 2b1)/3 = (x− d1)/3

Next assume x − b1 is in Ib1 . Then the Ib1 elements in the adjacent
columns are either (x−b1)−s or (x−b1)+r on the left side and (x−b1)+s

or (x− b1)− r on the right side. Whether r or s is d1, we have paths from
x to x− d3 or x− d1 on one side, and to x− b1 + d1 or x− 2b1 + d1 on the
other side. The table displays the connections from there:

One Side Other Side

Fb1 (x− d3) = (x− d3 + b1)/3 F2b1 (x− b1 + d1)

= (x− d1)/3 = (x− b1 + d1 + 2b1)/3

= (x + b1 + d1)/3

Fb1 (x− d1) = (x− d1)/3 X − 2b1 + d1 : Special Case
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We have paths from x to Fd1(x) using one column and to Fd3(x) using
the other column, assuming that there are no elements of Ib1 of the form
x− 2b1 + d1.

A difficulty arises if we have x−2b1 +d1 in Ib1 where x is in Id3 . This
is a problem since x − 2b1 + d1 ≡ 0 (mod 3) and little can be done with
it. In fact the existence of such an element forces the reduction process
to terminate. The resulting situation is handled in Sections 8 and 9. If
x−2b1 +d1 is in Ib1 , then x ≥ −b1/2+2b1−d1 = 3b1/2−d1. Since x is in
Id3 , we known that x ≤ (b1 +d1)/2. Therefore this problem can only arise
if 3b1/2 − d1 ≤ (b1 + d1)/2. That is, 2b1 ≤ 3d1 or, writing d1 = b1 − r,
b1 ≥ 3r. As remarked earlier this r is either r or s as used above, and
is the one of r or s which is congruent to 0 modulo 3. Since 3 does not
divide b1, we in fact have b1 > 3r. This is the situation referred to in the
statement of Lemma 2, which is now proven. ¤

In the remaining sections of the paper we will assume that the reduc-
tions have been applied so that we are now in the special situation just
described, where b1 = d1 + r, 3 divides r and 3r < b1 (or equivalently
2r < d1). We will no longer emphasize this r since the old r and s will no
longer be used.

8. Paths connecting Ib1 elements

In the situation that remains we assume we have the path system for
the triple (b1, b2, b3) provided by the maps Fbi for i = 1, 2, 3. Moreover we
have shown in the proof of Lemma 2 that for any x in Ib1 there is a path
from x to Fd1(x). Here d1 = b1 − r where 3 divides r and 3r < b1. In this
section we will show that there is a path from any nonzero element of Ib1

to any other.
We use only the maps Fd1 (referred to simply as F ) and Tb1 (referred

to as T ). (For a result independent of Lemma 2, it is possible to use
F = Fb1 without substantial modifications.) If x is in Ib1 , recall there is a
path from x to T (x).

Let x be any element of Ib1 which is not divisible by 3. By Lemma 7,
we know that there are paths from x to the elements of Ib1 in the adjoining
columns, as they appear in the Type 1 array for the triple (b1, b2, b3). As
noted in the Remark of Section 5, if we write the elements of Ib1 in their
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own Type 1 array, given by the triple (r, d1, b1), we see that x connects
to the elements adjacent to it (one step above or below it). If x is at the
bottom of a column, x will connect to the number at the top of the column
on the right. If x is at the top of a column, x will connect to the number
at the bottom of the column on the left. In this section we will work only
with the Type 1 array for the triple (r, d1, b1). An example is presented in
Figure 6 at the end of this section.

What makes this case work is fact that any two elements in a column
are congruent modulo 3 since they differ by a multiple of r. Assuming
the array begins as usual with the column of multiples of r, elements of
the second column will be congruent to −d1 modulo 3, elements of the
third column will be congruent to −2d1 ≡ d1 (mod 3), elements of the
fourth column are 0 modulo 3 and so on. In particular, we see that all
the elements in columns 2 and 3 are connected to each other and connect
to the bottom of column 1 and the top of column 4. We have a similar
result for the elements of columns 5 and 6, columns 8 and 9, etc. These
pairs of columns, consisting of numbers not divisible by 3 which are joined
together by paths, will be called blocks. Columns 2 and 3 will be referred
to as block 1, and so on to the right. Within a block, elements in the left
column are congruent to −d1 modulo 3 and elements in the right column
are congruent to d1 modulo 3. Since there are r columns in the array,
there are r/3 blocks.

The main result of this section is the following:

Lemma 10. There is a path from any nonzero element of Ib1 to any

other.

It will suffice to show that there is a path from an element of any
one block to an element of any other block. This will demonstrate that
all numbers not divisible by three will be connected by paths. That will
imply that any two numbers will be connected (since if 3 divides x, there
is a path from x to F (x) = x/3 and a path back from x/3 to T (x/3) = x).
We begin our proof with a computational lemma.

Lemma 11. 1) If z is at the top of a column in the array, T (z) =
3z + b1. If z is at the bottom of a column then T (z) = 3z − b1.

2) If 3 divides some number a, then F (x + a) = F (x) + a/3.

Proof. 1) Recall T (z) is the single element of {3z, 3z − b1, 3z + b1}
which is in Ib1 . (If b1 is even, recall that T fixes both b1/2 and −b1/2.) If
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z is at the top of the column, z − r is not in Ib1 and so z < −b1/2 + r.
Then 3z < −3b1/2+3r < −b1/2, since 3r < b1. Therefore T (z) = 3z + b1.
The proof is similar for z at the bottom of a column. Part 2 is obvious.

¤

Let M be the positive integer such that 3M divides r and 3M+1 does
not. A block B is said to be of depth k if there is a pair of numbers (x, y) in
B where x is in the left column of B (hence congruent to −d1 modulo 3),
and y is in the right column (hence congruent to d1 modulo 3), such that
F i(x) ≡ −d1 (mod 3) and F i(y) ≡ d1 (mod 3) for i = 1, . . . , k. Saying B

is of depth k does not imply it is not of a higher depth as well . F 0 will
denote the identity map. We have the following lemma:

Lemma 12. 1) If x and x′ = x + tr are in the same column, F i(x′) =
F i(x) + tr/3i for i = 0, . . . , M . We have F i(x′) ≡ F i(x) (mod 3) for

i = 0. . . . , M − 1.

2) If x and x′ = x± 3id1 + tr are 3i columns apart (0 < i ≤ M), then

F j(x′) = F j(x)± 3i−jd1 + tr/3j for j = 0, . . . , i. We have F j(x′) ≡ F j(x)
(mod 3) for j = 0, . . . , i − 1. (Here t is some integer. If x′ is outside the

array, we extend the array using the repetition of the pattern.)

Proof. We apply Lemma 11 (2) repeatedly to prove both assertions.
¤

An important consequence of Lemma 12 (1) is that it does not matter
which pair (x, y) you select from the block B in order to establish that it
has depth k, provided k is less than M . Therefore we will always assume
(x, y) is a middle pair of B, that is, x is at the bottom of the left column
and y = x − d1 is at the top of the right column. (In the special case
x = b1/2, we will still use y = x− d1 though it is the second number in its
column.) As a result of the following lemma, we will not need to compute
depths of M or more, so that the middle pair will always suffice.

Lemma 13. If B is of depth M − 1, then B is of depth M .

Proof. Let (x, y) be the middle pair of B. Then F i(x) ≡ −d1

(mod 3) and F i(y) ≡ d1 (mod 3) for i = 1, . . . ,M − 1. For any x′ =
x + tr in the same column as x, we have F i(x′) ≡ F i(x) (mod 3) for i =
1, . . . , M−1 and FM (x′) = FM (x)+tr/3M by Lemma 12. Now if FM (x) is
not congruent to −d1 modulo 3, then FM (x′) will be, for either t = −1 or
−2. This is because r/3M is not divisible by 3. (Recall x is at the bottom
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of the column. Because 2r < d1 there are at least three elements in any col-
umn.) One proceeds in the same way with y, using the fact that y is at the
top of the column, and choosing t = 1 or 2 if necessary, for y′ = y + tr. (In
the exceptional case where y is the second element, t is either 1 or−1). This
allows us to find a pair (x′, y′) which demonstrates that B has depth M .

¤

Lemma 14. If B is of depth k and not of depth k+1 (where k < M−1
by Lemma 13), let (x, y) be the middle pair of B. Then (F i(x), F i(y)) is

a middle pair for i = 1, . . . , k. The pair (F k+1(x), F k+1(y)) is congruent

modulo 3 to either (0,−d1) or (d1, 0).

Proof. We know (F i(x), F i(y)) is congruent modulo 3 to (−d1, d1)
for i = 1, . . . , k. Notice that F (y) = (y−d1)/3 = (x−2d1)/3 = (x+d1)/3−
d1 = F (x) − d1. Therefore, F (x) is at the bottom of a column and F (y)
at the top of the column to its right. Because (F (x), F (y)) is congruent
modulo 3 to (−d1, d1), (F (x)F (y)) is a middle pair of some (other) block.
We can continue to apply F and see that each (F i(x), F i(y)) is again a
middle pair for i = 1, . . . , k. By assumption, (F k+1(x), F k+1(y)) is not
congruent modulo 3 to (−d1, d1). Since (F k(x), F k(y)) is a middle pair,
F k+1(y) = F k+1(x)−d1. Therefore F k+1(x) is at the bottom of a column
and F k+1(y) is at the top of the column to its right. This proves the lemma.

¤

If B is as described in Lemma 14, with (F k+1(x), F k+1(y)) congruent
modulo 3 to (0,−d1) we will say B is of maximal depth k rightwards.
If (F k+1(x), F k+1(y)) is congruent modulo 3 to (d1, 0) we will say B is
of maximal depth k leftwards. By Lemma 13, we presume k < M − 1.
We give the obvious interpretation to “maximal depth 0 (rightwards or
leftwards)”. Every block has “depth 0” and “maximal depth 0” means
“not depth 1”.

The following lemma establishes the depth pattern of the various
blocks.

Lemma 15. 1) If B is of depth k (k < M) then so are the blocks 3k+1

columns from B.

2) Two blocks of depth k (k < M) are a multiple of 3k+1 columns

apart.

3) The blocks of depth M − 1 are all 3M columns apart.
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4) Assume k < M − 1. If B is of maximal depth k leftwards (right-

wards), then the block 3k+1 columns to the left (right) of B is of depth

k + 1.

Proof. 1) Let (x, y) be the middle pair for B, a block of depth k. Let
B′ be a block 3k+1 columns away from B. Let (x′, y′) be the middle pair
of B′ with x′ = x± 3k+1d1 + tr and y′ = y ± 3k+1d1 + tr. By Lemma 12,
F j(x′) ≡ F j(x) (mod 3) and F j(y′) ≡ F j(y) (mod 3) for j = 1, . . . , k.
This shows that B′ has depth k.

2) Let B and B′ be blocks n columns apart, of depth k with middle
pairs (x, y) and (x′ = x + a, y′ = y + a), where a = ±nd1 + tr. We
know F j(x′) ≡ F j(x) ≡ −d1 (mod 3) and F j(y′) ≡ F j(y) ≡ d1 (mod 3)
for j = 0, . . . , k. Repeatedly apply this argument starting with j = 0:
Since F j(x′) = F j(x) + a/3j , and F j(x′) ≡ F j(x) (mod 3), we have that
3 divides a/3j . Then by Lemma 11 (2) we have F j+1(x′) = F j+1(x) +
a/3j+1. In the final step, j = k and we get have F k+1(x′) = F k+1(x) +
a/3k+1. Since 3k+1 divides a and r, 3k+1 must divide n.

3) Follows from 1) and 2).
4) We demonstrate the “leftwards” case. Let (x, y) be the middle pair

of B. Let B′ be the block which is 3k+1 columns to the left of B. Consider
(x′, y′), the middle pair of B′ with x′ = x+3k+1d1+tr and y′ = y+3k+1d1+
tr. By 1) B′ is of depth k. By the “leftwards” part of the assumption we
know that F k+1(x) ≡ d1 (mod 3) and F k+1(y) ≡ 0 (mod 3). Then by
Lemma 12, F k+1(x′) = F k+1(x)+d1 + tr/3k+1 and F k+1(y′) = F k+1(y)+
d1 + tr/3k+1. Because 3k+2 divides r, we see that F k+1(x′) ≡ 2d1 ≡ −d1

(mod 3) and F k+1(y′) ≡ d1 modulo 3. In other words B′ has depth k + 1.
¤

We now see how the depth determines the path connections.

Lemma 16. 1) Let x in Ib1 be such F i(x) ≡ −d1 (mod 3) for i =
0, . . . , k. Then there is a path from x to an element 3k columns to the left

of x.

2) Let y in Ib1 be such F i(y) ≡ d1 (mod 3) for i = 0, . . . , k. Then

there is a path from y to an element 3k columns to the right of y.

3) If B is of depth k with k ≤ M , there are paths from B to the blocks

3k columns away on either side of B.

Proof. 1) Assume x is in the left column of a block B, where F i(x) ≡
−d1 (mod 3) for i = 1, . . . , k. The proof is by induction on k. If k = 1,
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we know F (x) ≡ −d1 (mod 3) and is therefore in the left column of its
block. There is then a path from F (x) to the element at the bottom
of the column to its left (a column of numbers divisible by 3). Write
this element as F (x) + d1 − jr = (x + d1)/3 + d1 − jr. By Lemma 11,
T (F (x) + d1 − jr) = (x + d1) + 3d1 − 3jr − b1 = x + 3d1 − (3j + 1)r. We
therefore have a path from x to the block three columns to the left.

Now assume the inductive hypothesis. Let x be such that F i(x) ≡ −d1

(mod 3) for i = 1, . . . , k, with k > 1. We know that F (x) connects to
F (x)+3k−1d1−jr for some j by the inductive hypothesis. This is congruent
modulo 3 to F (x), i.e. to −d1 modulo 3. We may thus assume it is at the
bottom of its column. Then x connects to T (F (x) + 3k−1d1 − jr) =
(x + d1) + 3kd1 − 3jr − b1 = x + 3kd1 − (3j + 1)r as needed.

2) The proof is similar to 1) but uses tops of columns instead of
bottoms.

3) This follows by applying 1) and 2) to a pair (x, y) that establishes
the depth of B. ¤

Lemma 17. 1) Let k < M − 1. If B is of maximal depth k leftwards

(rightwards) then there is a path from B to the block 3k+1 columns to the

left (right) of B. That block has depth k + 1. There is also a path back.

2) If B is of depth M − 1, there are paths to the blocks 3M columns

on either side of B (and paths back).

Proof. 1) We prove the case of the “leftward” connection. The proof
is by induction. Assume k = 0. If (x, y) denotes the middle pair for B

of maximal depth 0 leftwards, then F (x) is congruent to d1 modulo 3 by
definition. We connect F (x) to the element at the bottom of the column to
its left (a column of elements congruent to −d1 modulo 3 in the same block
as F (x)). Write this element as F (x) + d1 − jr = (x + d1)/3 + d1 − jr.
Then by Lemma 11, T (F (x) + d1 − jr) = (x + d1) + 3d1 − 3jr − b1 =
x + 3d1 − (3j + 1)r. We can therefore find a path from x to the block 3
columns away to the left of x.

Now assume the inductive hypothesis and let B be maximal depth k

(leftwards) with k > 0. Let (x, y) be the middle pair of B. Let B′ denote
the block containing (F (x), F (y)) as its middle pair (Lemma 14). Then B′

is of maximal depth k − 1 (leftwards). By the inductive hypothesis, F (x)
connects to F (x) + 3kd1 − jr for some j. This is congruent modulo 3 to
F (x), i.e. to −d1 modulo 3. We may thus assume it is at the bottom of its
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column. Then x connects to T (F (x) + 3kd1 − jr) = (x + d1) + 3k+1d1 −
3jr− b1 = x+3k+1d1− (3j +1)r as needed. By Lemma 15, the block 3k+1

columns to the left of B has depth k + 1. By Leamma 16 (3), there is a
path back to B.

2) By Lemma 13, B is of depth M . By Lemma 16 (3) there are paths
from B to the blocks 3M columns on either sider of B. By Lemma 15 (3),
these blocks are of depth M − 1, and therefore of depth M . Then there
are paths back to B. ¤

We are finally ready to prove Lemma 10.

Proof of Lemma 10. By Lemma 17 (1), there is a path from any
block of “maximal depth k” to a block of greater depth. There is also a
path back. Thus there are paths from all blocks to and from the blocks of
depth M − 1. By Lemma 15 (3) and Lemma 17 (2) the blocks of depth
M − 1 are all connected. ¤

9. Elements of Ib1 connecting to 0

In this section we will show:

Lemma 18. Given the path system for the triple (b1, b2, b3), there is
at least one nonzero element of Ib1 connected by a path to 0.

The proof is divided into three cases depending on how b2 is expressed
in terms of b1. In this section we assume only that we have the path system
on Ib3 corresponding to the maps Fb1 , Fb2 , and Fb3 referred to as F1, F2

and F3. Recall also that if x is in Ibi there is a path from x to Ti(x) where
Ti is the inverse of Fi on Ibi . By Lemma 9, if x is in Ib2 there is a path
from x to F2b1(x).

In each case we will use the simple fact that any multiple of b1 is
connected by a path to 0 (under the action of F1). Notice r as used in the
remainder of the paper is not necessarily the r from the preceding sections.
In particular r may be negative in Case 1.

Case 1. b2 = nb1 + r where r in Ib1 is not divisible by 3 and n is a
positive integer.

Proof of Case 1. If r ≡ b1 (mod 3), then F2(r) = (r − b2)/3 =
−nb1/3. If r ≡ −b1 (mod 3), then F3(r) = (r − b3)/3 = −(n + 1)b1/3. In
either case, r in Ib1 is connected by a path to 0. ¤
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A B C D

−54 −55 −56 −57 −58 −59 −60 −61 −62 −63 −64 −65

0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11

54 53 52 51 50 49 48 47 46 45 44 43

max 0 R max 1 R max 0 L max 0 R

E F G H

−66 −67 −68 −69 −70 −71 −72 −73 −74 −75 −76 −77

−12 −13 −14 −15 −16 −17 −18 −19 −20 −21 −22 −23

42 41 40 39 38 37 36 35 34 33 32 31

max 2 R max 0 L max 0 R max 1 L

I J K L

−78 −79 −80 −81 −28 −29 −30 −31 −32 −33 −34 −35

−24 −25 −26 −27 26 25 24 23 22 21 20 19

30 29 28 27 80 79 78 77 76 75 74 73

max 0 L 81 max 0 R max 1 L max 0 L

M N O P

−36 −37 −38 −39 −40 −41 −42 −43 −44 −45 −46 −47

18 17 16 15 14 13 12 11 10 9 8 7

72 71 70 69 68 67 66 65 64 63 62 61

max 0 R max 2 L max 0 L max 0 R

Q R

−48 −49 −50 −51 −52 −53 −54

6 5 4 3 2 1 0

60 59 58 57 56 55 54

max 1 L max 0 L

Figure 6. The triple (r, d1, b1) = (54, 109, 163). M = 3 in this example.
“Max 1 R” signifies maximum depth 1 rightwards. By Lemma 13, a block
of depth 2 is also of depth 3. Block E might seem, as marked, of maximum
depth 2 rightwards if we use the middle pair (41,−68). If however we use
the pair (−67,−14) the depth is 3. Below the array we show the connections
between blocks. The lines represent equivalence, i.e. paths going in both
directions. You see the depth 3 connection between blocks E and N .
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Case 2. b2 = b1 + r where r in Ib1 is divisible by 3.

Proof of Case 2. Of course r is positive here. Consider the sequence
{ck} defined by c1 = b1, ck = 3ck−1 − b3. We have that ck < ck−1 iff
ck−1 < b3/2. Since b1 < b3/2 it follows that the sequence is decreasing.
Notice also that F3(ck) = ck−1. Therefore there is a path from any element
of the sequence to b1 and hence to 0. Let cj be the last positive number
in the sequence. If either cj or cj+1 is in Ib1 then we are done. Otherwise
consider cj+1 + b1. Since F2(cj+1 + b1) = (3cj − b3 + b1 + b2)/3 = cj , we
also have a path from cj+1 + b1 to zero. Since cj > b1/2 and cj+1 < −b1/2
by assumption, we have

b1/2 = −b1/2 + b1 > cj+1 + b1 = 3cj − b2 > 3b1/2− b2 = b1/2− r ≥ 0

so that cj+1 + b1 is in Ib1 as needed. ¤

Case 3. b2 = nb1 ± r where r in Ib1 is divisible by 3. Here n > 1 and
r is positive. (Possible values of n are then 4, 7, 10, etc., because b1 and b2

are congruent modulo 3.)

Proof of Case 3. We use the sequence of elements {b1−r, b1−3r,

. . . , b1−3sr} where s is the unique positive integer such that b1−3sr is in
Ib1 : b1−3sr is in [−b1/2, b1/2] if r is in [b1/(2 ·3s), b1/(2 ·3s−1)]. This must
hold for some s ≥ 1 and s is unique since the endpoints of the interval are
not integral.

Each element of the sequence is in [−b1/2, b1−r]. Since b1 < b2/2, they
are all elements of Ib2 . Then F2b1(b1−3tr) = (b1−3tr+2b1)/3 = b1−3t−1r,
so that there is a path from each element to the term preceding it. To
finish the proof notice that in the case b2 = nb1 + r, we have F3(b1 − r) =
(b1− r + b3)/3 = (2b1− r +nb1 + r)/3 = (2+n)b1/3. In case b2 = nb1− r,
we have F2(b1 − r) = (b1 − r− b2)/3 = (b1 − r− nb1 + r)/3 = (1− n)b1/3.

¤

With this final case we have completed the proof of Theorem 1.
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